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Two low-dimensional magnetohydrodynamic models containing three velocity and three magnetic modes
are described. One of them �nonhelical model� has zero kinetic and current helicity, while the other model
�helical� has nonzero kinetic and current helicity. The velocity modes are forced in both these models. These
low-dimensional models exhibit a dynamo transition at a critical forcing amplitude that depends on the Prandtl
number. In the nonhelical model, dynamo exists only for magnetic Prandtl number beyond 1, while the helical
model exhibits dynamo for all magnetic Prandtl number. Although the model is far from reproducing all the
possible features of dynamo mechanisms, its simplicity allows a very detailed study and the observed dynamo
transition is shown to bear similarities with recent numerical and experimental results.
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I. INTRODUCTION

The understanding of magnetic field generation, usually
referred to as the dynamo effect, in planets, stars, galaxies,
and other astrophysical objects remains one of the major
challenges in turbulence research. There are many observa-
tional results from the studies of the Sun, the Earth, and the
galaxies �1–3�. Dynamo has also been observed recently in
laboratory experiments �4,5� that have made the whole field
very exciting. Numerical simulations �6–11� also give access
to many useful insights into the physics of dynamo. How-
ever, the complete understanding of the dynamo mechanisms
has not yet emerged.

The two most important nondimensional parameters for
the dynamo studies are the Reynolds number Re=UL /� and
the magnetic Prandtl number Pm=� /�, where U and L are
the large-scale velocity and the large length-scale of the sys-
tem, respectively, and � and � are the kinematic viscosity
and the magnetic diffusivity of the fluid. Another nondimen-
sional parameter used in this field is the magnetic Reynolds
number Rem, defined as UL /�. Clearly Rem=RePm, hence
only two among the above three parameters are independent.
Note that galaxies, clusters, and the interstellar medium have
large Pm, while stars, planets, and liquid sodium and mercury
�fluids used in laboratory experiments� have small Pm �1,2�.

In a typical simulation, the conducting fluid is forced and
the dynamo transition is considered to be observed when a
nonzero self-sustained magnetic field is maintained in the
steady-state laminar solution or in the statistically stationary
turbulent solution, depending on the regime. Typically, dyna-
mos occur for forcing amplitudes beyond a critical value
which also defines the critical Reynolds number Rec and the
critical magnetic Reynolds number Rem

c . One of the objec-
tives of both the numerical simulations and the experiments
�4,5� is the determination of this critical magnetic Reynolds
number Rem

c . It has been found that Rem
c depends on both the

type of forcing and the Prandtl number �or Reynolds num-
ber�, yet the range of Rem

c observed in the numerical simula-

tions is from 10 to 500 for a wide range of Pm �from
5�10−3 to 2500�.

Several research groups have investigated dynamo transi-
tion using direct numerical simulation �DNS�. Schekochihin
et al. �6,12�, Iskakov et al. �7�, Schekochihin et al. �8�, and
Ponty et al. �9� applied incompressible nonhelical random
forcing and studied the variation of critical magnetic Rey-
nolds number Rem

c as a function of Prandtl number. In these
works it has been shown that dynamo exists for both low and
high Pm. In the limit Pm�1, the critical magnetic Reynolds
number Rem

c is almost three times larger than that for large
and intermediate Pm. Also, Rem

c �200 for Re�6000, while
Rem

c �60 for Pm�1. Mininni and Montgomery �11� per-
formed DNS of helical dynamo using Roberts flow; they
observed Rem

c to be nearly independent on the magnetic
Prandtl number in the range from 0.3 to 0.1. On the whole,
the range of the critical magnetic Reynolds number in most
of the simulations is 10 to 500. Note that in the Von-Karman-
Sodium �VKS� experiment, the critical magnetic Reynolds
number is around 30.

