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Abstract: The article reviews some recent developments in studying DNA sequence-dependent
deformability, with emphasis on computer modeling. After a brief outline of available experimental
techniques, we proceed to computational methods and focus on atomic-resolution molecular
dynamics (MD) simulations. A sequence-dependent local (base-pair step) force field inferred from
MD is compared with force fields obtained by other techniques. Various methods for establishing
global (flexible-rod) DNA elastic constants are reviewed, including an approach based on atomic
resolution MD. The problem of defining the global deformation variables, as well as the question
of anisotropy and nonlocal effects, are discussed. As an example, both local and global deform-
ability calculations from atomic-resolution MD of EcoRI dodecamer are presented. © 2003
Wiley Periodicals, Inc. Biopolymers 73: 327–339, 2004
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INTRODUCTION

In recent years we have witnessed an increasing num-
ber of experimental and theoretical studies of DNA
structure, dynamics, and other physicochemical prop-
erties. This reflects the central biological role of DNA
as a molecule carrying genetic information. DNA is
much more than a chain of letters: a given sequence of
nucleotides, together with a specific environment (so-

lution conditions, mechanical stress, bound proteins),
determine a unique three-dimensional structure, dy-
namic behavior, and mechanical properties of DNA.
Evidence is accumulating that preferential binding
sequences for proteins are determined not only by the
possibility of specific chemical contacts between a
protein and DNA, but also by suitable geometrical
arrangement of the DNA fragment (e.g., curvature)
and/or by its propensity to adopt a deformed confor-
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mation facilitating the protein binding. As an exam-
ple, the preference of some DNA sequences for wrap-
ping around histones to form nucleosomes is related
to DNA curvature and deformability. Nucleosomes
constitute basic units of higher order DNA organiza-
tion in the eukaryotic cell nucleus where distant re-
gions of the genome may appear in close contact and
influence each other via specific DNA spatial arrange-
ment. Recent applications of DNA in the field of
nanotechnology also rely, among other features, on
sequence-dependent DNA structure and mechanical
properties.

The aim of this article is to review some of the
recent developments in studying DNA sequence-de-
pendent deformability, with emphasis on computer
modeling. We will concentrate on methods rather than
applications. After a brief outline of several available
experimental techniques, we will proceed to compu-
tational methods and focus on those based on atomic-
resolution molecular dynamics. Since DNA exhibits a
hierarchy of structures, its properties can be studied
on various levels of detail (length scales). A problem
then arises how to proceed consistently from a lower
length scale to a higher one, i.e., how to devise a
suitable coarse-graining procedure. We will discuss
several approaches aimed at connecting the “local”
(base-pair step) and “global” (flexible-rod) levels. A
model system, the EcoRI dodecamer, will be pre-
sented as an illustrative example. Finally, we will try
to outline some conclusions and perspectives.

We also refer the reader to the review by Olson and
Zhurkin,1 which covers similar topics.

EXPERIMENTAL APPROACHES

A range of experimental methods has been used to
determine DNA mechanical properties. Each of them
is able to deal with particular aspects of DNA deform-
ability at a certain time scale.

Various micromanipulation techniques use long
DNA fragments (tens of micrometers). The pioneer-
ing studies of Smith et al.,2,3 Bustamante et al.,4

Cluzel et al.,5 and Strick et al.6 provided for the first
time a more complete picture of DNA mechanical
properties: DNA is extensible (with macroscopic
stretch modulus around 1100 pN) and exhibits twist–
stretch coupling. The study of Baumann et al.7 of
ionic effects on the DNA elasticity beautifully shows
that, contrary to a homogeneous elastic rod,8 the
stretch modulus and bending rigidity of DNA are not
proportional: while bending persistence length de-
creases with increasing ionic strength, stretch modu-
lus increases.

The method of cyclization, proposed already long
time ago,9,10 has been recently developed further by
Crothers and co-workers and used by them to study
sequence-dependent DNA structure and deformabil-
ity. The method relies on the determination of the J
factor, defined as the ratio of equilibrium constants for
ligatable monomers and dimers of the fragment under
study. It is equivalent to the concentration of one end
of the fragment in the vicinity of the other end. The
inclusion of a curved region in the construct (by
means of phased A-tracts) enables one to deconvolute
permanent bends from dynamic bending fluctuations.
Roychoudhury et al.11 used the method to study
global structure and mechanical properties of the
TATAAACGCC sequence, a strong nucleosome po-
sitioning motif.12 Later, Nathan and Crothers13 stud-
ied changes in mechanical properties of EcoRI DNA
upon methylation. Part of the method also included
Monte Carlo simulations and multivariable parameter
fitting that made the data analysis rather demanding.
However, Zhang and Crothers14 have recently pro-
posed a semianalytical treatment of the problem based
on an iterative search for the minimum energy con-
figuration of circular DNA and subsequent evaluation
of thermodynamic quantities under harmonic approx-
imation. This approach is mainly applicable to short
DNA fragments where thermal fluctuations are rela-
tively small. The model is efficient and capable of
dealing with a base-pair-level inhomogeneity in bend-
ing and flexibility, thus paving the way for high-
throughput studies of sequence-dependent deform-
ability. Unfortunately, its sensitivity to changes in
torsional modulus and bending anisotropy seems to be
rather limited.

