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The shape of a Möbius strip
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The Möbius strip, obtained by taking a rectangular strip of
plastic or paper, twisting one end through 180◦, and then
joining the ends, is the canonical example of a one-sided surface.
Finding its characteristic developable shape has been an open
problem ever since its first formulation in refs 1,2. Here we
use the invariant variational bicomplex formalism to derive
the first equilibrium equations for a wide developable strip
undergoing large deformations, thereby giving the first non-
trivial demonstration of the potential of this approach. We then
formulate the boundary-value problem for the Möbius strip and
solve it numerically. Solutions for increasing width show the
formation of creases bounding nearly flat triangular regions, a
feature also familiar from fabric draping3 and paper crumpling4,5.
This could give new insight into energy localization phenomena
in unstretchable sheets6, which might help to predict points
of onset of tearing. It could also aid our understanding of the
relationship between geometry and physical properties of nano-
and microscopic Möbius strip structures7–9.

It is fair to say that the Möbius strip is one of the few icons
of mathematics that have been absorbed into wider culture. It
has mathematical beauty and inspired artists such as Escher10. In
engineering, pulley belts are often used in the form of Möbius strips
to wear ‘both’ sides equally. At a much smaller scale, Möbius strips
have recently been formed in ribbon-shaped NbSe3 crystals under
certain growth conditions involving a large temperature gradient7,8.
The mechanism proposed by Tanda et al. to explain this behaviour
is a combination of Se surface tension, which makes the crystal
bend, and twisting as a result of bend–twist coupling due to the
crystal nature of the ribbon. Recently, quantum eigenstates of a
particle confined to the surface of a developable Möbius strip were
computed9 and the results compared with earlier calculations11.
Curvature effects were found in the form of a splitting of the
otherwise doubly degenerate ground-state wavefunction. Thus
qualitative changes in the physical properties of Möbius strip
structures (for instance nanostrips) may be anticipated and it is of
physical interest to know the exact shape of a free-standing strip. It
has also been theoretically predicted that a novel state appears in a
superconducting Möbius strip placed in a magnetic field12. Möbius
strip geometries have furthermore been proposed to create optical
fibres with tuneable polarization13.

The simplest geometrical model for a Möbius strip is the ruled
surface swept out by a normal vector that makes half a turn as
it traverses a closed path. A common paper Möbius strip (Fig. 1)
is not well described by this model because the surface generated
in the model need not be developable, meaning that it cannot be
mapped isometrically (that is, with preservation of all intrinsic
distances) to a plane strip. A paper strip is to a good approximation
developable because bending a piece of paper is energetically

Figure 1 Photo of a paper Möbius strip of aspect ratio 2π. The strip adopts a
characteristic shape. Inextensibility of the material causes the surface to be
developable. Its straight generators are drawn and the colouring varies according to
the bending energy density.

much cheaper than stretching it. The strip therefore deforms in
such a way that its metrical properties are barely changed. It is
reasonable to suggest that some nanostructures have the same
elastic properties. A necessary and sufficient condition for a surface
to be developable is that its gaussian curvature should everywhere
vanish. Given a curve with non-vanishing curvature there exists a
unique flat ruled surface (the so-called rectifying developable) on
which this curve is a geodesic curve14. This property has been used
to construct examples of analytic (and even algebraic) developable
Möbius strips15–18.

If r(s) is a parametrization of a curve then

x(s, t) = r(s)+ t [b(s)+η(s)t(s)],

τ(s) = η(s)κ(s), s = [0,L], t = [−w,w]

is a parametrization of a strip with r as centreline and of length
L and width 2w, where t is the unit tangent vector, b the unit
binormal, κ the curvature and τ the torsion of the centreline (see,
for example, ref. 18). The parametrized lines s = const. are the
generators, which make an angle β = arctan(1/η) with the positive
tangent direction. Thus the shape of a developable Möbius strip
is completely determined by its centreline. We also recall that a
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Figure 2 Computed Möbius strips. The left panel shows their three-dimensional shapes for w= 0.1 (a), 0.2 (b), 0.5 (c), 0.8 (d), 1.0 (e) and 1.5 (f), and the right panel the
corresponding developments on the plane. The colouring changes according to the local bending energy density, from violet for regions of low bending to red for regions of
high bending (scales are individually adjusted). Solution c may be compared with the paper model in Fig. 1 on which the generator field and density colouring have
been printed.

regular curve in three dimensions is completely determined (up
to euclidean motions) by its curvature and torsion as functions of
arc length.