There are many attempts to understand the above obser-
vations. For large Prandtl number, the resistive length scale
is smaller than the viscous scale. For this regime, Schekochi-
hin et al. �6,12� suggested that the growth rate of the mag-
netic field is higher in the small scales because stretching is
faster at these scales. This kind of magnetic field excitation is
referred to as small-scale turbulent dynamo. For low Pm,
Stepanov and Plunian �13� argue for similar growth mecha-
nism. Their results are based on shell model calculations.
The numerical results of Iskakov et al. �7�, however, are not
conclusive in this regard. The main arguments supporting
these explanations are based on the inertial range �small-
scales� properties of turbulence �6,12�. In this paper, we
present a low-dimensional dynamical system containing only
large scales modes of the fields that shows dynamo transi-
tion. These observations indicate that the large-scale eddies
may also be responsible for the dynamo excitation, and sev-
eral important properties can be derived from the dynamics
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of large-scale modes. These observations are consistent with
earlier results of MHD turbulence indicating that the large-
scale velocity field provides a significant fraction of the en-
ergy �around 40%� contained in the large-scale magnetic
field �14–19�. The motivation of our model is to highlight the
role of large-scale modes and to explore the connection of
large-scale modes with the inertial range modes.

In Sec. II, a class of low-dimensional models containing
three velocity and three magnetic modes is derived. In addi-
tion to the physical parameter, such as the viscosity and the
magnetic diffusivity, these models depend on a parameter h
that determines whether the model is purely nonhelical �h
=0� or not �h�0�. These models are analyzed in Sec. III and
are shown to have simple analytic stationary solutions for
two special cases, h=0 and h=1. A discussion is presented in
Sec. IV.

II. DERIVATION OF LOW DIMENSIONAL MODELS

The incompressible MHD equations are

�tu = − n�u,u� + n�b,b� + ��2u + f − �ptot, �1�

�tb = − n�u,b� + n�b,u� + ��2b , �2�

� · u = � · b = 0, �3�

where ptot is the sum of the hydrodynamic and magnetic
pressures divided by the density. The bilinear operator is
defined as n�a1 ,a2�=a1 ·�a2. Only periodic solution in a cu-
bic box with linear dimension l will be considered. The
smallest nonzero wave vector is thus given by k0=2� / l. The
model is derived by projecting the MHD equations on the
subspace S	 spanned by a small number of basis vectors that
are compatible with the periodic boundary conditions and
can be regarded as a subset of a complete basis. Only three
vectors will be considered in this study, so that the projection
of both the equations for u and b on these vectors leads to a
six-dimensional system of equations. The three vectors are
defined as follows:

e1 =
2

�2 + h2�− sin k0x cos k0z

h sin k0x sin k0z

cos k0x sin k0z
� , �4�

e2 =
2

�2 + h2� h sin k0y sin k0z

− sin k0y cos k0z

cos k0y sin k0z
� , �5�

e3 =
4

�6 + 10h2	�− sin k0x cos k0y cos 2k0z

− cos k0x sin k0y cos 2k0z

cos k0x cos k0y sin 2k0z
�

+ h� 0

− 2 sin k0x cos k0y sin 2k0z

sin k0x sin k0y cos 2k0z
�
 . �6�

They depend on a free parameter h that determines the

amount of helicity that can be carried on by the basis vectors.
For h=0, each mode is nonhelical. The three vectors are also
divergence free � ·e
=0 and are orthonormal �e
e��=�
�.
The inner product of two arbitrary vectors v1 and v2 is de-
fined by

�v1 · v2� =
1

l3
0

l

dx
0

l

dy
0

l

dzv1�x,y,z� · v2�x,y,z� . �7�

For h=0, the basis functions e1 and e2 have field configura-
tions in xz and yz, respectively.

