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Helices are among the simplest shapes that are observed in the
filamentary and molecular structures of nature. The local mechan-
ical properties of such structures are often modeled by a uniform
elastic potential energy dependent on bending and twist, which is
what we term a rod model. Our first result is to complete the
semi-inverse classification, initiated by Kirchhoff, of all infinite,
helical equilibria of inextensible, unshearable uniform rods with
elastic energies that are a general quadratic function of the
flexures and twist. Specifically, we demonstrate that all uniform
helical equilibria can be found by means of an explicit planar
construction in terms of the intersections of certain circles and
hyperbolas. Second, we demonstrate that the same helical center-
lines persist as equilibria in the presence of realistic distributed
forces modeling nonlocal interactions as those that arise, for
example, for charged linear molecules and for filaments of finite
thickness exhibiting self-contact. Third, in the absence of any
external loading, we demonstrate how to construct explicitly two
helical equilibria, precisely one of each handedness, that are the
only local energy minimizers subject to a nonconvex constraint of
self-avoidance.

biomolecules � differential geometry � elasticity � filaments � rods

Scientists have long held a fascination, sometimes bordering on
mystical obsession, for helical structures in nature (1, 2). Helices

arise in nanosprings, carbon nanotubes, �-helices, DNA double and
collagen triple helices, lipid bilayers, bacterial flagella in Salmonella
and Escherichia coli, aerial hyphae in actynomycetes, bacterial
shape in spirochetes, horns, tendrils, vines, screws, springs, and
helical staircases (3–13). Helical structures can be understood from
a discrete point of view as a regular, periodic stacking of rigid
blocks, such as the bases in DNA strands (14), the tail sheaths of
bacteriophages (15), the packing of flagellin subunits (16), or simply
the stairs in spiral staircases (1). However, it also can be beneficial
to adopt a continuous description in which a filamentary structure
is represented by a central space curve along with a frame that
captures the orientation of the material cross sections at each point
along the curve. Although this description neglects some fine
features of deformations in the cross section, it is nevertheless
suitable to describe the large-scale geometrical and physical prop-
erties of long, thin structures. If the deformations are small enough
with respect to the appropriate characteristic length scales of the
problem, the physical attributes of the filament such as the stresses
acting across cross sections can be averaged and represented as a
resultant force and moment acting on the centerline. We will refer
to such a description of a filamentary structure as a rod model (see,
for instance, refs 5, 7, 8, and 10–13 for examples of such rod
theories).

In continuum mechanics, a semi-inverse problem is generally
taken to mean the study of a special class of solutions with certain
features specified a priori, as opposed to the study of, for example,
all solutions to a particular boundary value problem. Kirchhoff
(17–19) first proposed the semi-inverse problem of determining all
equilibrium configurations of a uniform rod whose centerlines were
a helix, i.e., a curve with constant curvature and torsion (see also
ref. 20). In addition, Kirchhoff himself found all helical solutions in
the particular case of what is now called an isotropic Kirchhoff rod,
i.e., an inextensible, unshearable rod with a quadratic bending and

twisting energy that has equal response to bending in any material
direction.

After Kirchhoff, the semi-inverse classification of helical equi-
libria of rods was resolved for more general classes of nonlinear
constitutive relations, and also for models encompassing effects of
shear and extension, by Whitman and DeSilva (21) and Antman
(22), but still only in isotropic cases. More recently, the general
classification of helical equilibria for nonisotropic rods has been
discussed in ref. 23, where a necessary and sufficient set of
conditions that must be satisfied by uniform helical equilibria was
obtained, and various conclusions about multiplicities of such
solutions were reached. It is here important to distinguish between
uniform helical structures, in which the orientation of the material
cross section is fixed with respect to the Frenet frame of the helical
centerline so that the geometrical torsion and physical twist coin-
cide, and nonuniform helical structures.

