
A visualization tool for studying the
eigenmodes of a coarse-grained model of DNA

Julien Delafontaine,
section de mathématiques

Projet de semestre 2, 1e année master,
encadré par John Maddocks, Jeremy Curuksu, Daiva Petkeviciute.

Lausanne, année académique 2009 - 2010

User's guide

1. About the program

This software has been created to compare eigenfunctions of a coarse-grained piece of DNA built with
respect to the model described in the following article:

F. Lankas, O. Gonzalez, L. M. Heffler, G. Stoll, M. Moakher, J. H. Maddocks, "On the
parameterization of rigid base and basepair models of DNA from molecular dynamics
simulations", Phys. Chem. Chem. Phys. 11 (2009) 10565-10588.

The notation was kept as often as possible, is order the source code to be easily readable.

The expression for the potential energy of the molecule in our model involves a stiffness matrix, which
eigenvectors may have interesting properties. This software is supposed to help finding it out.
Secondly, the assumption that a base is only influenced by its nearest neighbours is equivalent to set a
big part of the coefficients of the stiffness matrix to zero. One could wonder whether the so truncated
matrix roughly has the same properties as the full one. Moreover, one finds that such truncated matrices
can have negative eigenvalues, which are not consistent with the fact that the stiffnesses are the inverse
of covariance matrices (positive-definite). The software was created to check the properties of such
eigenmodes.

2. Basic use

Starting the program opens the main menu window.

In the field Eigenvalue 1, enter the index i of the i-th eigenvalue you are interested in - eigenvalues are
sorted from smallest to largest - "5" means "5th smallest eigenvalue".
If set to 0, the molecule won't move and the equilibrium state will be drawn. A non-zero value will start
an animation of the molecule moving in the direction of the corresponding eigenvector.
Entering a non-zero value in the field Eigenvalue 2 will create a new instance of the molecule that will
move in the direction of a second eigenvector chosen in the same way as previously.
If set to 0, nothing will happen.

For each of them one can choose either to use the stiffness matrix or a truncated version of it.
The precision parameter is the number of steps in the animation. It won't change the final result.
Increasing it will make the animation more fluent but slower, and conversely.
Setting it to 1 will produce only the ending state, without animation.
The lambda parameter regulates the strength of the added effect (the scalar multiple of the added
eigenvector).
One can choose whether to show the center line and/or the bases by checking the corresponding boxes.

Start the animation by pushing the "Draw" button.

3. How to compile the code

The program is written in Python.
http://www.python.org/

It is made of 5 files: main.py, bases.py, draw.py, anim.py, menu.py, and a folder containing the
configuration data. The main file is main.py. Compile and run this last one, having the 4 other ones in
the same folder. The executing function is called run.
For example using IPython1, enter the folder containing the files and type

>>> import main
>>> main.run()

The numerical part of the program only uses standard libraries (numpy, scipy).

The 3D interface is built on a library called mlab contained in the Mayavi 2 package. It is called using
from enthought.mayavi import mlab. To install Mayavi 2, go to that page:
http://code.enthought.com/projects/mayavi/docs/development/html/mayavi/installation.html
All the (few) documentation is there:
http://code.enthought.com/projects/mayavi/docs/development/html/mayavi/index.html
Note that it is a part of a bigger package for scientific data analysis:
http://code.enthought.com/
For Windows users, it is much easier to install the Python(x,y) package, including everything:
http://www.pythonxy.com/

4. How to change the configuration parameters (new data)

All the input data is contained in the folder conformation data. Configuration parameters come from
the Matlab file parms_basejhb_XXXX.mat. The etav object is intra rotations, wav is intra translations,
uav is inter rotations, and vav is inter translations. They are contained in that order in the w variable.
s1b is the stiffness matrix.
Once one has replaced or modified those files, one must also edit sequence.txt, which contains the
sequence of bases used, e.g. GCTATATATATATATAGC (by default).

1 http://ipython.scipy.org/moin/Download

5. Functions reference

main.py

- readParameters():
Reads the configuration parameters from a text or Matlab file.
Returns a vector w=[intra rotation i; intra translation i; inter rotation i, inter translation i] for
i=1..number of bases, and the sequence of bases.

- calculPoints(w):
Computes spatial coordinates in the lab frame from a configuration vector w as previously defined.
Returns r=base central points, q=intra base points, d=base frames, g=intra base frames, h=inter base
frames, and the sequence of bases.

- plot3d(cf, vp1, vp2, precision, m1,m2,centerline,showbases):
Draws the molecule of configuration cf=r,q,d,g,h,sequence as previously defined. Provides animation
of the molecule in the direction of an eigenvector vp1/vp2 of a (stiffness) matrix m1/m2.
Options: precision=number of steps in the animation; centerline=0 or 1 to hide the center line or not;
showbases=0 or 1 to show the bases or not.
Uses the library mlab from the Mayavi 2 package.

Possible modifications:

- Remove the '#' before mlab.options.backend='envisage' to use the full Mayavi 2
interface.

- Change the parameter size of the object fig to chenge the dimensions of the window.
- Change the colormap parameter of the different objects to change their colors. In particular,

one can give different colors to main_strand and comp_strand to differenciate the two
opposite strands. For different possible values, see

 http://code.enthought.com/projects/mayavi/docs/development/html/mayavi/mlab.html#adding-
color-or-size-variations

anim.py

- stiffness(m,vp_id):
Returns the eigenvector corrsponding to the eigenvalue vp_id of a matrix m.

- ACP(w,vecp,mult):
Returns a configuration mod modified from w by adding a multiple mult of an eigenvector vecp:
wmod=w+mult*vecp.

draw.py

- data3d(r,d,sequence):
Builds vtk sources used to draw the bases and base frames.
Returns an array points containing the coordinates of each corner of the polygons, an array
triangles containing the connectivity between these points, an array centers containing the base
reference points, and an array frames containing the base frames moved to the corresponding base
reference point.

bases.py

- cayley(v):
Returns the Cayley transform (matrix) of a vector v.

- rectangle(r,dir1,dir2):
Was only used for testing purpose. Creates rectangles to coarse-model the bases, instead of more
realistic polygons.

- adenine(r,d):
Returns lab frame coordinates of the corners of the polygon representing the purine (the big ones; the
shapes of adenine and guanine are the same here) situated around the point r and oriented with respect
to the base frame d.

- cytosine(r,d):
Same for pyrimidines (the hexagonal ones).

menu.py

- menu(action, config):
Creates a new frame containing the main interface.
Applies the action function to the config argument (has to be done this way because of a weakness of
the Tkinter library).

Possible modifications:

- One can change the default values appearing in the fields by changing the value argument (in
parenthesis) in every line containing a variable.set(value).

6. Troubleshooting

Contact julien.delafontaine@epfl.ch.
Learn Python.

