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Helical Equilibria 1 INTRODUCTION

1 Introduction

Helical structures can be found nearly anywhere : Helices arise in nanosprings,
vines, DNA, etc. These structures held great interest for scientists, some part
of it for the equilibrium state.

Therefore, after a physical introduction, we will study the helical equilibria,
here in the absence of body forces. We will particulary study the strains and
how to caracterize them, mathematically first, then more physically. Finally, we
will discuss the C4++ implementation of our computations which leads to Mr.
De Souza’s program.
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2 Physical origin

We will introduce here the physical elements leading to our problem.

2.1 Kinematics

A rod is defined by a centerline r(s) and two orthonormal vectors {d;,d2}(s),
with s € [—L, L] the arc length.
This gives an orthonormal framing {d1,d2,d3}(s), and the condition with the
constraint
I‘/ = d3
for an unextensible and unshearable rod.
We get the relations
di =uXx di

The components of u represents the strains on the rod.
On the other hand, we can consider the Frenet frame {v, 3, 7}.
One can obtain the Frenet-Serret equations :

T = kv
8 = —kt+10 (2.1)
vV = —1v

Since 7 is the tangent, we have 7= d3, and then (dy,dz2) is a rotation of (v,3)
through an angle ¢.
One can obtain the following relations (ref.4):

u; = Ksing
Uz = KCOSQ
uz = T+¢

If the curvature x and the torsion 7 are constants, we obtain an helix which can
be given in arc-length parametric form :

r(s) = (rcos(nis), rsin(nis), pnis)

in a basis, with r the radius and 27p the pitch of the helix.
The relations are given by :

K 1

-
2 P e T

T =

2.2 Mechanics

One can represent the stresses across the rod at r(s) as resultant force n(s) and
moment m(s).
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We will study the equilibria without any body forces, so the equilibrium relations
gives

n = 0
m+r'xn = 0 (2.2)
Since we assume that the rod is hyperelastic, there exists a convex, coercive
strain-energy density function WMoreover, we assume the rod is uniform, so we
have no explicit dependance on s.We will particulary study the case where we
can approximate W by a quadratic function of the strains.
Then W can be written as

Wuw—-14)==(u—1a) K(u—1u) (2.3)
Where K is a symmetric positive definite which is assumed of the form

K1 0 K13
K = 0 Ky Koz
K3 Koy Kj

With the condition K; < K5, and 1 is the strain at the minimum energy.
Consequently, the expression of W is :

1 ~ ~ A~
W = 3 (K1(u1 - U1)2 + Ko(ug — UQ)2 + Ks(us — U3)2)

+ (K13(u1 — 0q) + Koz (ug — 12)) (ug — U3)

We have
m=VW(u—-14)=K(u—u)
Then
Ki(uy — 1) + Ki3(uz — 43)
VW (u— 1) = Ko (ug — i2) + Koz (uz — i3)

Kis(uy — 1) + Kag(ua — G2) + Ks(ug — 3)

2.3 Equilibrium
The equilibrium points minimizes W under the constraints

1 1

511 ‘u = 577% Uz = 1Mz

We can notice that these two strains are actually just a one-dimension strain, a
circle
ui +u3 = ni(l—13)
that has for tangent
5 = (UQ, —ul,O)

Thus, minimizing W over the circle can be done by finding the solutions of

E-VIW =0
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So we have the equation
ug (K (ur — 0y) + Kiz(uz — a3)) — ui (Ka(ug — t2) + Kas(uz —43)) =0
Which can be reorganized as

urug (Ko — K1) + ug(u1 Koz — us Ki3)

N N N N 2.4
—(Kg’LLg + Kggﬂg)?ﬂ + (K1u1 + K13U3)U2 =0 ( )

This is the equation we are going to work with.



Helical Equilibria 3 HYPERBOLOIDS

3 Hyperboloids

We can rewrite equation 2.4 a bit more simply :

ujug — (a + bug)us — (¢ + dug)u; =0 (3.1)
or
(u1 — (a + bus))(uz — (¢ + duz) = (a + bug)(c + dus) (3.2)
where . ) . )
_ Ky + Kiygug o Koo + Kagiiz
N Ky,—K, '~ Ky—-K
po B8, Kas
Ky — Ky’ Ky — Ky

These formulas imply that K; # K. We will consider that case later.

