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Helical Equilibria 1 INTRODUCTION

1 Introduction

Helical structures can be found nearly anywhere : Helices arise in nanosprings,
vines, DNA, etc. These structures held great interest for scientists, some part
of it for the equilibrium state.

Therefore, after a physical introduction, we will study the helical equilibria,
here in the absence of body forces. We will particulary study the strains and
how to caracterize them, mathematically first, then more physically. Finally, we
will discuss the C++ implementation of our computations which leads to Mr.
De Souza’s program.
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Helical Equilibria 2 PHYSICAL ORIGIN

2 Physical origin

We will introduce here the physical elements leading to our problem.

2.1 Kinematics

A rod is defined by a centerline r(s) and two orthonormal vectors {d1,d2}(s),
with s ∈ [−L,L] the arc length.
This gives an orthonormal framing {d1,d2,d3}(s), and the condition with the
constraint

r′ = d3

for an unextensible and unshearable rod.
We get the relations

d′i = u× di

The components of u represents the strains on the rod.
On the other hand, we can consider the Frenet frame {ν, β, τ}.
One can obtain the Frenet-Serret equations :

τ ′ = κν
β′ = −κτ+τβ
ν′ = −τν

(2.1)

Since τ is the tangent, we have τ= d3, and then (d1,d2) is a rotation of (ν,β)
through an angle φ.
One can obtain the following relations (ref.4): u1 = κ sinφ

u2 = κ cosφ
u3 = τ+φ′

If the curvature κ and the torsion τ are constants, we obtain an helix which can
be given in arc-length parametric form :

r(s) = (r cos(η1s), r sin(η1s), pη1s)

in a basis, with r the radius and 2πp the pitch of the helix.
The relations are given by :

r =
κ

κ2 + τ2
, p =

τ

κ2 + τ2
, η1 =

1√
r2 + p2

2.2 Mechanics

One can represent the stresses across the rod at r(s) as resultant force n(s) and
moment m(s).
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Helical Equilibria 2 PHYSICAL ORIGIN

We will study the equilibria without any body forces, so the equilibrium relations
gives

n′ = 0
m′ + r′ × n = 0

(2.2)

Since we assume that the rod is hyperelastic, there exists a convex, coercive
strain-energy density function WMoreover, we assume the rod is uniform, so we
have no explicit dependance on s.We will particulary study the case where we
can approximate W by a quadratic function of the strains.
Then W can be written as

W (u− û) =
1

2
(u− û) ·K(u− û) (2.3)

Where K is a symmetric positive definite which is assumed of the form

K =

K1 0 K13

0 K2 K23

K13 K23 K3


With the condition K1 ≤ K2, and û is the strain at the minimum energy.
Consequently, the expression of W is :

W =
1

2

(
K1(u1 − û1)2 +K2(u2 − û2)2 +K3(u3 − û3)2

)
+ (K13(u1 − û1) +K23(u2 − û2)) (u3 − û3)

We have
m = ∇W (u− û) = K(u− û)

Then

∇W (u− û) =

 K1(u1 − û1) +K13(u3 − û3)
K2(u2 − û2) +K23(u3 − û3)

K13(u1 − û1) +K23(u2 − û2) +K3(u3 − û3)


2.3 Equilibrium

The equilibrium points minimizes W under the constraints

1

2
u · u =

1

2
η21 , u3 = η1η2

We can notice that these two strains are actually just a one-dimension strain, a
circle

u21 + u22 = η21(1− η22)

that has for tangent
ξ = (u2,−u1, 0)

Thus, minimizing W over the circle can be done by finding the solutions of

ξ · ∇W = 0

5



Helical Equilibria 2 PHYSICAL ORIGIN

So we have the equation

u2(K1(u1 − û1) +K13(u3 − û3))− u1(K2(u2 − û2) +K23(u3 − û3)) = 0

Which can be reorganized as

u1u2(K2 −K1) + u3(u1K23 − u2K13)
−(K2û2 +K23û3)u1 + (K1û1 +K13û3)u2 = 0

(2.4)