The projection operator is denoted by P and its applica-
tion on a vector v is defined by

P�v� � v	 = v1e1 + v2e2 + v3e3, �8�

where v
= �v ·e
�. The projected part of v in S	 is noted v	

and the difference with the original vector is noted v=v
−v	. The projection of the velocity, magnetic, and force
fields are expressed as follows:

P�u� = u	 = �u1e1 + u2e2 + u3e3�u�, �9�

P�b� = b	 = �b1e1 + b2e2 + b3e3�u�, �10�

P�f� = f	 = �f1e1 + f2e2 + f3e3��u��2k0, �11�

where the u
’s, b
’s, and f
’s are dimensionless real numbers
and u�=�k0. The e3 component of the forcing is supposed to
be zero. The system of dynamical equations for these vari-
ables can be derived from Eqs. �1�–�3�. For instance, the
projection of the equation for the velocity on the vector e1,
��tu ·e1�, yields the equation for u1. The resulting system of
equations is

u̇1 = r�h��1 − h2��u2u3 − b2b3� − 2u1 + f1, �12�

u̇2 = r�h��1 + 3h2��u1u3 − b1b3� − 2u2 + f2, �13�

u̇3 = − 2r�h��1 + h2��u1u2 − b1b2� − 6u3 + f3, �14�

ḃ1 = r�h��1 + h2��u2b3 − b2u3� − 2Pm
−1b1, �15�

ḃ2 = − r�h��1 + h2��u3b1 − b3u1� − 2Pm
−1b2, �16�

ḃ3 = − 2r�h�h2�u1b2 − b1u2� − 6Pm
−1b3, �17�

where r�h�=2 / ��2+h2��6+10h2�.
The structure of this model is, of course, reminiscent of

the original MHD equations. In particular, it is interesting to
study how the conservation of the ideal quadratic invariants
of the Navier-Stokes and MHD equations can be expressed
in terms of the variables �u
 ,b
�. The conservation of the
kinetic energy Ek by the Navier-Stokes equations is a direct
consequence of

�n�u,u� · u� = 0. �18�

Because this equality holds for any velocity, it is also true for
u	 and, in the absence of magnetic field, the nonlinear terms
in the system of equations �12�–�17� conserve the kinetic
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energy Ek
	= �u1

2+u2
2+u3

2� /2 associated to u	. The cross helic-
ity Hc

	= �u1b1+u2b2+u3b3� and the total energy, the sum of
the kinetic energy Ek

	 and the magnetic energy Em
	= �b1

2+b2
2

+b3
2� /2, are conserved by the nonlinear terms for the same

reason. However, the conservation of the kinetic helicity
Hk= �u ·�� by the Navier-Stokes equations and the conserva-
tion the magnetic helicity Hm= �b ·a� by the MHD equations,
where �=��u is the vorticity and a is the vector potential
�b=−��a� have no equivalent in the system �12�–�17�. In-
deed, the conservation of the kinetic helicity is a conse-
quence of

�n�u,u� · �� = 0. �19�

However, both the nonlinear term and the vorticity are not
fully captured in S	, even when computed from u	:

P�n�u	,u	�� � n�u	,u	� , �20�

P�� � u	� � � � u	. �21�

As a consequence, the kinetic helicity carried on by u	 is not
conserved by the nonlinear term in the low-dimensional
model and, for the same reason, the magnetic helicity is not
conserved either. For instance, the non-conservation of the
kinetic helicity by the low-dimensional model can be ex-
pressed as

�n�u	,u	�	 · �� � u	�	� = − �n�u	,u	� · �� � u	�� ,

�22�

and the right-hand side in this relation in not represented in
Eqs. �12�–�17�. In the following section we will solve the
truncated MHD equations �12�–�17� for two special param-
eter sets.

III. ANALYSIS OF THE MODEL

Despite its simplicity, the complete analysis of the system
of equations �12�–�17� is quite difficult. Indeed, the simple
search for the fixed points leads to very intricate algebraic
equations. We have thus focused our analysis on two limiting
cases corresponding to strictly nonhelical equations �h=0�,
and the case h=1, both of which can be treated analytically.

