Stability of helical equilibria

Pauline Riiegg-Reymond
Supervised by: Prof. John H. Maddocks and Ludovica Cotta-Ramusino

January 12, 2012

1 Introduction

This project intends to provide a new tool for the study of helical rods. Indeed if we have now
analytical expressions for equilibria of such rods, it is less easy to find explicit stability conditions
for these equilibria. The goal is to write a program with Matlab to compute numerically the
stability of helical equilibria.

Concepts of equilibrium and stability of helices are related to the energy of rods. A rod is at
equilibrium if it is an extremum of the energy and is stable if it minimizes it.

2 Notations and Elements of Theory about Rods

A physical rod is mathematically defined by a curver : I C R — R3 and a frame {d(s),d2(s),ds(s)}
which will be most of the time written in a matrix form

| | |
R(s) = |di(s) d2(s) ds(s)

This frame represents the orientation of the material cross-section of the rod and will be referred
to as the moving frame because it depends on s while the canonical frame {e;, ez, ez} will
be referred to as the fized frame. In this section, a will denote a variable (matrix or vector)
expressed in the fixed frame and & its expression in the moving frame. For a vector a € R3, we
have & = R~ 'a and for a matrix A € M3, A = R"'AR, or when R is orthogonal, a = R”a
and A = RTAR.

We will often take ds(s) = r(s) and d; and d2 two vectors in the normal plane such that {d;}
is orthonormal and right-handed. From now on, this will be generally assumed.

The strains are the functions @,V : I — R? defined by
v(s) = Rr'(s) (1)

and
di'(s) = t(s) x di(s) (2)

for i = 1,2,3. u is called the Darbouzx vector. Introducing the notation

0 —Uus u9
u”* = | us 0 —-u
—uy  ul 0

we can rewrite (2) R’ = Ra* or i* = RTR/.

We remark here that a rod can be equivalently given by its curve and intrinsic frame r and R
and by its strains @1 and V.



The initial configuration of the rod is represented by intrinsic strains @1 and ¥. This initial or
reference configuration can be thought of as the configuration of the rod in the absence of external
forces.

m(s) and n(s) are respectively the resultant moment and the resultant force applied on the rod
(r,R) at the point s. They are called the stresses.

Assuming the rod is uniform and hyperelastic, there exists a convex and coercive strain-energy
density function W : R3 x R® — R such that W (0,0) = 0. This function leads to the constitutive
relations between stresses and strains :

0

m=_—W(u—-1d,v-v)
n= a—vW(u—u,v—v)

In the following, the srain-energy density will be quadratic, i.e.
1
W(u,v) = B vl uf]P [V] .

P € M6 is called the stiffness matriz and is of the form
A G
P-lér K]
with K, A and G € M? such that P, K and A are symmetric and positive definite. Thus the

constitutive relations (3) are :
nl |[A G||v-¥% (4)
m| |GT K| |u-1

The energy of a rod ¢(s) = (r(s), R(s)) where s € [0, L] is defined by the functional

L
Elq(s)] = /O W (u(s) — a(s), v(s) — ¥(s))ds. (5)

3 First Variation

A rod q(s) is at equilibrium if its energy E [¢(s)] has an extremum at ¢(s) = g(s).
Definition. Let J [y] be a functional defined on some normed linear space and let
AJ R = Jly+hl = Jyl
be its increment. If y is fived, AJ[h] is a functional of h, generally a nonlinear one. If

AJ[h] = ¢ [h] + €||h|| where ¢ [h] is a linear functional and € HhH—O> 0, then the functional J [y]
—

is said to be differentiable and ¢[h] is called the variation of J[y] and is denoted by §.J [h].
The variation of a differentiable functional is unique.

Theorem. Let J[y] be a differentiable functional. A necessary condition for J[y] to have an
extremum for y = y is that its variation vanishes for y =y, i.e. that §J[h] =0 fory =y and
all admissible h.

