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1 Explicit computation of apparent persistence length for a tractable
probability density function (the HWLC)

During the Lecture of 10.11.2017, we introduced a simplified model of DNA in order to compute
explicitly the expectation of the tangent-tangent correlation. In this exercise we will numerically
check this result. A PDF version of the Lecture notes containing all the details of the simplified
model and the computation can be found on the web page of the course as a supplement to the
note.

1. Implement in MATLAB the Euler-Rodrigues formula ( Eq. 2 session 3 ) for computing Q(u).
Check that your code produces a rotation matrix for any u.

2. Let ⟨Q(u)⟩ be the expectation ofQ(u) with respect to ρ(u) = 1
Z exp{−1

2(u−û)⋅K(u−û)}, where
û is a Cayley vector with 0○ of tilt and roll, and 36○ of twist andK = diag(100,100,100). Com-
pute using Monte Carlo the values of the following expectations ⟨Q(u)⟩(1,3) and ⟨Q(u)⟩(2,3),
for N = 100,1000,10000,100000 samples. What do you obtain and why?

3. Now we focus only on the entries ⟨Q(u)⟩(3,3) which represent the tangent-tangent correlation.
Compare now the explicit result obtained in class for ⟨Q(u)⟩(3,3), i.e,

⟨Q(u)⟩(3,3) = 1 −
2

1 + û3
(
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K1
+

1

K2
) , (1)

with the result obtained via Monte Carlo simulation, for the following cases:
( use N = 100,1000,10000,100000 samples )

i) û ∶ 0○ tilt,0○ roll,36○ twist , K = diag(543,543,543), what is the persistence length?

ii) û ∶ 0○ tilt,0○ roll,0○ twist , K = diag(600,600,600), what is the persistence length?

iii) û ∶ 0○ tilt,0○ roll,72○ twist , K = diag(393,393,393), what is the persistence length?

4. For each case, redo the computations with smaller values of K3. What can you say?

5. For each case, redo the computations with smaller values of K1. What can you say?

6. For each case, redo the computations with smaller values of K1 and K2 (not necessarily with
same value). What can you say?

7. (optional) How small can K1 and K2 be taken with the analytical formula remaining as a
good approximation ?

2 On the parametrization of junction displacement using quater-
nions

Nowadays it is rather fast to samples from multivariate distribution, thus the main part on a Monte
Carlo code is in the evaluation of the chosen deterministic function. For example in the cgDNAmc
we have made two different choice of functions of the cgDNA coordinates:



1. φ(x) = (RT1Rn)(3,3),

2. φ(x) = RT1 (rn − r1),

where (A)(3,3) means the (3,3) entry of a matrix A ∈ R3×3, (R1, r1) is a fixed base-pair frame
chosen to be the first (but not necessarily the first one of the DNA fragment), and (Rn, rn) is the
nth base-pair frame after the fixed one. By choosing the above function, in cgDNAmc we have to
perform many matrix multiplications in SO(3) in order to be able to evaluate the functions for each
sampled configuration. For efficiency, in the cgDNAmc code, these multiplications are implemented
using the quaternions multiplication. We have already seen how to parametrize a rotation matrix
using three numbers or the Cayley vectors. In this exercise we will study the parametrization of a
rotation matrix by four numbers called Euler-Rodrigues parameters or quaternions.

Any vector q = (q0, q1, q2, q3) ∈ S3 = {x ∈ R4∣x ⋅ x = 1} can be interpreted as a right-handed
rotation in R3 through an angle θ and around a unit axis n ∈ R3, where θ and n solve :
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1. Let Q ∈ SO(3) a rotation matrix about a unit axis n through an angle 0 ≤ θ < π. Let
u = Cay(Q) ∈ R3 be the Cayley parametrisation of Q. Find the quaternion parametrisation
of Q in term of the Cayley vector u. [Hint: We recall that ∥u∥ = tan θ

2 ].

2. Using the previous part, show that the Euler-Rodrigues formula (2) of exercise 1.2 session 3
implies the following quaternion parametrisation:
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3. From a computational point of view the interest of using quaternions instead of rotation
matrices lies in the following equivalence: Let Qi = Q(qi) ∈ SO(3), for i = 1,2,3, we have

Q3 = Q1Q2 ⇐⇒ q3 = q1 ○ q2, (4)

where the symbol ○ mean the multiplication operator for the quaternion that for two quater-
nions q = (q0,q) and p = (p0,p) reads

q ○ p = (q0p0 − q ⋅ p, q0p + p0q + q × p) . (5)

We could derive (5) and prove the equivalence (4) but here we will just check them numerically.
For that purpose use the cgDNA package to reconstruct the ground-state of a short fragment
of DNA (10-12 base-pair). Then, check the following

R3 = R2Q2 ⇐⇒ qR3 = qR2 ○ qQ2 , (6)

where Ri is the orientation of the ith base-pair, and Q2 is the rotational part of the second
junction displacement, and qMi is the quaternion related to the rotation matrix Mi.
Remark: In the cgDNA model the Cayley vectors are scaled in a way that their norm equal
10 tan θ

2 , where θ is the angle of the rotation. Thus, you have to rescale the cgDNA Cayley
vectors such that their norm are tan θ

2 if you want to use the relation between Cayley vectors
and quaternions.
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