A very recent report by Zhang and Crothers15

announces a comprehensive high-throughput method
for detection of DNA bending and flexibility based on
cyclization. It combines their statistical mechanical
treatment mentioned above with two other improve-
ments: a combinatorial method for making DNA con-
structs and a fluorescence method for monitoring the
kinetics of ligation.

Another class of methods is based on observing the
overall dynamics of a DNA fragment using a probe
attached to it. Fluorescence polarization anisotropy
(FPA)16–18 analyses a fluorescence signal from an
intercalated dye. It has been recently used by Pedone
et al.19 to measure torsional constant of ten 27-bp
(base pair) fragments of different sequence. Schurr
and co-workers20 studied dynamic bending rigidity of
a 200-bp DNA by transient polarization grating
(TPG). Whereas time-resolved FPA spans the time
scale of DNA movements up to ca. 120 ns, the TPG
technique covers the range from 20 ns to 10 �s.
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Schurr and co-workers established the bending per-
sistence length of ca. 200 nm. Given the estimate of
137 nm for the static persistence length and 50 nm for
the total one, they conclude that apart from the static
bends and rapidly relaxing bending fluctuations,
slowly relaxing bending transitions (outside the time
range of their method) must exist as well. In a series
of studies, Robinson and co-workers applied a site-
specific electron paramagnetic resonance (EPR) spin
probe technique to study DNA dynamics and deform-
ability. Studying fragments 14–100 bp long,21 they
measured a dynamic bending persistence length (on a
submicrosecond time scale) of 150–170 nm, stressing
again the possible presence of slowly fluctuating
bends. Later, they found that the alternating polyAT
inserts are 20% more flexible than the control se-
quence,22 suggesting exceptional bending flexibility
of the AT repeats. They recently applied the method
to a systematic study of sequence-dependent isotropic
bending rigidity on the dinucleotide level23 by inves-
tigating forty 50-bp fragments of different sequences
and fitting the data to dinucleotide models. Such an
approach results in a mesoscopic force field for
dinucleotides, aimed at predicting mechanical proper-
ties of a sequence of any length. However, they found
that several sequences in their pool cannot be reason-
ably fitted to a dinucleotide model.

Another dinucleotide force field has been proposed
by De Santis and co-workers,24 recently in a slightly
modified form.25 They assume that the bending and
twisting rigidity of a generic DNA is modulated on
the base-pair step level according to the dinucleotide
melting temperature. They argue that the mean am-
plitude of bending and twisting fluctuations at which
DNA falls apart (melts) is approximately the same for
all steps, and that the harmonic approximation re-
mains valid up to temperatures close to the melting
one: since the mean fluctuation amplitude is then
proportional to T/C, where T is temperature and C a
force constant, higher melting temperature indicates
proportionally higher stiffness. Their scale is based on
the melting data by Gotoh and Tagashira.26

A lot of effort has been put into the analysis of
databases of DNA x-ray structures. In most of the
studies, the term “flexibility” stands for the root mean
square deviation of a particular conformational pa-
rameter among different instances of a given motif
(e.g., a dinucleotide) in the database. The conforma-
tions of a dinucleotide differ due to external pertur-
bations such as crystal packing forces, sequence con-
text, or binding to proteins in protein–DNA com-
plexes. If many such perturbations (each with a
certain probability distribution) act independently,
then the resulting distortion will have a Gaussian

distribution—a consequence of the central limit the-
orem of statistics. Using the known relationship be-
tween the covariance matrix of a multidimensional
Gaussian distribution and the stiffness matrix,27 one
can in principle determine the harmonic force con-
stants including all coupling terms. Olson and co-
workers28 used this approach to construct a harmonic
dinucleotide-level force field with respect to the six
base-pair step parameters (twist, tilt, roll, shift, slide,
rise) with all coupling terms (twist–roll, etc.). This
force field is more detailed than any of those men-
tioned above. However, they all share the property of
being relative, typically with one free parameter that
has to be calibrated to get actual values of the force
constants. It may be the “generic” persistence length,
or as for the force field of Olson and co-workers, the
effective temperature of the statistical ensemble. It
should be stressed that the effective temperature is a
purely statistical property and is not related to the
actual, physical temperature of the crystals.

NMR can provide information about how DNA
sequence modulates various aspects of dynamic be-
havior,29,30 e.g., base-pair lifetimes and dissociation
constants for opening.31

COMPUTATIONAL METHODS

Most computational approaches used to study DNA
deformability are based either on potential energy
calculations or on atomic-resolution molecular dy-
namics.