The first order variation of the energy is
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Replacing 6% = R7(6r' +1'*60@) and 6t = RT60@’, we get

L
(5E=—/ (n'-6r + (m’' + 1’ x n)-§O)ds
0



which leads to the balance laws :
n =0
m+rxn=0

at equilibrium. In the moving frame, the balance laws are

4 Helical Rods

Going further, it can be shown that at relative equilibria for a non-isotropic rod, @, ¥, m and n
are constant and

p1l+ pov
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The fact that the components of the strains in the moving frame are constant implies that the
rod is a helix.
A helix is a curve with constant curvature x > 0 and torsion 7. It can be parametrized by the
arc-length form r(s) = (r cos(n1s), rsin(n1s), pn1 s) where the radius r and the pitch p are related
to curvature and torsion by
K
K2 + 72
T
K2 + 12

and
1

=——¢
G

If v = (0,0, 1)T, 1 is related to curvature, torsion and register ¢ by

0, oo[ - (11)

i1 = Ksin ¢
Uy = KCOS ¢ (12)
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Since 1 is constant, we obtain
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5 Second Variation

Now we know the conditions for a rod to be at equilibrium, we want to study what are the
conditions for an equilibrium to be stable, i.e. for the energy of this rod to be minimal.
Theorem. A necessary conditional for the functional J [y] to have a minimum for y =y is that

82J [h] = 0 for y = § and all admissible h.

. | or
Setting h = [5@

] , the second order variation of the energy is
d2
6°FE = @'O‘ZOE [q(s) + adq(s)]

L
_ / [ PH + h”Qh + 20" Ch] ds
0



where

(A G
b= GT K}
[0 0
Q= 0 - Ar”* + I(n*r'” +r’XnX)} (15)
0 A1~ ]
C= .
10 GT — %mx

Using the variable h = R”h in the moving frame, where R = [IO{ ].:0{}’ we obtain a similar

expression for the second variation :

L
52E [h] = / (BB + 7GR + 27 CR ds (16)
0
whith
P=P
Q=Q-u*C+CTa* — a*Pu* (17)
C=Pa*+C
where
- [A G
P=ler K}
~ [0 0
Q— _0 _“",XA{‘,X _'_%(ﬁx\;x _|_\~,><~><):| (18)
= [0 A-—¥x
C= 0 ~T _ 1.~ ><:|
L 2

are the expressions for P, Q and C in the moving frame and a* = [1(; ?J .

6 Jacobi Equation and Conjugate Points

From now on, no different notation for variables expressed in the fixed or moving frame will be
used anymore. Everything in this section is valid for both, but in the following all the variables
will be assumed to be expressed in the moving frame.

The Jacobi equation of the energy is

(Ph' + Ch) — CTh' —Qh =0 (19)
where h, P, Q and C represent either the coefficients of (14) in the fixed or (16) in the moving
frame.

Definition. The point s is said to be conjugate to 0 if the Jacobi equation (19) has a non
identically null solution h(s) vanishing for s =0 ans s = s.

Theorem. If P is positive definite, then 6°E is positive definite Vh such that h(0) = h(L) =0
< there is no conjugate point to 0 in [0, L].

Since we choose P to be symmetric and poisitive definite, we know that a rod at equilibrium is
stable if its length L is smaller than its first conjugate point s.

Setting the momentum p = Ph’ 4+ Ch, we can rewrite (19) in the Hamiltonian form



m N [Q - g;;’qlc CEPl‘l] E:l (20)

=:U =z

The coefficients of U are constant in our case, so every z satisfying the twelve by twelve ordinary
differential linear system z’ = Uz is a linear combination of z1, ..., z12 where z; is the solution
of (20) such that z;(0) =e; Vj =1, ..,12.

Since we are only interested in solutions for which h(0) = 0, we compute h; for j = 1,...,6,

where z; = [23] is the solution of (20) such that h;(0) =0 and p; = e;.
j

Then § is the first conjugate point to 0 if there exist aq, ..., ag # 0 such that h(s) := Z;’:O ajh;(s) #

0V0 < s < sandh(s) =0.

The existence of the o;’s is equivalent to the fact that the determinant of the Jacobi fields

| | | \ | |
H(s) = |hi(s) ha(s) hs(s) ha(s) hs(s) he(s)

is non null V0 < s < 5 and det H(5) = 0. We look therefore for the first § > 0 such that
det H(5) = 0.

7 Circular Rods

The stiffness matrix is of diagonal form, i.e. P = [13 I%} with
A 0 O
A=10 A O
0 0 Az
and
Ki; 0 O
K=|0 Ky 0],
0 0 Ks

if there is no coupling between the deformations.

The intrinsic strains @i and ¥ of an intrinsically straight and untwisted rod are @t = (0,0,0)” and
¥ =(0,0,1)T.

u = (¢,0,0)7 and v = (0,0,1)7, where ¢ = QT”, is an helical equilibrium for such a stiffness
matrix and such intrinsic strains. This corresponds to an untwisted circular rod of length L.

Choosing K < K3 ensures that the circle lies in the plane span{es,es}.

