T. Lessinnes

Given two smooth closed oriented curves $\mathbf{x}(s)$ and $\mathbf{y}(\sigma)$ parameterised by their respective arc-length and such that $\mathbf{x}''(s)$ and $\mathbf{y}''(\sigma)$ never vanish, consider the surface $\mathbf{r}(s,\sigma) = \mathbf{y}(\sigma) - \mathbf{x}(s)$. Whenever $\mathbf{r}_s \wedge \mathbf{r}_\sigma \neq 0$, the unit normal \mathbf{n} to \mathbf{r} is defined by

$$\mathbf{n}(s,\sigma) = \frac{\mathbf{r}_s \wedge \mathbf{r}_\sigma}{||\mathbf{r}_s \wedge \mathbf{r}_\sigma||}.$$
(1)

- 1. Taylor expansion warm up. Compute the Taylor expansion of \mathbf{r} around a prescribed point (s_0, σ_0) up to second order. Then, express your result as a function of the Frenet frames and curvatures of \mathbf{x} and \mathbf{y} . Also compute the Taylor expansion of $\mathbf{r}_s \wedge \mathbf{r}_\sigma$ to first order.
- 2. In general, it is not possible to define a continuous field of unit normals on r. Prove that if there exists a point (s_0, σ_0) such that the tangent to x at s_0 is parallel to the tangent to y at σ_0 , then it is impossible to complete the definition (1) of n in a continuous way. What do you think r looks like close to such a point?
- 3. Such pathological points are isolated provided that $\mathbf{x}_{ss}(s_0) \wedge \mathbf{y}_{\sigma\sigma}(\sigma_0) \neq 0$. Given a point (s_0, σ_0) such that the tangent to \mathbf{x} at s_0 is parallel to the tangent to \mathbf{y} at σ_0 and $\mathbf{x}_{ss}(s_0) \wedge \mathbf{y}_{\sigma\sigma}(\sigma_0) \neq 0$, prove that it is not possible to choose a positive number a > 0 and a regular curve

$$\gamma: t \in (-a, a) \to (s(t), \sigma(t)),$$

such that both $\gamma(0) = (s_0, \sigma_0)$ and $\mathbf{r}_s(\gamma(t)) \wedge \mathbf{r}_{\sigma}(\gamma(t)) = 0$ for all $t \in (-a, a)$.

- 4. Provided that the two curves x and y never share an osculating plane, points subtending tangent rays from the origin form smooth curves on r. Define the function $f(s, \sigma) = \mathbf{r}(s, \sigma) \cdot (\mathbf{r}_s(s, \sigma) \wedge \mathbf{r}_{\sigma}(s, \sigma))$. Show that if $f(s_0, \sigma_0) = 0$, then there exists an (unique) open curve γ such that (s_0, σ_0) is in the image of γ and $f(\gamma) = 0$.
- 5. Provided that the two curves x and y do not share an osculating plane, the pathological points are contained in curves on r subtending tangent rays from the origin. Given a point (s_0, σ_0) such that the tangent to x at s_0 is parallel to the tangent to y at σ_0 and $\mathbf{x}_{ss}(s_0) \land \mathbf{y}_{\sigma\sigma}(\sigma_0) \neq 0$, show that there exists a curve $\gamma(t) = (s(t), \sigma(t))$ and a positive number a such that $f(\gamma(t)) = 0$ for all $t \in (-a, a)$.