After brief introductions to the kinematics and mechanics of rods
in the first two sections, our first original contribution is to
demonstrate that when specialized to the particular Kirchhoff case
of inextensible and unshearable rods with quadratic bending and
twist energy, the necessary conditions derived in ref. 23 allow a
complete, explicit, and elementary classification of all uniform
helical equilibria. The additional progress possible in the classifi-
cation for the particular case of a nonisotropic quadratic energy is
of some practical importance because it is precisely this case that
arises in many modeling applications. We further show, in the rather
technically detailed Supporting Text, which is published as support-
ing information on the PNAS web site, that, with the exception of
some very particular and well characterized energies and equilibria,
all helical equilibria of a nonisotropic rod are in fact uniform helical
equilibria. Thus, in a certain sense we here complete the classifi-
cation of all helical equilibria started by Kirchhoff.

Our second set of results concerns nonlocal central interactions.
We demonstrate that any helical equilibrium of an inextensible,
unshearable rod in the absence of nonlocal interactions remains as
an equilibrium in the presence of nonlocal interactions that arise
from central pairwise forces, as is the case for either electrostatics
or self-contact. The geometry of the helical equilibrium is unmod-
ified, while the tangential component of force or tension in the rod
is appropriately incremented to satisfy the balance laws.

Our third set of results concerns the possible minimum energy
states of a uniform elastic rod of prescribed tubular thickness when
subject to a self-avoidance requirement and in the absence of any
external loading. For such rods the actual state of least energy may
not be accessible because of the self-avoidance constraint. We show
that, again with the exception of certain very special and classifiable
cases, there are always precisely two helical states, one left-handed
and one right-handed, that realize the only two local minima of the
elastic energy subject to self-avoidance.

Throughout, we consider only the semi-inverse problem for
helical solutions. In particular, we consider only helical equilibria of
infinite extent. Finite segments of these solutions will satisfy certain
two-point boundary value problems, but only for rather special
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boundary data, and, for the case of nonlocal interactions, in the
presence of specific distributed external loadings close to the
boundary.

Kinematics
A configuration of an inextensible, unshearable rod (22) is
defined by its centerline r(s) and an associated orthonormal
framing of directors {di(s)}, i � 1, 2, 3, where s is the arc length,
�L � s � L. The kinematics of the frame are encapsulated in

d�i � u � di, i � 1, 2, 3, [1]

where ( )� denotes the derivative with respect to s, and u � u1d1 �
u2d2 � u3d3. The components u: � (u1, u2, u3) are the strains of the
rod; u1 and u2 are associated with bending, whereas u3 describes
physical twist. Inextensibility and unshearability are manifested in
the vector constraint r� � d3. Thus, the two vector fields (d1(s), d2(s))
span the normal plane to r(s); their directions encode the orien-
tation of the material cross section of the filament at s and therefore
provide more information than that contained in the curve r(s)
itself.

In contrast, the classic intrinsic framing of r(s) is provided by the
Frenet frame F: � {�, �, �} of principal normal, binormal, and
tangent � � d3 that is defined purely in terms of the centerline r(s)
wherever r� � 0 (see, e.g., ref. 24). The Frenet–Serret equations are

�� � ��, [2a]

�� � ��� � ��, [2b]

�� � ���, [2c]

where �(s) � 0 is the curvature, and �(s) is the (geometric)
torsion of the curve. Because � � d3 the directors (d1(s), d2(s))
are a rotation of {�, �} through an angle 	(s) about the tangent

d1 � � cos	 � � sin	 , [3a]

d2 � �� sin	 � � cos	 . [3b]

Following a nomenclature introduced in the study of DNA (25),
we call the angle 	 the register. The strains u are related to the
curvature �, torsion �, and register 	 through (see ref. 18, p. 383)

u1 � � sin	, u2 � � cos	, u3 � � � 	� . [4]

Curves with constant curvature and torsion are helices, which, after
elimination of a rigid-body motion, can be given the arc-length
parametric form r(s) � r cos(
1s)e1 � r sin(
1s)e2 � p
1se3, where
{ei} is a fixed basis, r is the radius of the helix, 2�p is the pitch, and

1 � 1��r2 � p2. The constant curvature, torsion, radius, and pitch
are related by

r �
�

�2 � �2 , p �
�

�2 � �2 . [5]

Of particular importance here is the geometric fact that at each
point along a helix the principal normal is �(s) � �cos(
1s)e1 �
sin(
1s)e2, i.e., it is oriented inward and perpendicular to the helical
axis e3.