In a pioneering study, Zhurkin et al.32 used a
specially developed force field to investigate DNA
anisotropic flexibility by calculation of potential en-
ergy changes upon deformation. The energy minimi-
zation program JUMNA, developed by Lavery and
co-workers, is based on internal variable representa-
tion of DNA and uses implicit solvent modeled by a
sigmoidal dielectric function. It has been widely used
to study mechanics and energetics of large conforma-
tional transition in DNA. More detailed discussion of
these results is outside the scope of the present
study—see the review of Lafontaine and Lavery.33

In a series of studies on modeling DNA sequence-
dependent structure and flexibility, Packer and Hunter
first used a dinucleotide force field with backbone
treated as a semiflexible rod.34 The only free param-
eters are shift and slide; all the others are optimized.
The calculated energy minima are in partial agree-
ment with x-ray structures from a database assembled
by the authors. The agreement is improved upon pass-
ing to tetranucleotides35 where a new term is added to
the energy expression. This new term is a phenome-
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nological penalty function that should reflect the cor-
relation of slide and shift in neighboring steps ob-
served in the database. The harmonic deformability
with respect to slide of the central step is calculated by
fitting a quadratic function to grid points around the
minimum. Recently, the authors moved on to study
8–12 bp oligomers from their database.36 Here, yet
another penalty function is added, reflecting the
grouping of slide in the database around a certain
value. Thus, their approach combines energy function
derivation based on a physical concept with phenom-
enological data fitting.

Contrary to potential energy calculations, atomic-
resolution molecular dynamics (MD) simulations treat
the system at nonzero temperature, thus enabling it to
cross small potential barriers and exhibit thermal fluc-
tuations that can serve as a valuable source of infor-
mation. MD dynamics simulations have come of age
and are widely used to study both proteins and nucleic
acids—see recent reviews.37–39

How to use molecular dynamics for assessing free
energy changes upon deformation? Various ap-
proaches are based on a formula for the probability
distribution of fluctuations, first used by Einstein
around 1910.27 Let x be a fluctuating variable related
to a body (e.g., a molecule); we assume that the mean
value x has already been subtracted from x, so that
x�0 at equilibrium. Let S be the entropy of the whole
system (body plus thermal reservoir) formally consid-
ered as a function of the exact values of x. Then the
probability distribution of x is given by
w(x)�const.exp[S(x)]. Instead of the full entropy S,
one can use its deviations from the equilibrium value.
This quantity can be proved to coincide with the
minimum (i.e., equilibrium) work necessary to change
x from equilibrium to a given value, divided by kT. At
constant temperature and pressure, this work is equal
to the change �G of the free energy of the body. We
thus have

w�x� � const.exp(��G�x�/kT) (1)

or �G(x)��kTlnw(x)�const. At equilibrium, x � 0
and �G(x)�0, which gives the value of the constant
in the last equation, yielding

�G�x� � �kT ln�w�x�/w�0�� (2)

These formulas are valid for any fluctuations, big or
small, and require no assumptions about the func-
tional form of �G. They hold also for the case of
multiple variables. The probability distribution w(x)
can be easily inferred from MD simulations and for-

mulas (1) or (2), then applied to obtain the free energy
changes.

One way to do so consists in restraining the vari-
able x by an additional harmonic potential (“umbrella
potential”). Short MD runs are performed for different
values of x, yielding a biased probability distribution.
The biased distribution is then corrected for the um-
brella potential to yield the unbiased distribution w(x),
from which the free energy values are extracted, using
a version of the weighted histogram method.40,41 This
approach has recently been applied by several groups
for establishing free energy changes associated with
DNA base-pair opening42–44 or conformational tran-
sitions in DNA backbone.45

Another possibility is to run an unrestrained MD
and use Eq. (2) directly to get free energy values at
discrete points (corresponding to chosen binning in-
tervals for constructing w(x) from MD data), which
can then be fitted to a smooth function. Due to limited
MD sampling, the results are restricted to the vicinity
of a particular minimum, but the fitting function can
be anharmonic. Osman and co-workers recently used
this approach to investigate the energetics of base-
flipping in damaged DNA.46 They sampled the vicin-
ity of two different states connected by a reaction
coordinate (linear combination of bending and base
opening) and fitted the data on the coordinate by
sixth-order polynomial expansion. The force con-
stants were calculated from the second derivatives of
the fitted function in the minima. Since the data for
both states were included, the free energy barrier
between them could be estimated as well (some cau-
tion is necessary here, since the MD does not sample
a vast transitional region between the two states). The
free energy of one state with respect to the other had
to be defined by means of a suitable thermodynamic
cycle, because the simulations of the two states do not
share any common configuration. In another study,47

Osman and co-workers constructed a two-dimen-
sional free-energy surface of DNA helicoidal param-
eters (inclination and tip). Obviously, the fitting
would become increasingly difficult as the number of
dimensions (degrees of freedom) would increase.

This difficulty can be overcome if one assumes that
the free energy function is quadratic (harmonic). If xi,
i � 1 . . . N, are the conformational variables (with
mean values already subtracted), the most general
quadratic free energy expression is �G�1

2
�i,j�1

N Fijxixj,
where F stands for the stiffness matrix (matrix of force
constants). Equation (1) can then be solved analytical-
ly,27 yielding that the inverse of the stiffness matrix is
proportional to the correlation matrix of the conforma-
tional variables:
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�xixj	 � kT�F�1�ij (3)

The correlation matrix can be obtained from unre-
strained MD and then inverted to get the stiffness
matrix F. If there are no couplings between confor-
mational variables, �G is simply a sum of squares and
formula (3) reduces to the well-known “equipartition
principle.” The latter has been used in an early study
by Bruant et al.48 to calculate bending, twisting, and
stretching stiffness of two 15-bp oligomers containing
strong and weak TATA binding sites.