3.1 Standard Case

Before interesting ourselves to the general case, let’s review the standard tools
which will be used later on.

The standard Hyperboloid can be represented as :

2 2 2
2y 2
A2 B2 (2

Where z, y, z € R\ {0}.

3.1.1 Usual Parametrization

A way of efficiently parametrize a mesh for our Standard Hyperboloid is :

r = AvV1+r2cosl
y = B+1+7r2sinf (3.3)
z = Cr

With (8,r) € [0,2n] x [—H, H], linearly variated, where H > 0 is the desired
height display.

3.1.2 Rulings

We can notice that, passing %—Z on the other side of the equation, we have two
identities which can be factorized as such :

G-2G+)-0-50+)

So then we have two systems of two equations :

{

N = k{-%) (3.4)

~ 0+

faisla
QleQle
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22z = h(1+%)
A C B 3.5
{A+c = s (1-%) (3:5)

For every h, k € R.
Each of these two systems define a line in the space along the Hyperboloid. So
by moving h and k we can cover the entire Hyperboloid with lines.

3.1.3 Explicit rulings

We can arrange these equations to obtain a parametrization in function of h
and k.
The computations provide :

y = Q%k':_k%_zB

r = 2*%(%*}‘)14
ht5

y = e

29—z (L_f _1
W) = (TR a B’Z) (3.6)
2+z(1-p 1_p oz ’
ne) = (B5E a2 )

Note. We can express (z,y, z) in function of k and h directly with the formulas
h—k hk+1 hk —1
- Y y=B— - ;=0C—""
kT kT T Ttk
So we can plot the Hyperboloid using some k and h. However, we will lose the

regular mesh we will obtain the other way, i.e the drawing with nice ellipses for
z = const.

xr=A (3.7

Once we have these equations, only one problem remains : we need to find
good values for h and k so we have a regular figure, i.e. lines correctly positioned.

3.1.4 Regular k£ and h

We have now the equations of the lines. To efficiently nicely plot these lines, we
will consider that we only display them within a z range of the form [—H, H].
Then, its is enough to compute the two extremities of the lines, i.e the points
where z = £ H.

In order to do that, we interest ourselves on these two positions for z, which
corresponds for each to an ellipse :

2 2
LNy .
A2 B2
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with
(.’I}, Y, Z) € lha Zk

22
7"12\/14-@

Since we search a regular repartition, we do search (z,y) in function of 0

assuming

x = Arcosf
y = DBrsind

Which, with € linearily partitioned, will give a nice set of k() and h(0).
We have to solve :

2-2(1-k)
_ C \ k
rcosf = s
. 2Z+k—1
— C k
rsinf = e
2-2(4-n)
_ C\h
rcosf = il
1_p_92z
3 — h C
rsinf = T

Let’s concentrate on the r cos 6 expressions.
By developping the terms and multipling by k, h respectively we get a 2"?
degree polynomial for i and k :

0
0

k2(r cos@ — &) — 2k + (r cos 6 + %)
h*(r cos@ + &) —2h + (r cosf — &)

Both these equations have determinant +/A = 2rsinf and then we can choose
k and h such that they correspond to the r sin 6 conditions :

k(a) = T%S:STGT;ZC (38)

h(@) = T‘COSTGS—II;/C
Then moving 6 linearily :

2im .
0= 7, n e N,Z S {O,...,n— 1}
We have the regular rulings.
3.2 Transformation
A general quadratic function of z € R3
x-Ar+b-z+c=1 (3.9)

can be transformed into the canonical hyperboloid form via a transformation

y=Pr+w
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where P is orthogonal, provided only that the eigenvalues of A are two positive
and one negative (or vice versa).

To work out this transformation, we need to compute the eigenvectors of A,
which is theoretically possible, but in this case gives intractable expressions in
terms of the original problem parameters.

There may be a simpler transformation, still of the form

y=Cx+wv

but with C no longer orthogonal, but with much simpler coefficients that still
transforms our hyperboloid into a standard form.
We will discuss this method in the following.

3.3 Parametrization

First consider the generic cases bd # 0 and ac # 0.

3.3.1 Transformations

Now that we have the rulings for the standard case, we would like to have the
same kind of rulings for our Hyperboloid, which equation can be written as :

(u1 — (a + bus))(uz — (¢ + duz) = (a + bug)(c + dus)

We now search a transformation which will put this equation into a diagonalized
form.
Concretely, we search a invertible matrix C such that

r=Cu+w, Az)=1

with
A(Ul, Va2, U3) = )\11)% + )\211% + /\3U§

and precisely one lambda negative.