What we are interested in is to know whether the circle is stable until it closes or if there is a
conjugate point 5 < L. The result was already computed analytically and the purpose of the first
program I did was to find the same result numerically. I did two versions : one with decoupling
between out-of-plane! and in-plane? fluctuations as in the analytical computations of Ludovica
Cotta-Ramusino [3] and the other without?.

Both versions take as an input the components K1, Ko, K3, Ay, A, A3 of P and the length L
of the rod. The output is the first conjugate point to 0, i.e. the maximum length the rod can
have, remaining stable.

1Function stabCircle_offplane, Appendix A.1
2Function stabCircle_inplane , Appendix A.2
3Function stabCircle2, Appendix B



7.1 Version with Decoupling

For the decoupled case, we have h, = RT (5r2,5r3,5@1)T for the in-plane fluctuations and
h,, = RT (671,604, 5@3)T for the out-of-plane fluctuations. So we have two six by six systems
to solve : z’ = Upz and z’ = U,,z where :

0 ¢ -1 4 0 0
— 0 0 0 £ 0
1
U, - 00 0 0 0
00 0 0 ¢ O
0 0 0 — 0 0
00 0 1 0 0
and ~ _
0 1 0 + 0 0
c(2K>—K1) 1
! (21? K1) e O K2 (1)
c 3"
U |0 5 0 0 0 =
o= 10 0 0 0 0 0
2
0 Lk o -1 0 b b
0 0 R U

The determinant of the Jacobi fields is det H(s) = det H,(s) det H,,.

7.2 Analytical Results

For K3 < K7 < K, the determinant of the out-of-plane Jacobi fields at s = L is

B
(2m)* K7 (K — K3)

det H,,(L) = 2L(cosh pL — 1)

where )
2 Kg - Kl
B=1 — ] =
* ( L > Ay
and
_(2m (K1 — K3) (K2 — Ky)
P=\1T KoK :
So for

7 K1 — K
L=L=2mn /=123
T e ,

we have B = 0 which implies that the solution

Al Ki — Ks

z(s) := hs(s) — % i

hl(S)

satisfies z(0) = z(L) = 0. So there is a conjugate point.
For K3 > K;, we have

B

det H,, (L) = 2L°(1 — cos AL) O R )
1

where

2r (K3 — Kh) (K2 — Ky)

A =
L KoK




and for K1 = K3,
det H,, (L) = M
(2m)° K} Ko
These expression do not vanish for any L.
The determinant of the implane Jacobi fields is
W2L7
4(2m)t K3

21\ 2 1 1
1+ (=) K[ —+—
v +<L> 1<A2+A3>

det H, =

where

and never vanishes as well.

7.3 Version without Decoupling

The Q and C matrices without decoupling are

0 0 0 0 0 0
0 c*A3 0 0 0 0
o 0 0 C2A2 —CAQ 0 0
Q - 0 0 —CAQ A2 0 0
0 0 0 0 02(K37K1)+A1 0
0 0 0 0 0 A2(Ky — K1)
0 O 0 0 —A 0
0 0 7CA2 A2 0 0
c_ |0 cds 00 0 0
0 0 0 0 0 0
0 0 0 0 0 S(K) —2K,)
0 0 0 0 £(2Ks;—K)) 0

and U is a twelve by twelve matrix computed as in (20).

8 Unshearable and Inextensible Rods

For inextensible and unshearable rods, v = ¥ = (0,0, 1)T and the stiffness matrix P takes the
form

GT/OJ K (21)

2
P = lim [A/“ G/“} .
w—0

We then have

WA 1+ G(K - GTAIG)'GTA™] —wA'G(K-GTA'G)™!

-1 _ 7.
P = lim [ ~w(K — GTA'G)"'GTA™! (K-G"A™'G)™!

w—0
_fo 0 o o
0 (K-GTA'G)™'| |0 K!

where K denotes the Schur complement, i.e. K=K — GTA™1G.

In the following, K, A and G won’t be mentioned anymore and K will denote the Schur com-
plement previously denoted K.

For physical reasons, K will be assumed to be of the form
Kl 0 K13

K= 0 Ky Koz
K3 Ky Kj



with Kl g KQ.