Lankas et al.49 used eq. (3) to establish sequence-
dependent global (flexible-rod) elasticity of selected
DNA oligomers. They used four conformational vari-
ables: total fragment length, total twist, and two bend-
ing angles (into the grooves and into the backbone of
the fragment center). Later, they applied the method
as part of a study on the effect of exocyclic groups on
DNA properties.50 Recently, they used the same ap-
proach to construct a sequence-dependent force field
with respect to the six base-pair step conformational
parameters (roll, tilt, twist, shift, slide, rise).51

A theoretical framework for extracting parameters
for base-pair level models of DNA from MD has been
developed by Gonzalez and Maddocks.52 Instead of
Eq. (1), which is based on macroscopic consider-
ations, they adopted a microscopic approach in which
the standard canonical measure is proportional to the
exponential of the hamiltonian. The change of vari-
ables from canonical to noncanonical ones (i.e., rota-
tional parameters such as twist) leads to a jacobian J
in the expression of the measure. As a result, Eq. (3)
adopts a modified form:

�xixj/J	/�1/J	 � kT�F�1�ij (3
)

If the jacobian J is constant, Eq. (3
) reduces to Eq.
(3). The functional form of J depends on the precise
definitions of translational and rotational variables.
Gonzalez and Maddocks show that for discretized
continuum variables (motivated by the continuum the-
ory of elastic rods), J is equal to one within a second-
order correction in rotational variables. Lankas et al.51

calculated the jacobian for 3DNA, a popular algorithm
for helicoidal analysis, and found that it is equal to
one, on condition that the sum of squares of roll and
tilt (in radians) is much less than one. In fact, J is
always a nonzero constant at the absence of fluctua-
tions, and changes only slightly if the fluctuations are
small. Thus, for small deformations, the macroscopic
and microscopic approach [Eq. (3) and (3
)] coincide,
which could be expected.

A MODEL SYSTEM: EcoRI
DODECAMER

As an example, we present the local (base-pair step)
deformability calculated from MD simulations of a
16-bp DNA oligomer CGCGCGAATTCGCGCG
containing EcoRI binding site. The central 12-mer,
crystallized as early as in 1980,53 has served as a
model system in a number of DNA structural studies.
Here, we performed a 18 ns MD (with explicit water
and counterions in a rectangular box) using a protocol
described elsewhere.49,50 The 3DNA analyzer was
used to extract the time courses of conformational
parameters from MD trajectories. Then we applied
Eq. (3) to calculate the force constants with respect to
the six base-pair step helicoidal parameters (twist,
roll, tilt, shift, slide, rise), including all coupling
terms. This was done for every base-pair step (except
terminal ones). Thus, in addition to the usual profiles
of average helicoidal parameters, one can now plot
the “deformability profiles” along a sequence as well.
Since our sequence is symmetric with respect to its
center, so are expected to be the plots of the force
constants.

Figure 1 shows the profiles of the “diagonal” force
constants that reflect the free energy changes upon
deforming only one conformational parameter (the
others being kept at equilibrium values). Looking at
twist, we indeed see an almost perfectly symmetric
profile. Steps of the same composition exhibit similar
deformability: the pyrimidine–purine (YR) steps CG
are the most flexible, as contrasted with GC, and the
central AT step (RY) is the stiffest. The data for roll
show a lack of symmetry in the second GA (� TC)
step. In fact, the whole second half of the oligomer
exhibits higher flexibility, although the contrast be-
tween CG and GC steps and the high stiffness of the
central AT step is preserved. This suggests possible
different nonlocal substates in which the two halves
are, which may be related to insufficient equilibration
of ions. On the other hand, the profiles of stiffness in
tilt, shift, slide, and especially rise in general show
quite a good symmetry; nevertheless, the tendency of
the second half being more flexible is apparent as
well. Note the sharp contrast in deformability depend-
ing on the step composition and high deformability of
YR steps in angular variables (twist, roll, tilt). The
profile of rise shows that although symmetrically
placed CG steps have very similar stiffness, not all
CGs are identical: the outer ones are stiffer than the
inner ones. This points to a possible influence of the
surrounding sequence on the step deformability.

The code for constructing deformability profiles
from MD is available on request from the author.
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FIGURE 1 Deformability profiles of the local (base-pair step) force constants with respect to the
six helicoidal variables for EcoRI dodecamer. The 12-bp sequence was flanked by CG steps at each
end, which were not analyzed and are not shown in the picture. The results are based on an 18 ns
atomic-resolution molecular dynamics simulation. The snapshots (taken every ps) were analyzed by
the 3DNA code to obtain time courses of the conformational parameters. Equation (3) was then used
to calculate the force constants (including all coupling terms not shown here). While some of the
profiles show a high degree of symmetry (twist, tilt, rise), others exhibit lower stiffness in the second
part of the fragment (roll, shift). This may be related to trapping of the two halves in different
substates, possibly due to insufficient ion equilibration.
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COMPARING LOCAL FORCE FIELDS

As already mentioned above, several groups have
developed local (base-pair step) force fields for DNA
deformation using different methods. These force
fields describe DNA deformability at various levels of
detail and thus are not all directly comparable: the
data of Olson and co-workers28 and the MD data of
Lankas et al.51 contain the full stiffness matrix for the
six conformational parameters, while other force
fields usually report isotropic bending stiffness. More-
over, most force fields are relative and must be cali-
brated against a quantity known from elsewhere.