As simple experimentation shows, an actual material Möbius
strip, made of inextensible material, when left to itself, adopts
a characteristic shape independent of the type of material
(sufficiently stiff for gravity to be ignorable). This shape minimizes
the deformation energy, which is entirely due to bending. We
shall assume the material to obey Hooke’s linear law for bending.
Because for a developable surface one of the principal curvatures is
zero, the elastic energy is then proportional to the integral of the
other principal curvature squared over the surface of the strip:

V =
1

2
D

∫ L

0

∫ w

−w

κ2
1(s, t) dtds, (1)

where D = 2h3E/[3(1−ν2)], with 2h the thickness of the strip and
E and ν Young’s modulus and Poisson’s ratio of the material19.

Sadowsky1,2, as long ago as 1930, seems to have been the
first to formulate the problem (open to this date) of finding the
developable Möbius strip of minimal energy, albeit in the limit of
an infinitely narrow strip (w = 0). He derived the equations for
this special case (to our knowledge the only equilibrium equations
for a developable elastic strip anywhere in the literature) but did

not solve them. For the general case Wunderlich15 reduced the
two-dimensional integral to a one-dimensional integral over the
centreline of the strip by integrating over the straight generator
(that is, carrying out the t integration in (1)). The resulting
functional is expressed in terms of the curvature and torsion of the
centreline and their derivatives:

V =
1

2
Dw

∫ L

0

g(κ,η,η′) ds, (2)

g(κ,η,η′) = κ2
(
1+η2

)2 1

wη′
log

(
1+wη′

1−wη′

)
,

where the prime denotes differentiation with respect to arc length s.
In the limit of zero width this reduces to Sadowsky’s functional

VS = Dw

∫ L

0

(
κ2

+ τ2
)2

κ2
ds.

Because D appears as an overall factor, equilibrium shapes will not
depend on the material properties.

Energy minimization is thus turned into a one-dimensional
variational problem represented in a form that is invariant
under euclidean motions. The standard way of solving it, by
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Figure 3 Curvature and torsion of a Möbius strip. Curvature κ (a) and torsion τ (b) for w= 0 (magenta), 0.1 (red), 0.2 (green), 0.5 (blue), 0.8 (black), 1.0 (cyan) and
1.5 (orange). At s=π the principal normal changes to the opposite direction.

expressing the Lagrangian g in terms of r and its derivatives
(or possibly introducing coordinates) and deriving the Euler–
Lagrange equations, is a formidable task even with the use of
modern symbolic computer software, and no equations for the
finite-width case seem to exist in the literature. Here we use
a powerful geometric approach on the basis of the variational
bicomplex formalism20,21, which enables us to obtain a manageable
set of equations in invariant form almost immediately. This theory
(apparently little known outside the mathematicians’ community),
when applied to variational problems for space curves, yields
equilibrium equations for functionals of general type∫ L

0

f (κ,τ,κ′,τ ′,κ′′,τ ′′, . . . ,κ(n),τ (n)) ds, (3)

involving derivatives up to any order (ref. 21, Ch. 2, Sec. C).
A similar technique was applied in refs 22,23 to derive Euler–
Lagrange equations for some simple Lagrangians f , but our current
problem seems to be the first for which an invariant approach is
essential to obtain a solution.

The equilibrium equations can be cast into the form of
six balance equations for the components of the internal force
F and moment M in the directions of the Frenet frame
of tangent, principal normal and binormal, F = (Ft , Fn, Fb)

T,
M = (Mt ,Mn,Mb)

T, and two scalar equations that relate Mt and
Mb to the Lagrangian g :

F′
+ω×F = 0, M′

+ω×M+ t×F = 0, (4)

∂κg +ηMt +Mb = 0,
(
∂η′ g

)′

−∂ηg −κMt = 0, (5)

where ω = κ(η,0,1)T is the Darboux (or curvature) vector. These
equations follow from Proposition 2.16 in ref. 21. They can also
be obtained by extending the theory of Sadowsky1, on the basis of
mechanical considerations, to functional (2). We note that in the
variables (κ,η,η′) the first equation in (5) is an algebraic equation.
(In the limit w = 0 both equations in (5) become algebraic.) The
equations have |F|

2 and F · M as first integrals and are invariant
under the involution (κ,η,η′) → (κ,η,−η′), s → −s.