Consideration of Eq. 4 reveals that provided the register 	(s) is
not constant, the configuration of a rod can have a constant
curvature and torsion, i.e., a helical axis r, without the strains u
being constant. However, the helical configurations for which u is
constant play a central role in the analysis and will be referred to
as uniform helices. The centerline of such a configuration is a helix,
and the register is constant. Uniform helices are completely char-
acterized by a point in three-dimensional (3D) u space. Moving
along rays �u from the origin in this space traverses uniform helices
with, from Eq. 4, constant register and curvature and torsion (����,

��) and, from Eq. 5, radius and pitch (r����, p��). Thus, the helices
dilate as �3 0, and the origin in u-space is a rather singular limit.

Mechanics
The stresses acting across the cross section at r(s) can be
averaged to yield a resultant force n(s) and moment m(s).
Balance of forces and moments then yields (19)

n� � f � 0, m� � r� � n � l � 0, [6]

where f(s) and l(s) are, respectively, the body force and couple per
unit length applied on the cross section at s. Different functional
forms of these body forces and couples can be used to model
different effects such as gravity, interaction with solvent, or inter-
actions between different parts of the rod via electrostatics or
self-contact, for example.

Because of the inextensibility and unshearability constraint, the
force n(s) is a basic unknown, but to close the system a constitutive
relation relating the moment and strains must be given. We assume
a uniform, hyperelastic rod, i.e., there exists a convex, coercive
strain-energy density function W(w) with Ww(0) � 0 that generates
the constitutive relations m � uW(u � û). Here the constants û are
the strains in the uniform, unstressed reference configuration at
which m � 0.

It will be of importance to distinguish between isotropic and
nonisotropic rods. The strain-energy function W is said to be
isotropic if W(w cos	, w sin	, w3) is independent of 	 for all w and
w3. The rod is said to be isotropic if in addition û1 � û2 � 0.
Physically, an isotropic rod has no preferred bending direction.�

We will be particularly concerned with one of the most important
cases for applications in which the strain-energy density is well-
approximated by a quadratic function of the strains, i.e.,

W	u � û
 �
1
2

	u � û
 �K	u � û
 , [7]

where K is a symmetric 3 � 3 positive-definite matrix, which, by a
rotation about d3 of the embedding of the frame {di} in the material
of the rod, may without loss of generality be assumed to be of the
form

K � � K1 0 K13

0 K2 K23

K13 K23 K3

� , K1 � K2. [8]

For a quadratic strain energy, the constitutive relation for m is
linear m � K(u � û), which implies u � û � K�1m. The quadratic
strain-energy Eq. 7 is isotropic precisely when K2 � K1 � K23 �
K13 � 0, with the associated rod being isotropic when in addition
û1 � û2 � 0.

Helical Equilibria in the Absence of Body Forces
In this section we consider the classic Kirchhoff problem of
classifying helical equilibria in the absence of distributed body
forces and couples, i.e., f � l � 0 in Eqs. 6. Our starting point is the

�In general, nonisotropic rods have the property that if the uniform, i.e., s-independent,
constitutive relations are rewritten with respect to another reference framing, then the
transformed constitutive relations will be nonuniform unless the old and new reference
frames are related by means of a simple constant rotation. Thus, for nonisotropic rods
there is a family of preferred choices of û leading to uniform constitutive relations, and the
notion of uniform helices introduced above is with respect to any of these preferred
coordinate systems. However, for isotropic rods the constitutive relations will remain
uniform for any choice of û3, even though the different reference framings are not related
through a constant rotation. Thus, for isotropic rods, the notion of which helical config-
urations are uniform and which are not, is coordinate system dependent and is accordingly
not of physical importance. Because the set of helical configurations for isotropic rods is so
well understood, the ambiguity in the isotropic case will turn out to be of no practical
significance (see text below).
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analysis of uniform helical equilibria presented in ref. 23, which we
briefly summarize.