But some approximative comparison can be made.
Here, we compare the force field of Robinson and
co-workers based on an electron paramagnetic reso-
nance technique,23 the one by De Santis and co-
workers inferred from thermal stability data,25 the
deformability parameters by Olson and co-workers
(from an ensemble of crystal structures)28 and our
MD data.51 The common parameter to compare is the
relative isotropic bending rigidity. This quantity was
constructed as follows. First, an isotropic bending
rigidity for the data of Olson et al. and for MD data
was calculated as harmonic average of tilt and roll
stiffness. The other two force fields already contain
this value. Then, the “generic” value was computed as
harmonic average of the values of the ten unique
steps. The result is then the value for a particular step
divided by the generic value.

The comparison is shown in Figure 2a. Note that
the first three steps on the x axis are of the YR type,
the last three are RY, and the four in the middle are
RR. The Robinson data show a general tendency of
increasing stiffness from YR through RR to RY. The
value for GC is not available, since the reciprocal
value of the force constant was zero (within the sen-
sitivity of the method); the most flexible and the
stiffest steps thus differ by a factor of four or more.
By contrast, the De Santis data show much smaller
variations. The Olson parameters behave in a rather
complicated way, changing between 0.8 and 1.6. The
MD data exhibit a clear trend: they predict flexible
YR steps, intermediate RR and stiff RY, spanning a
range between 0.7 and 1.2. And so, the force fields
differ both in the range of values and the trends they
exhibit. Note, however, that the Olson and MD force
fields are quite close to each other for YR and RY
steps; for RR steps, the Olson data exhibit substantial
variations while the MD values change much less.

It should be stressed that this comparison re-
gards only relative bending stiffness and says noth-
ing about the flexibility in twist or in translational
parameters, since those are not available for all the

four force fields. As we show elsewhere,51 the trend
in the MD data presented here in fact reflects the
trend in roll stiffness, while tilt stiffness is low for
YR and higher (and similar) for all the other steps.
The same (a bit less pronounced) applies to twist.
Shift and slide flexibilities show no clear trend,

FIGURE 2 (a) Relative isotropic bending rigidity as a
function of the dinucleotide sequence for local force fields
inferred from an EPR resonance experiment (Robinson and
co-workers), thermal stability data (De Santis and co-work-
ers), ensemble of crystal structures (Olson and co-workers),
and atomic resolution molecular dynamics simulations
(Lankas et al.). The value for GC in the Robinson force field
was not available since the inverse force constant was found
to be zero within the sensitivity of the method. The Robin-
son force field exhibits a general increase in stiffness from
pyrimidine–purine (YR) through RR to RY steps. The MD
field predicts three distinct groups of steps: flexible YR,
intermediate RR, and stiff RY. More detailed analysis
shows that this trend is due to differences in roll deform-
ability. Comparison with base-pair step stacking energies
(b) from modern ab initio quantum chemical calculations
(see text for details) shows that none of the force field is
correlated with stacking energy values.
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while rise stiffness generally increases from YR
through RR to RY.

It is interesting to compare these data with other
related works. In their MD study, McConnel and
Beveridge54 assigned a certain flexibility to each of
the ten dinucleotide steps based on the area of their
roll–tilt plots enclosing 98% of the MD data points.
They found that YR steps are on average significantly
more flexible than the others; the most flexible step
was TA and the least flexible AT. Later, Thayer and
Beveridge divided the roll–tilt plots into quadrants
and 10 concentric rings, which enabled them to ex-
tract more detailed information about the distribution
of MD data for use in their Hidden Markov model for
DNA–protein interactions.55

In their studies mentioned above, Packer and
Hunter calculated the stiffness with respect to slide in
dinucleotides34 and slide stiffness of the central step
in tetranucleotides.35 All the other conformational
parameters are optimized. Their ratio of force con-
stants between the stiffest and the most flexible step is
more than 1:10. Among their findings one may notice
that CG and GC exhibit similar flexibility on the
dinucleotide level and that tetranucleotides with cen-
tral AT step rank among the most flexible as well as
the stiffest ones, depending on the base pairs flanking
the central step.

An interesting question arises about a possible
relationship between stiffness and stacking energy.
The hypothesis that stacking energy may have a de-
termining influence on DNA deformability was pro-
posed by Hagerman.56 De Santis and co-workers24,25

report a very close correlation (0.96) between their
stiffness scale and the stacking energies based on an
early theoretical work.57 However, the order of sta-
bility of the ten base-pair steps predicted by these old
semiempirical calculations significantly differs from
that predicted by the recent quantum chemical com-
putations.58,59 Modern electron correlation calcula-
tions represent almost converged estimates of stack-
ing energies and provide reliable relative order of
intrinsic stacking energy.60 Comparing the data by De
Santis and co-workers25 with contemporary evalua-
tion of base stacking in B-DNA geometries58,59 leads
to a correlation coefficient of only 0.3. Taking into
account the quality of contemporary ab initio meth-
ods, we have to conclude that the thermal stability
scale used by De Santis and co-workers is probably
not correlated with intrinsic base stacking energies.