This is the equation we are going to work with.
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Helical Equilibria 3 HYPERBOLOIDS

3 Hyperboloids

We can rewrite equation 2.4 a bit more simply :

u1u2 − (a+ bu3)u2 − (c+ du3)u1 = 0 (3.1)

or
(u1 − (a+ bu3))(u2 − (c+ du3) = (a+ bu3)(c+ du3) (3.2)

where

a = −K1û1 +K13û3
K2 −K1

, c =
K2û2 +K23û3
K2 −K1

b =
K13

K2 −K1
, d = − K23

K2 −K1

These formulas imply that K1 6= K2. We will consider that case later.

3.1 Standard Case

Before interesting ourselves to the general case, let’s review the standard tools
which will be used later on.

The standard Hyperboloid can be represented as :

x2

A2
+
y2

B2
− z2

C2
= 1

Where x, y, z ∈ R \ {0}.

3.1.1 Usual Parametrization

A way of efficiently parametrize a mesh for our Standard Hyperboloid is : x = A
√

1 + r2 cos θ

y = B
√

1 + r2 sin θ
z = C r

(3.3)

With (θ, r) ∈ [0, 2π] × [−H,H], linearly variated, where H > 0 is the desired
height display.

3.1.2 Rulings

We can notice that, passing y2

B2 on the other side of the equation, we have two
identities which can be factorized as such :( x

A
− z

C

)( x
A

+
z

C

)
=
(

1− y

B

)(
1 +

y

B

)
So then we have two systems of two equations :{

x
A −

z
C = k

(
1− y

B

)
x
A + z

C = 1
k

(
1 + y

B

) (3.4)
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{
x
A −

z
C = h

(
1 + y

B

)
x
A + z

C = 1
h

(
1− y

B

) (3.5)

For every h, k ∈ R.
Each of these two systems define a line in the space along the Hyperboloid. So
by moving h and k we can cover the entire Hyperboloid with lines.

3.1.3 Explicit rulings

We can arrange these equations to obtain a parametrization in function of h
and k.
The computations provide : x =

2− z
C ( 1

k−k)
k+ 1

k

A

y =
2 zC+k− 1

k

k+ 1
k

B x =
2+ z

C ( 1
h−h)

h+ 1
h

A

y =
1
h−h−2

z
C

h+ 1
h

B

So we have two parametric equations of lines (with the parameter z) :
lk(z) =

(
2− z

C ( 1
k−k)

k+ 1
k

A,
2 zc+k−

1
k

k+ 1
k

B, z

)
lh(z) =

(
2+ z

C ( 1
h−h)

h+ 1
h

A,
1
h−h−2

z
C

h+ 1
h

B, z

) (3.6)

Note. We can express (x, y, z) in function of k and h directly with the formulas

x = A
h− k
h+ k

, y = B
hk + 1

h+ k
, z = C

hk − 1

h+ k
(3.7)

So we can plot the Hyperboloid using some k and h. However, we will lose the
regular mesh we will obtain the other way, i.e the drawing with nice ellipses for
z = const.

Once we have these equations, only one problem remains : we need to find
good values for h and k so we have a regular figure, i.e. lines correctly positioned.

3.1.4 Regular k and h

We have now the equations of the lines. To efficiently nicely plot these lines, we
will consider that we only display them within a z range of the form [−H,H].
Then, its is enough to compute the two extremities of the lines, i.e the points
where z = ±H.
In order to do that, we interest ourselves on these two positions for z, which
corresponds for each to an ellipse :

x2

A2
+
y2

B2
= r2
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with
(x, y, z) ∈ lh, lk

assuming

r :=

√
1 +

z2

C2

Since we search a regular repartition, we do search (x, y) in function of θ{
x = Ar cos θ
y = B r sin θ

Which, with θ linearily partitioned, will give a nice set of k(θ) and h(θ).
We have to solve :  r cos θ =