First, there are two limiting and exceptional 1D families of
uniform helices with either u � 0 or n � 0 that can straightforwardly
be verified to be equilibria through a direct consideration of the
balance laws in Eqs. 6. When u � 0, the director frame steadily
translates, the centerline is a straight line, i.e., a degenerate helix,
the moment m is given by the constitutive relations, and the force
n is parallel (or antiparallel) to the helix centerline with arbitrary
magnitude. The second family of singular equilibria with n � 0 have
m and u parallel, with the vector m constant and parallel to the axis
of the helical centerline. The absolute energy minimizer u � û at
which m � 0 is always a member of the second family. In addition,
the two families intersect at the unique uniform helical equilibrium
for which u � 0 � n.

All remaining uniform helical equilibria can be characterized as
follows. For each freely prescribed curvature � � �u1

2 � u2
2 � 0 and

torsion � � u3, there are two or more corresponding uniform helical
equilibria with constant registers 	* that need to be computed.
Specifically the equilibrium registers 	* are determined, through
Eq. 4 with 	� � 0, from critical points u* of the energy W(u � û),
subject to the constraints

1
2

u�u �
1
2


1
2, u3 � 
1
2. [9]

In u-space, and for 0  
1  � and �1  
2  1, the constraints
of Eq. 9 define the intersection of a sphere centered at the origin
and a plane normal to the u3-axis, i.e., a circle. On this circle, the
continuous real-valued function W must have at least two critical
points, namely a maximum and a minimum. Thus, there exists a
discrete number of two or more families of uniform helical equi-
libria u*(
1, 
2) parameterized by the constants 
1 and 
2 with
curvature �2 � 
1

2(1 � 
2
2) and torsion � � 
1
2. It can be shown

that for these equilibria the force n is parallel to the helical axis,
whereas the moment m lies in the tangent-binormal plane (which
also contains the helix axis).

In the case of an isotropic rod, the function W is constant along
the constraint circle, and consequently all of u-space generates
uniform helical equilibria. Moreover, as already found in refs. 21
and 22, the symmetry of isotropy generates further nonuniform
helical equilibria of arbitrary constant curvature and torsion in
which the register evolves linearly 	(s) � c0 � c1s. According to Eq.
4, c1 represents the excess twist, i.e., the difference between the
geometrical torsion � and the physical twist u3. Thus, in the case of
an isotropic rod the discrete number of two-parameter families of
uniform helical equilibria arising for nonisotropic rods is replaced
by a single four-parameter family of nonuniform helical equilibria
with arbitrary curvature, torsion, phase c0 in register, and excess
twist c1.††

The main tool in the analysis of ref. 23 is to demonstrate that on
uniform helical equilibria the balance laws of Eq. 6 are equivalent
to the first-order necessary conditions for the constrained varia-
tional principle, namely,

m: �
W
u

	u � û
 � �1u � �2d3, [10]

where d3 � (0, 0, 1)T, and the constants �1 and �2 are undetermined
Lagrange multipliers associated with the constraints of Eq. 9.

We now move to an extension of the analysis presented (23). We
first note that although the Lagrange multiplier approach of Eq. 10
is naturally related to balance of forces and moments, the constraint

set of Eq. 9 for 
1 � 0 is actually 1D, specifically a circle, with
tangent �: � (u2, �u1, 0). Consequently, the Lagrange multipliers
can be eliminated, and the first-order necessary conditions can
instead be written explicitly as

� �
W
u

� 0, [11]

which is a single scalar algebraic equation that generically defines
a 2D manifold in u-space containing all uniform helical equilibria.
In particular, the surface always passes through the absolute energy
minimizer û. It also contains the entire u3 axis. In the case that W
is the quadratic energy Eq. 7, Eq. 11 takes the particularly simple
and explicit form

2u1u2	K2 � K1
 � 2u3	u1K23 � u2K13
 � 	K2û2 � K23û3
u1

� 	K1û1 � K13û3
u2 � 0. [12]