On the other hand, modern quantum chemical data
are excellently reproduced by modern empirical force
fields.58,59 One might thus expect that the MD flexi-
bility scale (calculated using the Cornell et al.61 force
field) will show better correlations. But as can be seen

by comparing Figures 2a and 2b, it is by no means the
case. In fact, the stacking energies shown in Figure 2b
are not correlated with any of the force fields in Figure
2a. Thus, we suggest that the DNA stiffness may not
be determined simply by the magnitude of base stack-
ing but by a complex interplay of various factors such
as potential energy profiles of the steps and balance
between stacking and hydration effects.

GLOBAL DEFORMABILITY

DNA deformability on length scales much longer than
one base-pair step (here denoted as “global”) plays a
role in many biological processes such as wrapping of
DNA around nucleosomes or its packing in the nu-
cleus. To connect this global scale with the local one,
an appropriate coarse-graining scheme must be intro-
duced. This task has been addressed by several au-
thors.

First of all, this problem arises in various experi-
mental techniques such as fluorescence polarization
anisotropy,16 electron paramagnetic resonance,21–23

or transient polarization grating.20 In these cases one
wants to infer intrinsic DNA deformability from the
signal of a probe that reflects global motion of the
fragment. Song et al.62 have proposed a semianalyti-
cal solution of the unconstrained Brownian dynamics
for short fragments (up to about 60% of the persis-
tence length). Their weakly bending rod model as-
sumes that the fragment consists of identical, inde-
pendent units with isotropic, harmonic bending poten-
tial. Later, Robinson and co-workers22 extended the
model so that the units (e.g., base-pair steps) can have
different force constants, thus allowing for inhomo-
geneity of the fragment.

Local (base-pair step) deformability can also be
related to various other macroscopic properties of
long fragments, such as configurations corresponding
to elastic energy minima. The model of Manning et
al.63 consists of identical units with harmonic bending
and twisting potential (without coupling). Coleman et
al.64 developed a theory using units (not necessarily
identical) whose deformation potentials are general
functions of the six helicoidal parameters (twist, roll,
tilt, shift, slide, rise). They investigate elastic equilib-
ria of DNA minicircles with local deformation poten-
tials being a simplified quadratic functions and show
that the equilibrium shape can be substantially af-
fected by taking the coupling terms in the deformation
potentials into account. Zhang and Crothers14 in their
statistical mechanical model use independent units
with uncoupled tilt, roll, and twist harmonic deform-
ability, and relate the force constants to macroscopic
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quantities such as the experimentally observable J
factor.

A particularly interesting set of global parameters
are continuum elastic constants of DNA. On long
length scales, DNA can be described as a flexible rod
with a certain stretch modulus and twist rigidity, with
two (generally different) bending rigidities in two
perpendicular directions, allowing for bending anisot-
ropy and with all cross-terms. A specific problem now
consists in connecting the local deformability to these
global elastic properties. Schellman and Harvey65

proposed a general scheme to infer both static and
dynamic persistence length from local geometry and
deformability. Manning et al.63 took the global con-
stants equal to the local ones (scaled by the number of
base-pair steps), Coleman et al.64 performed all cal-
culations at the discretized level. Another approach
has been adopted by De Santis and co-workers.24,25,66

They assume that the relative rigidities of different
base-pair steps (both with respect to bending and
twisting) scale as relative melting temperatures of the
steps. To calculate the global stiffness of a given
sequence, they compute the arithmetic average of the
relative melting temperatures of all steps in the se-
quence, by which they multiply a generic persistence
length to get the actual persistence length of that
particular sequence. Thus, their stiffness is a position-
independent parameter of the sequence and can be put
in front of any integrals along the sequence. This
assumption enables them to solve analytically prob-
lems such as computing free energy changes upon
nucleosome formation.

Another approach has been proposed by Matsu-
moto and Go.67 They computed normal modes of a
DNA fragment using a local force field and compared
them to the normal modes of a continuum isotropic
flexible rod. The latter depend on the elastic constants
of the rod and can be calculated analytically. Thus, by
fitting the normal modes of the two systems, the
elastic constants of the rod can be estimated. While
establishing the twisting and bending rigidity, they
were unable to calculate the stretch modulus, as no
observed mode corresponded to pure stretching. This
limitation has been overcome in a later work by
Matsumoto and Olson68 where a base-pair oriented
coordinate system together with a previously devel-
oped dinucleotide force field28 was used. The authors
show that the three lowest modes of bending, twisting
as well as stretching indeed scale with the fragment
length (between 40 and 200 bp) almost exactly as the
modes of a homogeneous isotropic elastic rod, so that
the elastic constants can be readily computed.