2− z
C ( 1

k−k)
k+ 1

k

r sin θ =
2 zC+k− 1

k

k+ 1
k r cos θ =

2− z
C ( 1

h−h)
h+ 1

h

r sin θ =
1
h−h−2

z
C

h+ 1
h

Let’s concentrate on the r cos θ expressions.
By developping the terms and multipling by k, h respectively we get a 2nd

degree polynomial for h and k :{
k2(r cos θ − z

C )− 2k + (r cos θ + H
C ) = 0

h2(r cos θ + z
C )− 2h+ (r cos θ − H

C ) = 0

Both these equations have determinant
√

∆ = 2r sin θ and then we can choose
k and h such that they correspond to the r sin θ conditions :{

k(θ) = 1+r sin θ
r cos θ+z/C

h(θ) = 1+r sin θ
r cos θ−z/C

(3.8)

Then moving θ linearily :

θ =
2iπ

n
, n ∈ N, i ∈ {0, ..., n− 1}

We have the regular rulings.

3.2 Transformation

A general quadratic function of x ∈ R3

x ·Ax+ b · x+ c = 1 (3.9)

can be transformed into the canonical hyperboloid form via a transformation

y = Px+ w
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where P is orthogonal, provided only that the eigenvalues of A are two positive
and one negative (or vice versa).
To work out this transformation, we need to compute the eigenvectors of A,
which is theoretically possible, but in this case gives intractable expressions in
terms of the original problem parameters.
There may be a simpler transformation, still of the form

y = Cx+ v

but with C no longer orthogonal, but with much simpler coefficients that still
transforms our hyperboloid into a standard form.
We will discuss this method in the following.

3.3 Parametrization

First consider the generic cases bd 6= 0 and ac 6= 0.

3.3.1 Transformations

Now that we have the rulings for the standard case, we would like to have the
same kind of rulings for our Hyperboloid, which equation can be written as :

(u1 − (a+ bu3))(u2 − (c+ du3) = (a+ bu3)(c+ du3)

We now search a transformation which will put this equation into a diagonalized
form.
Concretely, we search a invertible matrix C such that

x = Cu+ w , Λ(x) = 1

with
Λ(v1, v2, v3) = λ1v

2
1 + λ2v

2
2 + λ3v

2
3

and precisely one lambda negative.

How to do it

We can easily see that, given :{
x = u1 − (a+ bu3)
y = u2 − (c+ du3)

We get the equation

(u1 − x)(u2 − y) = xy =
1

4
(x2 − y2)

On the other hand :

(u1 − x)(u2 − y) = (a+ bu3)(c+ du3) = bdu23 + (ad+ bc)u3 + ac

= bd
((
u3 + bc+ad

2bd

)2
+ ac− (bc+ad)2

4bd

)
10



Helical Equilibria 3 HYPERBOLOIDS

So we have the expression

1

4
v21 −

1

4
v22 − bdv23 +

(bc+ ad)2

4bd
− ac = Q0(u) = 0

Providing

v = Cu+ w,C =

1 1 −d− b
1 −1 d− b
0 0 1


w =

−c− ac− a
bc+ad
2bd

 , c0 = ac− (bc+ ad)2

4bd

With

C−1 =

 1
2

1
2 b

1
2 − 1

2 d
0 0 1


Thus we have the desired form!

Λ0(Cu+ w)− c0 = 0

Which also can be written as

Λ(Cu+ w) = 1

With
Λ = Λ0/c0

i.e

Λ(a1, a2, a3) =
1

4c0
a21 −

1

4c0
a22 −

bd

c0
a23 = 1

This is the equation of a standard Hyperboloid.