For each set of coefficients defining a quadratic energy, and except
for the single degenerate case of isotropic rods for which K2 � K1 �
K23 � K13 � û1 � û2 � 0, Eq. 12 defines a ruled quadric in u-space
(see Fig. 1). If K2 � K1 � 0, it can be factored further as

	u1 � a � b u3
	u2 � c � d u3
 � 	a � b u3
	c � d u3
, [13]

where the constants a, b, c, and d are

a �
K1û1 � K13

K2 � K1
, c �

K2û2 � K23û3

K1 � K2
,

b �
K13

K2 � K1
, d �

K23

K1 � K2
.

Now it can be observed that the set of all uniform helical
equilibria with prescribed torsion � � u3 lies on the hyperbola in
(u1, u2)-space defined by Eq. 13. For all u3 the hyperbola has
asymptotes parallel to the u1 and u2 axes, center at the point (a �
bu3, c � du3), and one branch of the hyperbola passes through
the origin (compare Fig. 1 Inset). Consideration of small and
large circles centered at the origin reveals that other than in the

††Further to footnote �, we remark that the precise value of the excess twist c1 on a given
helical equilibrium depends on the choice of reference framing that has been made, so
that in particular for an isotropic rod the subset of uniform helical equilibria, i.e., those
with c1 � 0, depends on the coordinate system chosen.

Fig. 1. The hyperboloid in curvature space (u1, u2, u3) on which all helical
solutions for a quadratic energy W are located (case shown: K1 � 1, K2 � 3�2,
K23 � K13 � 1�2, û1 � 1, û2 � û3 � 0). We show various helical solutions for
different points on the hyperboloid. (Inset) A planar horizontal section of the
hyperboloid (case shown: u3 � 3�2).
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special case where the center of the hyperbola is itself at the
origin, there will be precisely two uniform helical equilibria of
the prescribed torsion and small curvature � � �u1

2 � u2
2,

whereas there will be precisely four helical equilibria for suffi-
ciently large curvatures that the corresponding circle intersects
both branches of the hyperbola.

The above analysis gives a rather explicit characterization of all
uniform helical equilibria of a nonisotropic rod with quadratic
strain-energy. Going back to Kirchhoff, the set of all helical
equilibria for an isotropic rod has been known, and it includes many
nonuniform helical equilibria. To complete the semi-inverse clas-
sification of helical equilibria for the nonisotropic case, it is there-
fore necessary to address the following question: Can a nonisotropic
rod also have nonuniform helical equilibria? Perhaps somewhat
surprisingly the answer is yes, but only for very special constitutive
relations, and even then only for very special helices. The detailed
analysis justifying these conclusions is presented in the Supporting
Text, and a specific example is illustrated in Fig. 5, which is published
as supporting information on the PNAS web site.

Nonlocal Central Interactions
Nonlocal interaction forces and contact forces between filamentary
structures play an important role in many mechanical systems such
as ropes and cables (26–28) and biological systems such as chro-
matin fibers (29), DNA structures (30), and myelin figures (31). The
modeling of contact problems in rods and helical structures has
been considered by many different authors in the mechanics,
engineering, and physics literature (32–40); however, these analyses
are restricted to rods in contact with external objects, rods in
self-contact at discrete points, or very particular helical solutions.
Here, we concentrate on self-interactions of uniform helices.

We first suppose that (r, di, m, n) is a uniform, i.e., u constant,
helical equilibrium in the absence of any distributed loads (l � 0 �
f), as constructed in the previous section. Next we remark that if we
introduce distributed loads in Eq. 6 of the special form

f � ��, l � 0, [14]

for some constant �, where �(s) is the principal normal to the helix,
then (r, di, m, n � �

�
�) is an associated uniform helical equilibrium;

i.e., the effect of adding a distributed load of the form given in Eq.
14 to a uniform helical equilibrium is balanced merely by changing
the force n with the addition of a tangential component that is
proportional to the applied load and inversely proportional to the
curvature. It is straightforward to verify this fact because the
directors di and strains u, and therefore also the moment m are all
unchanged, whereas the balance laws of Eq. 6 are linear in both n
and l, the tangent � and principal normal � satisfy the Frenet–Serret
Eqs. 2 with constant curvature �, and because of the inextensibility
and unshearability constraint the force n enters in no constitutive
relation. Slight generalizations of this observation are possible, but
we instead pursue the question of when a distributed loading of the
particular form of Eq. 14 is of practical interest.