It has been shown18 that along the centreline of a rectifying
developable Möbius strip an odd number of switching points
must occur where κ = η = 0 and the principal normal to the
centreline flips (that is, makes a 180◦ turn). It follows that the

strip must contain an umbilic line, that is, a line on which both
principal curvatures vanish24. (Incidentally, if the initial strip is not
a rectangle then a Möbius strip may be constructed that has no
switching points25.) To make the twisted nature of the Möbius strip
precise we note that a closed centreline with a periodic twist rate
(here τ(s)) defines a closed cord26, for which we can define a linking
number Lk (ref. 26). Any ribbon of a cord of half-integer Lk is one
sided. Any such ribbon with Lk = ±(1/2) gives a Möbius strip.

The centreline in three dimensions may be reconstructed from
(κ(s),τ(s)) by integrating the usual Frenet–Serret equations and
the equation r′

= t. Coupling these to (4), (5) we thus have a
differential-algebraic system of equations for which we formulate
a boundary-value problem for the Möbius strip by imposing
boundary conditions at s =0 and s = L/2 and selecting the solution
with Lk = 1/2. The involution property is then used to obtain
the solution on the full [0,L] interval by suitable reflection. This
yields a symmetric solution; it seems unlikely that non-symmetric
solutions exist. A Möbius strip has chirality, meaning that it is not
equivalent to its mirror image. This mirror image, having a link
Lk = −1/2, is obtained by reflecting η → −η, η′

→ −η′.
Figure 2 shows numerically obtained solutions. There is only

one physical parameter in the problem, namely the aspect ratio
L/2w of the strip. In the computations we have fixed L = 2π and
varied w. Also shown in the figures is the evolution along the strip
of the straight generator. We note the points where the generators
start to accumulate. At these points |wη′

|→ 1 and the integrand in
(2) (the energy density) diverges. Where this happens the generator
rapidly sweeps through a nearly flat (violet) triangular region, a
phenomenon readily observed in a paper Möbius strip (Fig. 1).
We also observe two additional (milder) accumulations where no
inflection occurs and the energy density remains finite. It can be
shown that the energy density is monotonic along a generator.
This implies that the (red) regions of high curvature cannot
be connected by a generator, as a careful inspection confirms.
Bounding the (violet) triangular (more precisely, trapezoidal)
regions are two generators of constant curvature. These generators
realize local minima for the angle β.

As w is increased the accumulations and associated triangular
regions become more pronounced. At the critical value given by
w/L =

√
3/6 the strip collapses into a triple-covered equilateral

triangle17,27. The folding process as w is increased towards this
flat triangular limit resembles the tightening of tubular knots as
they approach the ideal shape of minimum length to diameter
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Figure 4 Tearing a piece of paper. In trying to tear a sheet of paper we create a
deformation similar to what we see in the Möbius strip. A crack will start at the
vertex, where the energy density diverges.

ratio28. In the flat limit the generators are divided into three groups,
intersecting one another at three vertices. The bounding generators
of constant curvature become the creases. It has been conjectured
that a smooth developable Möbius strip can be isometrically
embedded in R3 only if w/L <

√
3/6 (ref. 29), whereas it has been

proven that a smooth developable Möbius strip can be immersed
in R3 only if w/L < 1/π (ref. 29). Interestingly, larger (in fact,
arbitrarily large) values for the ratio w/L can be obtained if we
allows for additional folding27.

Figure 3 gives plots of curvature and torsion. The Randrup and
Røgen property that κ = η = 0 at an odd number of points is
confirmed in Fig. 3 and can also be seen in Fig. 2 at the centre
of the images, where the generator makes an angle of 90◦ with
the centreline. As the maximum value wc = π/

√
3 = 1.8138 . . .

is approached, both curvature and torsion become increasingly
peaked about s = 0, 2π/3 and 4π/3. In the limit all bending and
torsion is concentrated at the creases of the flat triangular shape.
Going to the other extreme, we find that the solution in the limit of
zero width has non-vanishing curvature, so that the Randrup and
Røgen conditions are not satisfied. Given that the Frenet frame flips
at s =π (as enforced by the boundary conditions), this means that
the curvature is discontinuous. In addition, η tends to unity, giving
a limiting generator angle β = 45◦. Both these properties were
anticipated in ref. 1. This shows that the zero-width limit is singular
and suggests that the Sadowsky problem has only a solution with
discontinuous curvature.