3.3.2 Considerations on P

We just found that

P =

1 1 −d− b
1 −1 d− b
0 0 1

 (3.10)

is the transformation between the original form and the standardized form.
What does this transformation corresponds to?
We can see that1 1 −d− b

1 −1 d− b
0 0 1

 =

√2 0 0

0
√

2 0
0 0 1

cos π4 sin π
4 0

sin π
4 − cos π4 0

0 0 1

1 0 −d
0 1 −b
0 0 1


So we can decompose P in three transformations :

1. planar dilation in the (x, y) plane

2. rotation, still in the (x, y) plane

3. a shear parallel to the (x, y) plane
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3.3.3 Conditions on the parameters

Observation
Note that

c0 = ac− (bc+ ad)2

4bd
= − (bc− ad)2

4bd

Remark that the equation is a one-sheeted Hyperboloid if and only if
only one of the three components of Λ is negative.
If we look at the product bd, we can see with our observation that c0 and bd
have opposite sign, which guarantees always to have a well-defined one-sheeted
Hyperboloid :

• if bd > 0, then the only possibility is that λ1 only would be negative, that
we have with c0 < 0.

• if bd < 0, then the only possibility is that λ2 only would be negative, that
we have with c0 > 0.

The problem only remains with c0 = 0 which leads to bc− ad = 0.
Note that our equation still can be written as :

1

4
v21 −

1

4
v22 − bdv23 = 0

Since the transformations we did are always valuable, because C is invertible
∀b, d ∈ R assuming bd 6= 0, we do not obtain here a one-sheeted Hyperboloid.

This is the equation of a cone, i.e a limit of a one-sheeted hyperboloid
infinitely distended.
This remarks allows us to verify that the originial form, this one being an one-
sheeted hyperboloid, is also one, since C preserves the signs of the eigenvalues.

3.4 Problematic situations

We have a good idea of the global form of the equation. Three situations now
remain.

3.4.1 Case ac = 0, bd 6= 0

These two conditions provide a diagonal matrix

K =

K1 0 0
0 K2 0
0 0 K3


Then we can see that

W (u− û) =
K1

2
(u1 − û1)2 +

K2

2
(u2 − û2)2 +

K3

2
(u3 − û3)2

12
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Which leads to

∇W = (K1(u1 − û1),K2(u2 − û2),K3(u3 − û3))

and then the condition
ξ · ∇W = 0

becomes
u1u2(K1 −K2) + u1K2û2 − u2K1û1 = 0

Thus we have the equation of an Hyperbola defined for all u3 ∈ R, so what we
get is a cylindrical hyperbola.

However, if K1 = K2 = K we obtain :

u1Kû2 = u2Kû1

Which defines a plane.

3.4.2 Case ac 6= 0, bd = 0

This case could be more problematic because then w is badly defined, so we
need to go back from the beginning.
But then we easily get :

(u1 − a)(u2 − c) = ac

this is once again a cylindrical hyperbola.

3.4.3 Case ac = 0, bd = 0

Here we have a, b, c, d = 0. This means that

u1u2 = 0

And then the two planes Oxz and Oyz are the solutions.

3.4.4 Isotropic strain-energy function

We get the relations
K1 −K2 = K23 = K13 = 0

We have to go back to equation 2.4.
We get

Ku2û1 = Ku1û2 (3.11)

Which defines a plane.
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3.5 Conclusion

These analysis can be summarized as :

• K1 6= K2

– b, d 6= 0 (⇐⇒ K13,K23 6= 0)

∗ a, c 6= 0
Standard Situation

∗ a, c = 0
Cylindrical Hyperbola

– b, d = 0 (⇐⇒ K13,K23 = 0)

∗ a, c 6= 0
Cylindrical Hyperbola

∗ a, c = 0
Two planes

• Isotropic strain-energy function
Plane

3.6 Rulings

Now that we have a nice description of the general case, let’s see how we can
apply it to the rulings with lines that we found earlier.
We will name :

• X Space the space where the Hyperboloid is in its standard form

• U Space the original space

• M Space the space of basis m.