A. Nonhelical model

The system of equations �12�–�17� is thus first considered
for h=0. In that case the kinetic helicity captured in subspace
S	 vanishes ��u	 · ���u	��=0�. In this first model, the
forcing is chosen to be

f =
f

�2
�e1 + e2� , �23�

where f =��f · f�. Hence, f1= f2= f /�2 and f3=0. The fixed
points can then be computed analytically. Three fixed points
correspond to a vanishing magnetic �b1=b2=b3=0� field and
will be referred to as fluid solutions

fluid A��u1 =
�2

8
�f � �f2 − 1152� ,

u2 =
�2

8
�f � �f2 − 1152� ,

u3 = − 2�6,
� �24�

fluid B�u1 = u2 =
�s2 − 12�

s
,

u3 = −
�s2 − 12�2

�54s2
, � �25�

where s= �9f /�2+3�192+9f2 /2�1/3. There are two addi-
tional fixed points with nonzero magnetic fields:

MHD��
u1 = u2 =

�2fPm

4�Pm + 1�
,

u3 = −
2�6

Pm
,

b1 = b2 = �
Pm

4�Pm + 1�
�f2 − fc2

2 ,

b3 = 0.

� �26�

The stability of the above fixed points can be established
by computing the eigenvalues of the stability matrix. After
some tedious algebra, it can be shown that the above fixed
points are stable in the three regions shown in Fig. 1�a� and
defined by the following simple equations in the plane
�Pm , f�:

Pm = Pm
c = 1, �27�

f = fc1
= 24�2, �28�

FIG. 1. �Color online� Plot of critical force fc2
as a function of

Pm for the nonhelical model. Dynamo is excited for f  fc2
, only for

Pm1.
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f = fc2
= 12�2

Pm + 1

Pm
3/2 . �29�

Since the velocity and magnetic field amplitudes u
 and b


must be real numbers, the solutions Fluid A� only exist for
f  fc1

. They are stable for Pm	1. The solution fluid B is
stable for Pm	1 and f 	 fc1

, and for Pm1 and f 	 fc2
. It is

unstable elsewhere. The solution MHD� is stable for Pm
1 and f  fc2

and is unstable elsewhere. In summary, we
have only fluid solutions for Pm	1, while an MHD solution
is possible only for Pm1 and f  fc2

. The above solutions
cover the entire �f , Pm� parameter space. The system con-
verges to one of these states depending on the parameter
values irrespective of its initial conditions, and the system is
neither oscillatory nor chaotic. Clearly, the amplitude of b1
and b2 close to the dynamo threshold increases as �f − fc2

.
The dynamo transition in this low-dimensional model is thus
a pitchfork bifurcation �20�.

It is also interesting to express the above results in terms
of the Reynolds number instead of the forcing amplitude. A
Reynolds number can be built by defining the large scale
velocity as UL=�u1

2+u2
2u�. Based on this velocity scale, the

kinetic Reynolds number is given by

Re =
UL

�k0
=�

�2�f2 − 576

4
fluid A ,

�2
s2 − 12

s
fluid B ,

fPm

2�1 + Pm�
MHD.

� �30�

For large f , the amplitude of the magnetic field is propor-
tional to the kinetic Reynolds number

�b1� � �u1� � Re/�2. �31�

The critical Reynolds number for the dynamo transition be-
tween the fluid B and MHD solutions is easily computed:

Rec = 6� 2

Pm
�32�

and the critical magnetic Reynolds number Rem
c :

Rem
c = PmRe = 6�2Pm. �33�

Since Pm1, Rem
c 6�2. Note that Rem

c Rec=72. Hence, the
Rec−Rem

c curve is a hyperbola for Rec�6�2 since dynamo
exists for Pm1.