A certain limitation of the above-mentioned ap-
proaches is that they a priori assume specific form of

the local (e.g., base-pair step) force field. One either
fixes its functional form and fits the parameters in it
using macroscopic experiments (such as fluorescence
or EPR techniques, or cyclization), or one infers some
global properties (minicircle shape, continuum elastic
constants) starting from the local field with given
parameters.

This limitation can be circumvented by defining
global variables to describe the deformation of the
fragment as a whole. The widely used conformational
analyzer Curves quantifies both direction and magni-
tude of global bending and this feature has been used
to analyze global properties of A-tracts simulated by
MD.69 An alternative concept is represented by the
Madbend algorithm proposed by Schlick and co-
workers70: they define two global bending angles
(global roll and global tilt) that are, in principle, sums
of base-pair step rolls and tilts compensated for twist.
Schlick and co-workers later combined this approach
with principal component analysis to investigate
global motions as part of their study of 13 different
TATA sequences.71

Some time ago, Lankas et al.49 proposed a simple
method for extracting global elastic properties directly
from atomic-resolution MD of DNA oligomers, with-
out any assumptions regarding the local (base-pair
step) interactions. They first define global deforma-
tion variables of the fragment as a whole: total frag-
ment length, total twist, and two bending angles (to-
wards the grooves and towards the backbone in the
fragment center). The fluctuations of these variables
recorded along a MD trajectory are inserted into eq.
(3) to give the fragment’s stretch modulus, twist ri-
gidity, and two bending rigidities in two perpendicu-
lar bending directions. All the coupling terms in the
elastic energy expression (such as twist–stretch cou-
pling) can be calculated as well. The advantage of this
approach is that possible nonlocal effects (shorter than
the fragment length) are automatically taken into ac-
count. The authors studied four 17-bp oligomers
(11-bp stretches of A, G, AT, and CG, capped with
GCG at each end); the trajectory length was 5 ns. The
GCG caps were excluded from the analysis. The re-
sulting elastic constants were in a very good overall
agreement with experimental values for random se-
quences. The atomic-resolution MD approach, how-
ever, revealed pronounced sequence dependence of
the stretch modulus and torsional rigidity, while bend-
ing rigidity differed only slightly among the se-
quences studied. Only polyAT was revealed as unam-
biguously more flexible in bending compared to other
sequences. The exceptional flexibility of AT-tracts is
supported by recent experimental results: Robinson
and co-workers22 in their EPR study found AT- tracts
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to be 20% more flexible than the control sequence;
Zhang and Crothers15 measured a similar decrease
(28�12%) by cyclization kinetics. On the other hand,
Matsumoto and Olson,68 who studied long stretches
of A, G, AT, and GC by normal mode analysis, do not
confirm this trend.

The value of twist–stretch coupling inferred from
MD was in quantitative agreement with experiments
as well (see Lankas et al.49 for further discussion).
The twist–bend coupling, theoretically predicted ear-
lier,72 was calculated for the first time and found out
to be the most important cross-term for fragments
shorter than one helical turn.

Later, Lankas et al.50 used the same method as part
of their study on the effect of the N2 amino group on
structure, dynamics, and elasticity of polypurine
tracts. They again simulated 17-bp oligomers with
central 11-bp parts formed by stretches of A, I (ino-
sine—paired with 5-methylcytosine), AI, G, and D
(2-aminoadenine). A-tract, I-tract, and AI-tract were
found to have high stretch modulus and low twist
rigidity, as contrasted to G-tract and D-tract with low
stretch modulus and high twist stiffness. This supports
the structural findings in the study—namely, that the
presence or absence of the minor groove amino group
rather than the electrostatic similarity of the base pairs
decides the properties of the tracts. The differences in
bending stiffness among the tracts were found to be
rather small.

To investigate a possible dependence of the results
on the time scale of the simulations, the trajectories
for A-, G-, and I-tract were prolonged from 5 to 20 ns.
The average conformational parameters (from the av-
erage structure) differ in most cases by only several
percent compared to those from the shorter simula-
tions. The elastic constants though, while fully main-
taining the observed trends, somehow differ. This
regards especially the twist rigidity of the A-tract,
which was exceptionally low in the shorter simula-
tions (5 ns) but which now (after 20 ns) adopted a
value closer to those of the other sequences (but still
relatively low). This suggests that while the average
structure is rather robust and remains quite similar
after several ns of simulations, elastic properties are
much more sensitive.

Another point of concern is the precise definition
of the global deformation variables. A similar prob-
lem has been encountered on the local level and
extensively analyzed.73,74 Lankas et al.49 defined their
global variables by means of two helicoidal analysis
algorithms: Curves75,76 and CEHS.77 The Curves
code has the unique property to construct a global,
curvilinear helical axis of the fragment—this axis was
used to define the total fragment length while its

tangent vectors defined the base-pair normals. On the
other hand, CEHS is a purely local scheme and the
fragment length in this case was defined simply as the
sum of distances of the successive base-pair centers.
The resulting elastic constants in the two cases are
rather different, the Curves values being closer to the
results of macroscopic experiments (interestingly, the
exceptional bendability of the AT-tract was repro-
duced in both cases).