3.6.1 X Space rulings

We have two possibilities that can occur : either λ1 < 0 or λ2 < 0. Let’s assume
for now that λ1 < 0, and we will discuss how similar the other situation is later.
We then have the equation :

x22
λ2

+
x23
λ3

= 1 +
x21
λ1

This is the exact situation of the standard case.
Our previous computations provide : x2 =

2− x1√
λ1

( 1
k−k)

k+ 1
k

√
λ2

x3 =
2
x1√
λ1

+k− 1
k

k+ 1
k

√
λ3

14
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 x2 =
2+

x1√
λ1

( 1
h−h)

h+ 1
h

√
λ2

x3 =
1
h−h−2

x1√
λ1

h+ 1
h

√
λ3

To obtain the other situation, we just need to switch the roles of x1 and x2,
respectively λ1 and λ2.

Note that when these equations are used, it is simply needed to fix x1 for
two different values, say −H and +H, so we get two points (x1, x2, x3) which
can be connected through a line, which will be in the Hyperboloid, since the
variations x2(x1) and x3(x1) are linear.

3.6.2 U Space rulings

There, for practical reasons, we will still consider x1 fixed in two values.
All we do now is applying the transformation. Since

x = Pu+ w

we then have

u = P−1(x− w) =

x1+x2

2 + a− bc+ad
2d

x1−x2

2 + c− bc+ad
2b

x3 − bc+ad
2bd


This leads to

u =


x1+

2− x1√
λ1

( 1
k

−k)
k+ 1

k

√
λ2

2 + a− bc+ad
2d

x1−
2− x1√

λ1
( 1
k

−k)
k+ 1

k

√
λ2

2 + c− bc+ad
2b

2
x1√
λ1

+k− 1
k

k+ 1
k

√
λ3 − bc+ad

2bd


with the h, and

u =



1
2

(
x1 +

2+
x1√
λ1

( 1
h−h)

h+ 1
h

√
λ2

)
+ a− bc+ad

2d

1
2

(
x1 −

2+
x1√
λ1

( 1
h−h)

h+ 1
h

√
λ2

)
+ c− bc+ad

2b

1
h−h−2

x1√
λ1

h+ 1
h

√
λ3 − bc+ad

2bd


with k.

Once again we can invert the roles of x1 and x2, respectively λ1 and λ2.
This transformation being still linear, the rulings also have the nice property
that the line defined with two points will stay on the hyperboloid.
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3.6.3 M Space rulings

The transformation is
m = K(u− û)

We apply this transformation to the equations in the previous case.

16
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4 Informatic implementation in C++

Now that we have mathematical relations, let’s see how we can add them to a
program.

4.1 Tools

The C++ being a very basic language, we decided to use some libraries to gain
some time on the displaying.
The two libraries are :

• Coin3D (OpenInventor free clone), http://www.coin3d.org/

• SoQt

Coin3D allows us to draw quite easily the standard figures, i.e. lines, cones,
balls, and display them in an pre-made environment where the viewing system
is already very advanced, one can rotate, zoom, translate.
SoQt comes from Qt, this tool gives window software, with menus, buttons.

4.2 Structure of the code

Since the C++ has the ability to produce classes, we used it a lot. This allows
us to organize our work with ”concrete” items such as an hyperboloid, an helix,
etc.

4.3 Hyperboloid Parametrization

After the structuration, came the problem of implementation, particularly for
the hyperboloid : we needed a mesh of points in order to draw the hyperboloid.
An easy way to do this would have been to consider the points

(u1, u2,
u1u2 − au2 − cu1

bu2 + du1
)

which obviously are on the hyperboloid, and take some square mesh for (u1, u2)
but then the drawing would have been extremely strange and unregular.
For these reasons, we wanted to find a similar parametrization to the standard
situation (with r and θ).
Thus, with the transformation work, we get a nice Hyperboloid from which we
get a better view of the situation.
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5 Conclusion

We have studied the different possibilities of an helical equilibria.
We hope that the software we developped will help searchers in helical struc-
tures getting a better view of the situation. It was very formative for me, as a
first project.
Although the mathematics used in this work are quite basic, we can come to
something new : that is really powerful, and that’s i discovered here.
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