To gain further insights into the dynamo mechanism we
have investigated the energy exchanges among the modes of
the model. The fluid modes u1 and u2 gain energy from the
forcing f and give energy to the mode u3. The magnetic
modes b1 and b2 gain energy from the mode u3. The net
energy transfer to the mode b3 through nonlinear interaction
vanishes. Consequently the mode b3 goes to zero due to dis-
sipation. The b1 and b2 modes also lose energy due to dissi-
pation. The energy balances for these modes reveal interest-
ing feature of dynamo transition. At the steady state, the
energy input in the mode b1 due to nonlinearity

�−b1b2u3 /�6=−b1
2u3 /�6� matches the Joule dissipation

�2b1
2 / Pm� �Eq. �15��. For f 	 fc2, the value of u3 is less than

−2�6 / Pm, hence b1→0 asymptotically, thus shutting down
the dynamo. For f  fc2, u3=−2�6 / Pm, thus the energy input
to the mode b1 exactly matches with the Joule dissipation.
This is the reason why b1 and b2 are constants asymptotically
in the MHD regime.

We also studied a variant of the above model in which
f1=0 and f2= f . For this model, the only solution is u2= f /2
with all the other variables being zero. Hence this model
does not exhibit dynamo. In the next subsection we will dis-
cuss another low-dimensional model that contains helicity.

B. Helical model

In this second version of the model, the value h=1 has
been chosen. The helicity captured in the subspace S	 is
then given by

�u	 · �� � u	�� = �4

3
�u1

2 − u2
2� −

3

2
u3

2��u��2k0. �34�

If we restrict again the forcing to the large-scale modes, the
amount of helicity carried on by the velocity field is expected
to increase, at least in absolute value, if the forcing act dif-
ferently on the modes e1 and e2. We have chosen the extreme
case for which the forcing acts only on u2 �f1= f3=0 and f2
= f�:

f = fe2, �35�

where again f =��f · f�. For these parameters, a unique fluid
stationary solution and two stationary MHD solutions are
found:

fluid�u1 = u3 = 0,

u2 =
f

2
, � �36�

MHD��
u1 = u3 = 0,

u2 =
6�3

Pm
,

b1 = �3b3 = �
�3

2
�−

72

Pm
+ 2�3f�1/2

,

b2 = 0.

� �37�

All these solutions obviously carry a nonzero resolved helic-
ity as defined by Eq. �34�. The fluid solution is stable for f
	 fc3

�12�3 / Pm, while the MHD solutions are stable for f
 fc3

. The plot of the critical force fc3
vs Pm for helical

model is shown in Fig. 2. Note that the helical model exhib-
its dynamo for all Pm as long as f  fc3

. Also, the critical
forcing for the helical model is lower than the corresponding
value for the nonhelical model. Hence it is easier to excite
helical dynamo compared to the nonhelical dynamo consis-
tent with recent numerical simulations �7,9–11�.

Here again, the Reynolds number based on the large scale
velocity UL=u*�u1

2+u2
2 can be defined, which is
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Re =
UL

�k0
= � f/2 fluid,

6�3

Pm

MHD� �38�

and the magnetic Reynolds number for MHD case is Rem
=6�3, a constant.

Using Eq. �34� we can compute the resolved kinetic he-
licity HK and current helicity HJ defined as

HK = �u	 · �� � u	�� =
4

3
u2

2�u��2k0 = −
144

Pm
2 �u��2k0,

�39�

HJ = �b	 · �� � b	��

=
5

2
b3

2�u��2k0 = −
5

2
��3f

2
−

18

Pm
��u��2k0. �40�

Pouquet et al. �21� and Chou �22� conjectured the alpha pa-
rameter of dynamo to be of the form


 � 
u + 
b =
1

3
��− u · �� � u� + b · �� � b�� , �41�

where � is the velocity decorrelation time. Clearly 
 is opti-
mal if HK	0 and HJ0. Similar features are observed by
Brandenburg �23� and Verma �24�. These conditions are sat-
isfied in the helical model indicating a certain internal con-
sistency with the results of Pouquet et al. �21� and Chou
�22�. Although the earlier works on helical dynamo and 

effect mentioned above include modes at all scales, the simi-
larity of the results between our low-dimensional model and
these works indicates an interesting interaction between the
modes that needs to be studied in future.