We consider here the case where there is a distributed body force
f(s) generated by nonlocal, pairwise central self-interactions. On a
helical equilibrium the net body force at r(s) resulting from a pair
of central interactions with upstream r(s � �) and downstream r(s �
�) points, integrated over all � is a force parallel to the principal
normal �(s) of the form f � �� (see Fig. 2), i.e., is precisely of the
form of Eq. 14. This observation is a direct consequence of the
assumed uniformity of the nonlocal interaction, the principle of
equal but opposite action and reaction, and the discrete symmetry
of rotating a helix through an angle � about the principal normal
at s, which maps r(s � �) to r(s � �).

Our conclusion is that the semi-inverse classification of all
uniform helical equilibria in the absence of nonlocal interactions
trivially extends in the presence of central self-interactions. Note
that the above symmetry arguments are only strictly valid in the bulk

of the helix sufficiently far away from the ends. Exact solutions for
finite helices would require a proper treatment of end effects in a
region close to the boundary to take into account a varying body
force density both in magnitude and deviation from the principal
normal direction, and that seems to be an elusive computation.

Self-Contact
The rod theory described above is traditionally motivated as being
a model of long, slender objects in which attention is focused on the
deformations of the central curve r, whereas deformations within
the cross section are neglected. Nevertheless, the body has a
nonvanishing cross section, and, for consistency within the rod
model and in order that a configuration be admissible, the tube
around the centerline r generated by the cross sections should be
non-self-intersecting. This requirement implies both a local condi-
tion, namely that the radius of curvature of r should be everywhere
larger than the dimension of the cross section, and a nonlocal
condition, namely that no two points r(s1) and r(s2) corresponding
to different arc lengths should be too close to each other in space.
A general treatment of this self-avoidance problem for elastic rods
is still a subject of current research (see e.g., refs. 41 and 42).
However, the case of self-avoidance of helical configurations is
much simpler, at least when each normal cross section is assumed
to be circular of constant radius along the rod, as we describe next.

We scale all lengths such that the (constant) radius of each
circular cross section is one. Then, helical configurations with no
self-intersection exist only for values of the curvature and torsion in
the no-contact regions illustrated in Fig. 3A. Self-contact is achieved
for those special values on the contact curve defined as the
boundary between the no-contact and the forbidden region. The
analytic form of these one-parameter curves (�(�), �(�)) is given in
ref. 43 (based on refs. 31, 44, and 45; see also ref. 46, section 7.2).
The vertical portion of the boundary corresponds to helices with
large local curvature � � 1 folding on themselves, a regime for
which the validity of the rod model is questionable. In contrast, the
curved segment of the boundary corresponds to helices resting on
themselves, i.e., where contact is from remote parts of the helical

Fig. 2. With body forces created by pairwise central nonlocal interactions,
the contributions to the total body force on the cross section at s by points
located at s� � is along the principal normal �(s).
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tube; the rod model is entirely consistent right up to this boundary.
In the rest of this work, we only consider helices with such nonlocal
self-contact.

The construction of helical equilibria described earlier remains
unaltered for values of the curvature and torsion in the no-contact
region. For helical configurations in self-contact, each point s
interacts with a single pair of symmetrically located points via a
pressure P � 0. Therefore, self-contact creates a uniform, distrib-
uted body force �� with � � 0 given in terms of P and the geometry
of the helix. In addition, the contact pressure is balanced by an
additional tangential component (���)d3 to the force n, which
corresponds to an increase in tension in the rod.