How to do it

We can easily see that, given :

x = wu; — (a+ bug)
y = ug— (c+dug)

We get the equation
1
(ur —x)(ug —y) = vy = 1(1?2 - yz)

On the other hand :

(ug —x)(uz —y) = (a+buz)(c+dus) = bdu3 + (ad + be)uz + ac
2 CTQa 2
= bd((U3+%) Jracf%)

10
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So we have the expression

1 1 (be + ad)?
Zv% - ZU% — bdv3 + T Qo(u) =0
Providing
1 1 —-d-b
v=Cu+w,C=|1 -1 d-—b»
0 0 1
w— ;C,_aa o = e (be + ad)?
B be+ad 0T 4bd
2bd
With
1 1 b
2
c=(1 21y
0 0 1

Thus we have the desired form!
Aog(Cu+w) —cog =0

Which also can be written as

ACu+w)=1
With
A = Ao/eco
ie
A(aq,az,a3) = iaf - La% — %ag =1

480 400 Co
This is the equation of a standard Hyperboloid.

3.3.2 Considerations on P

We just found that

1 1 —d—b
P=[1 -1 d-b (3.10)
0 0 1

is the transformation between the original form and the standardized form.
What does this transformation corresponds to?
We can see that

1 1 —d-b V2 0 0\ fcosT sinT 0\ /1 0 —d
1 -1 d=b|=(0 +v2 0 sinf —cosfy 0 0 1 —b
0 0 1 0 0 1 0 0 1/ \0o o0 1

So we can decompose P in three transformations :

1. planar dilation in the (z,y) plane
2. rotation, still in the (z,y) plane
3. a shear parallel to the (x,y) plane

11
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3.3.3 Conditions on the parameters

Observation

Note that
(bc + ad)? (bc — ad)?
cop = ac — =—

4bd 4bd

Remark that the equation is a one-sheeted Hyperboloid if and only if
only one of the three components of A is negative.
If we look at the product bd, we can see with our observation that ¢y and bd
have opposite sign, which guarantees always to have a well-defined one-sheeted
Hyperboloid :

e if bd > 0, then the only possibility is that A\; only would be negative, that
we have with ¢g < 0.

e if bd < 0, then the only possibility is that Ao only would be negative, that
we have with ¢ > 0.

The problem only remains with ¢y = 0 which leads to bc — ad = 0.
Note that our equation still can be written as :

1 1
va — ng — bdvi =0

Since the transformations we did are always valuable, because C' is invertible

Vb, d € R assuming bd # 0, we do not obtain here a one-sheeted Hyperboloid.

This is the equation of a cone, i.e a limit of a one-sheeted hyperboloid
infinitely distended.
This remarks allows us to verify that the originial form, this one being an one-
sheeted hyperboloid, is also one, since C' preserves the signs of the eigenvalues.

3.4 Problematic situations

We have a good idea of the global form of the equation. Three situations now
remain.

3.4.1 Case ac=0, bd#0

These two conditions provide a diagonal matrix

Kiy 0 0
K=10 K, 0
0 0 Ks
Then we can see that
~ K R K. R K. R
W(u—) = —(us —41)* + 72(712 —9)? + == (uz — 13)?
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Which leads to
VW = (Kl(ul — ﬂl), KQ(UQ — ’Zlg), Kg(Ug — fbg))

and then the condition
E-VIW =0

becomes
U1UQ(K1 — KQ) + u1 Kotio —us K11 =0

Thus we have the equation of an Hyperbola defined for all uz € R, so what we
get is a cylindrical hyperbola.

However, if K1 = K9 = K we obtain :
UlKﬁg = UQKle

Which defines a plane.

3.4.2 Case ac#0,bd=0

This case could be more problematic because then w is badly defined, so we
need to go back from the beginning.
But then we easily get :

(u1 —a)(uz — ¢) = ac

this is once again a cylindrical hyperbola.

3.4.3 Caseac=0,bd=0

Here we have a, b, ¢, d = 0. This means that
Ui1Ug = 0

And then the two planes O, and O, are the solutions.

