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For the exercise 2 please download the following dataset http://lcvmwww.epfl.ch/teaching/
modelling_dna/public_files/muABC_S3.mat . The dataset consist in an oligomer-based statis-
tics of a 18 basepairs long Palindrome. The MATLAB structure contains the following fields:

• seq : sequence,

• nbp : number of base pair,

• nsnap : total number of accepted snapshots from the MD simulation (=M).

• shape : ensemble mean ( w̄ = 1
M ∑

M
j=1 w[j]),

• c1b : ensemble covariance, (C = 1
M ∑

M
j=1(w[j] − w̄) ⊗ (w[j] − w̄))

• stiff_me : maximum entropy fit to c1b.

1 Relative entropy for Gaussians II

In the session 9, exercise 2.2, we showed the following formula for the relative entropy between two
Gaussian density functions:
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1. Let M ∈ RN×N and X1 and X2 the normal random variables with respectively probability
density functions p and q. Define the change of variable Yi =MXi, i = 1,2.

i) What are the distributions of Y1 and Y2? Give explicitly the mean value and the covari-
ance for each random variable.

ii) By denoting by p̃ and q̃ the density functions of, respectively, Y1 and Y2, show that
D(p̃, q̃) =D(p, q).

2. In the Exercise 2.2 of the exercise session 9 we have also introduced:
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for Ki, symmetric positive defined matrices, i = 1,2. Define now the following generalised
eigenvalue problem

K2vi = µiK1vi, i = 1, . . . ,N. (3)

Show that using the generalised eigenvalue problem (3) the equation (2) becomes

D†(K1,K2) =
1
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N

∑
i=1

(µi − lnµi − 1). (4)
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3. The stiffness part of the relative entropy (2) is in general not symmetric, i.e, D†(K1,K2) ≠
D†(K2,K1) for K1 ≠K2. We then define the symmetrized version of (2) in the following way:

D†
sym(K1,K2) ∶=

1

2
(D†(K1,K2) +D†(K2,K1)) . (5)

i) Find an explicit form for D†
sym(K1,K2).

ii) Using the generalized eigenvalue problem (3) find the corresponding eigenvalue version
form for D†

sym(K1,K2).

[ Note: Equation (4) can be useful to prove part 1, ii) ]

2 Maximum entropy fit for the stiffness matrix

Consider the following symmetrically partitioned matrix:

C =
⎡⎢⎢⎢⎢⎢⎣

a e x
eT b d

xT dT c

⎤⎥⎥⎥⎥⎥⎦
, a = aT , b = bT , c = cT , (6)

where for simplicity we assume C > 0. We want to show that if x = eb−1d, then K ∶= C−1 has zeros
blocks in the (1,3) and (3,1) entries. For that prove the following statements:

1. Show that the matrix C can be decomposed as follow

C =
⎡⎢⎢⎢⎢⎢⎣

I 0 0
0 I 0
0 Ψ I

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a e 0

eT b 0
0 0 H

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

I 0 0
0 I Ω
0 0 I

⎤⎥⎥⎥⎥⎥⎦
, (7)

where Ω = b−1d, Ψ = dT b−1, and H = c − dT b−1d.

2. Using the decomposition obtained on the previous point, compute the inverse of C.

3. Conclude that the blocks in the (1,3) and (3,1) entries of K = C−1 are zero.

4. From the latter point derive an algorithm that will allow you to compute the matrix K that
involve only the blocks a, b, c, d and e (but not x). Code your algorithm and test it on the two
first blocks of the c1b matrix.

5. Can you capture the five blocks a, b, c, d and e of C from the five non zero blocks of K more
simply than just inverting K?

This result, as well as the algorithm, can be generalized to matrices with multiple blocks and overlap
without assuming equal dimension of the blocks and the overlaps. You can try by yourself to prove
the general result using an induction argument, or you can just generalize your algorithm and test
it on the c1b matrix in the dataset.

3 Principle of maximum entropy parameter estimation for banded
stiffness matrices

Denote by [[K]]N all the entries (i, j) ∈ N of K where N is a set of indices. For this exercise we
will fix N to be the set of all indices associated to the cgDNA 18 × 18 block diagonal pattern with
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6×6 overlap. For sake of notation we will omit the N , i.e, [[K]]N = [[K]], for all K ∈ R12n−6×12n−6,
with n ∈ N. Moreover with [[⋅]]c we denote all the entries (l, k) ∈ N c, where N c is the complement
of N .
Given µ ∈ R12n−6 and C ∈ R12n−6×12n−6 (the observed statistics, mean and covariance, of a n base–
pair molecule of DNA) define the following constraint set:

C = {ρ ∶ ∫
Ω
ρdx = 1, ∫

Ω
xkρ(x)dx = µk, k = 1, . . . ,12n − 6, ∫

Ω
xixjρ(x)dx = cij , (i, j) ∈ N} . (8)

where Ω = R12n−6. Using the principle of maximum entropy (Lecture, week 10), prove that the
maximum entropy distribution is a Gaussian, i.e, it can be written as

ρME(x) = 1

Z(µ,K)
= exp{−1

2
(x − µ) ⋅KME(x − µ)} , (9)

where µ is the observed mean and KME is such that [[K−1]] = [[C]], and [[K]]c = 0.
[ Remark: Thanks to the exercise 2 of this sheet, we know how to compute the matrix KME directly
from the data [[C]]. ]
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