We reiterate that prescribing the curvature and torsion of a
helical configuration does not specify the entire configuration.
Rather it is necessary to determine the associated possible registers
	. For the particular case of uniform helices, this is equivalent to
requiring that all three constants u be specified. Consequently, with
the kinematic relations Eq. 4, the noncontact region can be
constructed in 3D u-space merely by rotating the contact curve in
Fig. 3A around the vertical axis (compare Fig. 4). One obtains two
caps, one convex down and one convex up, that delimit the
accessible configurations in u-space.

We may now consider the following problem: Given a rod whose
unstressed state is a helical configuration that cannot be achieved
because of the self-avoidance restriction, what are the possible
equilibrium configurations in the absence of any external loading?
More precisely, given an unstressed reference configuration û in the
forbidden region, and a convex strain-energy density function
W(u � û), what is the minimum energy accessible uniform helix?
Because the actual unstressed configuration û cannot be achieved
without self-penetration, we may consider the expanding level sets
of the convex function W. These level sets are nested convex
surfaces all centered at the point û. Accordingly, there will be a
unique point u*� in the lower cap at which there is a tangential level
set, and u*� will by construction provide the smallest value of the
strain energy among self-avoiding uniform helices with negative
torsion.

It is to be expected that this energy-minimizing configuration
also will be an equilibrium, which can be verified explicitly as
follows. Because the constraint set boundary is a surface of
rotation about the vertical axis, the projection of any of its
surface normals onto the (u1, u2)-plane is necessarily radial. At
any tangency point the constraint surface normal and the energy
level set normal are necessarily parallel. Consequently, at the
tangency point u*� the projection of W�u onto the (u1, u2)-plane
is radial. In other words, u*� is a solution of Eq. 10, which for
uniform helices is known to be equivalent to the balance laws of
Eq. 6. Interestingly, and following the analysis of the previous
section, we see that neither the pressure P between the two
strands, or equivalently the tangential component of force n, are
fixed by this argument. Instead, one of them should be specified

by a condition at infinity or, in a more sophisticated analysis,
from a matching condition close to a boundary.

Similarly, there will be a unique tangency of an energy level set
to the top constraint cap at a configuration u*� with positive torsion.
Both u*� and u*� realize local minima of the strain-energy among
accessible helices, and the one corresponding to the lower energy
will be the global such minimum. The curvature, torsion, and
register of the helical state u*� will in general all be different from
those of u*�, which is a phenomenon that can be observed in
telephone handset chords that have been tangled to have regions of
opposite handedness. In fact, even if the unstressed state û is in the
accessible region allowed by self-avoidance with, say, positive
torsion, there will generically still be a tangency and a touching
helical solution to the self-contact boundary of negative torsion
helices. (The case where the tangency arises at the singular point
u � 0 must be considered separately.) Thus, we see that accounting
for self-avoidance, helical rods with no external loading and convex
strain-energy density can still have multiple local energy minimiz-
ers. In addition to telephone cords, this phenomenon is frequently
observed in the tendrils of plants where regions of helical shapes
of opposite-handedness (either in the presence or absence of
external loading) are separated by a bridging segment called a
perversion (43).

Fig. 4. The contact surface in u-space is obtained by rotating the curve in Fig.
3A around the vertical axis. Given an unstressed configuration in the forbid-
den region (due to self-penetration) represented by a point H0, there exist two
helices with self-contact and no external loading obtained by finding the
tangency points of the contact surface with a level set of the energy W1 � C
in the upper (right-handed) and lower (left-handed), half space. The two
tangency points correspond to the solutions H1,2 of Fig. 3.