3.4.4 Isotropic strain-energy function

We get the relations
Ky — Ky =Ky =Ki3=0

We have to go back to equation 2.4.
We get
KUQﬁl = Kulﬁg (311)

Which defines a plane.

13
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3.5 Conclusion
These analysis can be summarized as :
[ ] K1 7& K2

—b,d#0 (<= Ki3,Ka3 #0)
* a,c#0
Standard Situation
* a,c=0
Cylindrical Hyperbola
—b,d=0 (<= Ki3,K93 =0)
x a,¢c#£0
Cylindrical Hyperbola
* a,c=0
Two planes

e Isotropic strain-energy function
Plane

3.6 Rulings

Now that we have a nice description of the general case, let’s see how we can
apply it to the rulings with lines that we found earlier.
We will name :

e X Space the space where the Hyperboloid is in its standard form
e U Space the original space

e M Space the space of basis m.

3.6.1 X Space rulings

We have two possibilities that can occur : either Ay < 0 or Ay < 0. Let’s assume
for now that A; < 0, and we will discuss how similar the other situation is later.
We then have the equation :
2 2 2
x
z2 ﬁ =1 + ﬂ
A2 A3 A1

This is the exact situation of the standard case.
Our previous computations provide :

2—-=2L(1-k)
e = Y
2\;;7+k—%

$3=Wm
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242 (L+-n)
o= Sy
%—h—2\%
r3 = ﬁlv)\s

To obtain the other situation, we just need to switch the roles of x; and xs,
respectively A1 and As.

Note that when these equations are used, it is simply needed to fix x; for
two different values, say —H and +H, so we get two points (z1, Z2, x3) which
can be connected through a line, which will be in the Hyperboloid, since the
variations x2(x1) and z3(z;) are linear.

3.6.2 U Space rulings

There, for practical reasons, we will still consider z; fixed in two values.
All we do now is applying the transformation. Since

= Pu+w

we then have

2 2d
u:_Pil((E—U))_ xlgxg te— bc2+bad
Lo — betad
3 2bd

This leads to

+% be+tad
2 ta 2d
2- 1; (%—k)
U= r1— 1 VA2
k+% +e be+ad
w2 20
21/)\1 +k7§ e — bet+ad
k+1 VA3 2bd

with the h, and

2+ (+-h)
1 VAL _ betad
3 | L1 ht+ L VA2 | +a— 5]
2+ 2 (L-n)
u = 1 _ NSRS _ bctad
5 | 71 s VA | +e 50

with k.
Once again we can invert the roles of x7 and x3, respectively A; and As.

This transformation being still linear, the rulings also have the nice property
that the line defined with two points will stay on the hyperboloid.

15
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3.6.3 M Space rulings

The transformation is
m = K(u— 1)

We apply this transformation to the equations in the previous case.

16
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4 Informatic implementation in C+4+4

Now that we have mathematical relations, let’s see how we can add them to a
program.

4.1 Tools

The C++ being a very basic language, we decided to use some libraries to gain
some time on the displaying.
The two libraries are :

e Coin3D (Openlnventor free clone), http://www.coin3d.org/
e SoQt

Coin3D allows us to draw quite easily the standard figures, i.e. lines, cones,
balls, and display them in an pre-made environment where the viewing system
is already very advanced, one can rotate, zoom, translate.

SoQt comes from Qt, this tool gives window software, with menus, buttons.

4.2 Structure of the code

Since the C++ has the ability to produce classes, we used it a lot. This allows
us to organize our work with ”concrete” items such as an hyperboloid, an helix,
etc.

4.3 Hyperboloid Parametrization

After the structuration, came the problem of implementation, particularly for
the hyperboloid : we needed a mesh of points in order to draw the hyperboloid.
An easy way to do this would have been to consider the points

UiUz — aug — Cuq
b’UQ + du1

)

(u17u27

which obviously are on the hyperboloid, and take some square mesh for (u1, us2)
but then the drawing would have been extremely strange and unregular.

For these reasons, we wanted to find a similar parametrization to the standard
situation (with r and 6).

Thus, with the transformation work, we get a nice Hyperboloid from which we
get a better view of the situation.

17
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5 Conclusion

We have studied the different possibilities of an helical equilibria.

We hope that the software we developped will help searchers in helical struc-
tures getting a better view of the situation. It was very formative for me, as a
first project.

Although the mathematics used in this work are quite basic, we can come to
something new : that is really powerful, and that’s i discovered here.

18
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