The energy exchange calculation of the helical model re-
veals that the magnetic modes b1 and b3 receive energy

from the velocity mode u2; the rate of energy transfer is
proportional to b1b3u2 that matches exactly with the Joule
dissipation rate. Since u2=6�3 / Pm for all Pm, the rate of
energy transfer b1b3u2 matches with Joule dissipation rate
��b1

2 / Pm�, and the dynamo is possible for all Pm in case of
helical model. In contrast, in nonhelical model the corre-
sponding velocity mode u3 varies as 1 / Pm for Pm1, but
saturates at 2�3 for Pm	1, hence the energy transfer cannot
match the Joule dissipation rate for Pm	1 for nonhelical
model thus shutting off the dynamo for Pm	1. This is one of
the main difference in helical and nonhelical models. Also
note that as discussed at the end of the previous subsection,
the nonhelical model with the forcing f1=0, f2= f does not
exhibit dynamo for any parameter.

IV. DISCUSSION

In this paper, a class of low-dimensional models that ex-
hibit dynamo transition is derived. These models depend on
several parameters such as the Prandtl number, the forcing
amplitude, and a parameter h that characterizes the ability of
the velocity modes to carry kinetic helicity. The fixed points
of two simple models corresponding to h=0 and h=1 have
been studied in details. The first model is nonhelical �zero
kinetic and current helicity� and is compatible with a station-
ary nonzero magnetic solution only for Pm1. The second
model has nonzero kinetic and current helicities, and it has
nonzero stationary magnetic solution for all Pm. These find-
ings confirm the idea that both kinetic and current helicities
may play an important role in the dynamo transition, espe-
cially in the helical model for Pm	1. These two values of h
correspond to the only values for which one of the nonlinear
coupling in the low-dimensional model vanishes. With the
specific choice of the forcing proposed in the previous sec-
tion, these models have then exact and tractable solutions.
Arbitrary values of h would lead to much more complex
systems.

Obviously, the models presented here are only a small
subset of many possible MHD models that could exhibit dy-
namo. For instance, Rikitake �25� constructed a dynamo
model consisting of two-coupled disks that shows field re-
versal. Nozières �26� proposed a model involving one veloc-
ity and two magnetic field variables. These two models are
phenomenological. Recently, Donner et al. �27� proposed a
truncation of the MHD equations along the same lines as our
model, but derived a much more complex system of equa-
tions for 152 modes. Donner et al. �27� analyzed the dynami-
cal evolution of these modes for Pm=1 and observed steady
state and chaos in their system. The main advantage of our
model is that it allows a complete analytical treatment. A
possible extension of this study would be to search for sys-
tematic conditions under which these models do not show a
dynamo effect. These conditions could lead to a simplified,
but possibly useful, antidynamo theorem for low dimen-
sional models.

The six variables of our model are only representative
of the large-scale modes of the system, while a realistic

FIG. 2. �Color online� Plot of critical force amplitude fc3
as a

function of Pm for the helical model. The dashed lines reproduce the
stability regions of the nonhelical model.
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description of a turbulent system exhibiting dynamo has a
large number of modes at all scales. As investigated by
Schekochihin et al. �6,12�, Ponty et al. �9�, Stepanov and
Plunian �13�, and Iskakov et al. �7�, the inertial range modes
play a crucial role in dynamo transition. We need to test
carefully the role of large-scale modes in full-fledged direct
numerical simulations in the light of our results on low-
dimensional models. A preliminary direct numerical simula-
tion using the forcing of the model indicates that we need a
larger critical forcing for the DNS compared to the low-
dimensional models. Also the critical forcing appears to de-
pend on the grid size of the simulation �typically the critical
forcing increases with the resolution of DNS�. These obser-
vations indicate that the interplay of large-scale modes and
the inertial-range modes is very interesting. We are in the
process of studying these aspects of dynamo.
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