In ref. 30 the shape of a Möbius strip was computed by using
a thin anisotropic elastic rod model. Asymptotic equations were
obtained for large values of the aspect ratio of the rod’s cross-
section. This limit corresponds to perfect alignment of the rod
material frame and the Frenet frame, and the equilibrium equations
are therefore the Euler–Lagrange equations for Lagrangian
f = (1/2)Bκ2

+ (1/2)Cτ2 in (3), where B and C are the
bending and torsional stiffnesses, respectively. The solution to
these equations, however, even after the modifications made in
ref. 30, does not satisfy the Randrup and Røgen conditions
mentioned above, and therefore cannot serve as the centreline
of a developable Möbius strip, even a narrow one (see the
Supplementary Information).

The Möbius strip defines only one example of a boundary-value
problem for twisted sheets. A natural generalization is to strips

with linking numbers other than ±1/2. Our techniques can readily
be applied to such problems and an example of a strip with
Lk = 3/2 (also known from Escher’s work10) is shown in the
Supplementary Information. Clearly, the same equations (4) and
(5) apply to non-closed strips. A further generalization would be
to non-rectangular sheets, although it is not guaranteed that the
t integration in (1) can be carried out, meaning that we might
end up with a system of integro-differential equations instead of
(4) and (5).

The geometrical features of Möbius strips observed here are
seen more widely in problems of elastic sheets such as paper folding
or crumpling and fabric draping. Crumpling of paper is dominated
by bending along ridges bounding almost flat regions or facets4,5,
behaviour that we see back in the nearly flat triangular regions in
Fig. 2. In fabric draping, triangular regions are seen to form that
radiate out from (approximate) vertices. The formation of these
flat triangular regions seems to be a generic feature of nature’s
response to twisting inextensible sheets. Analytical work on such
sheets often assumes regions of localization of bending energy in
the form of vertices of conical surfaces3,6. It is known that conical
surfaces have infinite elastic energy within the linear elastic theory.
The difficulties associated with this necessitate the introduction
of a cut-off3. As the example of the Möbius strip shows, the
consideration of non-conical developable elastic surfaces enables
us to describe bending localization phenomena without the need
for a cut-off. Importantly, our approach predicts the emergence of
regions of high bending. Points of divergence of the bending energy
may serve as indicators of positions where out-of-plane tearing
(fracture failure mode III) is likely to be initiated. In this respect it is
interesting to observe that when we try to tear a piece of paper (see
Fig. 4) we intuitively apply a torsion, thereby creating intersecting
creases as in the vertices of the central triangular domains
in Fig. 2.

Received 12 March 2007; accepted 4 May 2007; published 15 July 2007.

References
1. Sadowsky, M. in Proc. 3rd Int. Congr. Appl. Mech., Stockholm (Sweden) Vol. 2 (eds Oseen, A. C. W. &

Weibull, W.) 444–451 (AB. Sveriges Litografiska Tryckerier, Stockholm, 1931).
2. Sadowsky, M. Ein elementarer Beweis für die Existenz eines abwickelbaren Möbiusschen Bandes und
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Mathematics, Birkhäuser, Boston, 1983).
21. Anderson, I. M. The Variational Bicomplex. Technical Report, Utah State Univ., available online at

http://www.math.usu.edu/∼fg mp/Publications/VB/vb.pdf (1989).
22. Langer, J. & Singer, D. Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38, 605–618 (1996).
23. Capovilla, R., Chryssomalakos, C. & Guven, J. Hamiltonians for curves. J. Phys. A 35,

6571–6587 (2002).
24. Murata, S. & Umehara, M. Flat surfaces with singularities in Euclidean 3-space. Preprint at

<http://arxiv.org/abs/math.DG/0605604> (2006).

566 nature materials VOL 6 AUGUST 2007 www.nature.com/naturematerials

© 2007 Nature Publishing Group 

 

http://arxiv.org/abs/math-ph/0507039
http://www.math.usu.edu/~fg_mp/Publications/VB/vb.pdf
http://arxiv.org/abs/math.DG/0605604


LETTERS

25. Chicone, C. & Kalton, N. J. Flat embeddings of the Möbius strip in R3 . Commun. Appl. Nonlinear
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