One may argue that Curves and CEHS schemes
differ a lot also on the local level, without making use
of the curvilinear axis.73 To investigate the point
further, we report here global elastic constants of our
model system, the EcoRI dodecamer (see Table I)
analyzed by Curves (using the global curvilinear axis)
and by 3DNA,78 a popular analyzer that, on the local
level, falls into the same category as Curves.73Only
the central 12 bp of the 16-bp fragment were ana-
lyzed. As can be seen in Table I, the local scheme
produces somehow higher twist rigidity, higher
stretch modulus, as well as higher twist–stretch cou-
pling. The isotropic bending stiffness differs only
slightly. The same trends were observed previously
with CEHS, but were much more pronounced.

The code for extracting global elastic constants
from MD simulations using both 3DNA and Curves is
available on request from the author.

On the base-pair step level, DNA bending is aniso-
tropic: it is much easier to bend DNA into grooves (by
changing roll) than to backbones (tilt). This has also
been found in the early theoretical study of Zhurkin et
al.32 Lankas et al.49 studied the dependence of the
elastic constants on the fragment length (for 3–11-bp
fragments), and found that bending anisotropy, clearly
pronounced for trimers, disappears for fragments of
approximately half the repeat length and reappear for
longer ones, yet to a much lesser extent. This suggests
that for DNA fragments of several helical turns or
more, the bending anisotropy will generally not play
any role. Moreover, while the two “true” bending
rigidities differ quite a lot depending on the fragment
length, their harmonic average (referred to as isotro-
pic bending rigidity) remains almost constant. This is

Table I Selected Global Elastic Constants of the
Simulated EcoRI Dodecamer

3DNA Curves

Twist persistence length (nm) 77 65
Stretch modulus (pN) 2114 1752
Twist–stretch coupling (nm) 24 4
Isotropic bending persistence

length (nm) 69 68
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in line with theoretical findings by Kehrbaum and
Maddocks,79 who showed that an elastic rod with
locally anisotropic bending, but a high intrinsic twist,
is well approximated on relatively long length scales
by an effective rod with an isotropic bending law, the
effective isotropic bending constant being the har-
monic average of the two local ones. However, as
Matsumoto and Olson68 point out, insertion of phased
fragments with exceptional bending properties can
lead to anisotropic effects on mesoscopic scale, just as
the phased A-tracts give rise to the global curvature.

An open problem concerns the possible influence
of nonlocal effects on DNA global properties. To
which extent can DNA be described by nearest-neigh-
bor interactions? Specifically, can DNA elastic prop-
erties at longer length scales be inferred from local
(base-pair step) interactions? This is an underlying
assumption of all the base-pair step force fields. But
Robinson and co-workers23 found that to construct their
force field with all 10 base-pair steps considered differ-
ent, 9 out of 40 used sequences must be discarded—they
do not satisfactorily obey the dinucleotide model. In
their theoretical studies, Packer and Hunter34,35 sug-
gest that while the structure of some dinucleotides is
context independent, there are cases where the influ-
ence of context is important, and the agreement with
crystallographic data dramatically improves upon
transition to tetranucleotides. The dependence of
global elastic constants on the fragment length calcu-
lated by Lankas et al.49 exhibits an initial increase on
passing from trimers to 4–5-bp fragments. Correla-
tion coefficients of helicoidal parameters along a se-
quence, which we report elsewhere,51 unambiguously
show that base-pair steps do not behave as indepen-
dent units but their movements are correlated. The
correlation typically extends to second or third nearest
neighbor.

CONCLUSIONS AND PERSPECTIVES

Recent developments in experimental and computa-
tional techniques make it possible to start a systematic
study of DNA sequence-dependent deformability.
The data based on an ensemble of crystal structures28

can be further refined and possibly also extended
beyond the dinucleotide approximation as new struc-
tures are accumulating. We can expect further devel-
opments in the field of fluorescent and EPR tech-
niques, which have shown their power in a number of
results including a dinucleotide force field.23 Latest
developments of the cyclization technique14,15 pave
the way for high-throughput investigation of DNA

mechanical properties at equilibrium and in more
physiological conditions.

As the present article attempts to show, modern
computational methods may represent an indispens-
able source of information in this context. Atomic
resolution molecular dynamics simulations using up-
to-date empirical force fields and accurate treatment
of long-range electrostatic interactions have proved
their validity in a number of studies on proteins and
nucleic acids. They are now able to deal with system
sizes and time scales on which a relevant information
about DNA deformability can be extracted. The
unique feature of these methods is that one can trace
down each and every atom and thus investigate the
microscopic origin of the system’s macroscopic be-
havior. With further development of computer tech-
nology and simulation algorithms, the possibilities of
this approach will certainly broaden.

However, producing longer trajectories on larger
systems is not enough. It must be accompanied by
further development of theoretical concepts to extract
useful information from the simulations. One of the
important topics are theoretically well founded and
consistent coarse-graining schemes. Within the
framework of elasticity theory, one needs constitutive
relationships for elastic bodies such as rods that would
include nonlocal effects observed in both experiment
and simulation. The fluctuations produced due to non-
zero temperature of the simulated system, used in a
limited way up to now, represent a source of infor-
mation that is still awaiting a full exploitation. This all
will contribute to better understanding of DNA prop-
erties and its biological function.
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