Fig. 3. The geometry of helical tubes with circular cross
sections. (A) In the curvature–torsion plane, helices are in
contact at the boundary between the clear and opaque
region. (B) ThehelixH0 corresponds toahelical tubewith
self-penetration while H1 and H2 are in self-contact. The
configuration H0 is the stress-free configuration for the
elastic energy W1 � u1

2 � (u2 � 9�10)2 � 3�4(u3 � 2�10)2

when self-avoidance is not taken into account. Helical
configurations H1 and H2 are two minimum energy con-
figurations of opposite-handedness respecting self-
avoidance. For reasons of geometric clarity, the point H0

has been chosen comparatively close to the boundary
� � 1 where for some materials the validity of a rod
model might already be considered questionable, but
the same geometric phenomena persist for choices of H0

arbitrarily close to the origin.
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Conclusions
We have presented a simple classification of all infinite, uniform
helical equilibria of uniform, inextensible, unshearable, nonisotro-
pic rods. The classification is entirely explicit in terms of simple
quadrics in 3D strain space for the class of quadratic strain energies,
which represent perhaps the most important case for many mod-
eling applications. We also identified the rather surprising, and
previously unobserved, possibility that nonisotropic rods may have
equilibria with helical centerlines but nonuniform strains, albeit that
these solutions are highly exceptional.

Whereas the classic theory of rods has mostly been explored
assuming no nonlocal self-interaction, many helical filaments found
in nature are either in contact with themselves or interact through
nonlocal forces such as electrostatics. One problem is then to
understand why helices persist in this more general context. As
remarked here, and because of the discrete rotational symmetry of
helices around any principal normal vector, any uniform, central
self-interactions of an inextensible, unshearable rod can be bal-
anced merely by appropriately modifying the tangential component
of the force in a helical equilibrium without self-interaction. Con-
sequently, our semi-inverse classification of all infinite uniform
helical equilibria is essentially unaffected by the presence or ab-
sence of central, nonlocal self-interactions.

Central, nonlocal interactions include the case of a helix that is
in self-contact, or in contact with multiple neighboring helices, or
wound on a cylinder such as rods found in plies and cables (40). In
this work, we discussed the particular case of a single self-avoiding
helix in the absence of any external loading. In this problem, and
with a single caveat, we concluded that there are always two helical
equilibria, of opposite-handedness and at least one of which is in
self-contact, that realize local minima of the strain energy subject
to the self-avoidance constraint. The caveat concerns rods that have
a level set of the strain energy that is tangent to the constraint set
at the point u � 0, in which case there may be a unique local
minimum of the strain energy. Excluding this case is in some sense
a genericity assumption. However, the exceptions include the case
of rods with a straight unstressed state, i.e., û � 0, which is perhaps
the single most studied case in rod mechanics.

Many questions remain open. For example, having in hand a
complete semi-inverse classification of helical solutions of infinite

length, it would be natural to attempt to construct solutions or
approximate solutions to various finite boundary value problems.
This process is in our opinion a nontrivial task, particularly so for
problems with nonlocal interactions where our symmetry argu-
ments certainly break down sufficiently close to the boundary.
Similarly, it would certainly be of interest to better understand the
stability properties of helical configurations in various senses, for
example how sensitive is the dependence of helical equilibria to
s-dependent perturbations in the material parameters of the rod, or
what is the dependence of the solutions to changes in boundary
conditions at one point. Studies of particular cases are certainly
possible, but we are unaware of results in this direction that match
the level of generality of our semi-inverse classification.

One natural notion of stability is to ask which among the
constructed equilibria are actually local minima of the strain-energy
under some admissible set of variations. Our construction of
equilibria with self-contact means that we automatically find local
minima, but the helical equilibria could merely be stationary points
of the energy. To make this question precise, one must specify
boundary conditions. One simple, yet general, observation is that if
any rod equilibrium shape, including helices, is clamped at two
points, i.e., the appropriate Dirichlet boundary conditions are
imposed on both the centerline r(s) and directors {di(s)} at two
points of arc lengths s0 and s1, then provided only that �s1 � s0� is
sufficiently small, i.e., the two clamping points are sufficiently close,
the equilibrium will in fact be a local minimizer among variations
respecting the boundary conditions. This conclusion is a standard
result of the calculus of variations, and how close the points need
to be can be determined on any particular equilibrium through a
study of the conjugate points of the associated Jacobi fields. This
approach is further discussed in the particular case of helical
equilibria in ref. 47, but no simple and general conclusion was
reached.
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