The quadratic strain-energy density is approximated by a function of u only: W (u—1) =

1(u—1)" K (u— ) and we have

m=K(u-1). (22)

For a given constant @ and a given K, it can be shown that every equilibria is an helix described
by its constant Darboux vector u lying on the hyperboloid

(u1 —a — bug) (ug — ¢ — dug) = (a + bug) (c + dus) (23)

where

o K4y + K3t

Ki—-Ky;
- K3
Ky — Ky’
oo Koty + Kastiz
Ky, — Ky
d:&.
K, - K,

Knowing u on the hyperboloid (23), we can compute m and n with the constitutive relation
(22) and the result (9). U can be found using (20) with P, Q and C defined in (17) and the
components of (18) replaced by the components of (21) :

—u* —vX 0 0
1 0 1K 'm*) — u* 0 K!
U= 0 0 —u* 0 (24)
0 %mXK_lmX — %(vxnX +n*v¥) —v* %mXK_1 —uX

So basically, the function computing the first conjugate point of a helix should take as inputs:
K, K5, K3, K13 and K3 such that the matrix K is positive definite, i and u such that the
corresponding helix is an equilibrium, i.e. u on the hyperboloid (23). Assuming we know such
a u, which we will discuss later, we still have an issue: Matlab’s ODE solvers need to know on
which interval they have to integrate the equation.

Therefore, we are presently only able to know if a rod is stable until a chosen length L or until
where it is stable if this is not the case. I used mainly L = 10 for the computations because this
proved to give accurate enough results.

8.1 Finding Equilibria

In a first place, I was not given points on the hyperboloid (23) and had to find such points before
computing the stability of the corresponding helix. Therefore, the radius r and the pitch p of
the helix are given as an input of the function. Every u of the hyperboloid corresponding with a
helix with the given pitch and the given radius (there exist at most four such helices) is computed
in the following way :

(11) gives 7y and
p

T=——.
r2 +p2

Setting now z = a + bug and y = ¢ + dug, we can rewrite (23) : (u; — z) (ugz — y) = xy which

allows us to express us in function of ug :

us =

ry
Uy —

Uy =Y +

And since u - u = u? + u3 + uZ = 1%, we have now an equation in u; to solve:

2
2 2 ry 2

=uj + + + u3.
Ui 1 (Z/ ul—x) 3




This is equivalent to finding the real roots of the fourth degree polynomial in u; :
up = 2zui + (2% + 9% —uf —nf) wf + 22 (297 — 0} —uf) v — 2 (v¥ + i +ui)  (25)

This is done by the Matlab function equ_unsh_inext* and the stability is computed by the
function stab_unsh__inext®

8.2 Stability of Mesh Points of the Hyperboloid

The final part of the work consisted in using together the results Etienne Favre, Giacomo Rosilho
de Souza and I had found. During their work, they computed a mesh of the hyperboloid (23)
in order to visualize it. Provided these points, there is no longer need to compute equilibria for
given pitch and radius and the input of the function® is simply a u of the mesh.

The parameters we used were K1 = 1, Ko = 1.5, K3 = 1.2, K13 = K3 = 0.5, 4 = (1,0,O)T
and L = 10. The first trial was on a 10 x 10 points mesh and took a few second to compute.
A mesh with 100 x 100 points takes about forty-five minutes to compute on my personal laptop
and gives a result fine enough to see what happens. To have a smoother view of the hyperboloid,
we decided to use a mesh of 300 x 300 points.

Figure 1: Stability of the mesh points of the hyperboloid cut lengthwise at two different longitudes
and unwrapped. The top-edge joins the bottom-edge of each picture. The vertical middle
represents the section of the hyperboloid having the smallest diameter.

8.3 Comparison with the Circular Case

To ensure that the results are good, we can compare the unshearable and inextensible case on
circular rods with the circular case. This needs a slight modification of the U matrix : taking
the decoupled case, the % are replaced by 0 in U, and Uy,

J

Then, using the function stab_unsh__inext2 with chosen K7, Ko, K3 and L and K3 = Ko3 = 0,
a= (O,O,O)T and u = (%’T,O,O)T and the function stabCircleUnshInext” with the same K7,
K5, K3 and L should provide the same result. Since this was the case for every set of values 1
tried, we can assume that the functions stab _unsh_inext and stab_unsh__inext2 give the desired
output.

4 Appendix C.1

5 Appendix C.2

SFunction stab_unsh_inext2, Appendix D.1
7Appendix E
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9 Conclusion

Interesting results and questions arose from this project. We still don’t know how to test if a
helix is unconditionally stable though we have some clues. However, we now have a good tool to
test the stability of a helix up to a certain length which is already a great step forward.

A Decoupled Circular Case

A.1 Out of the Plane Fluctuations

function [ CP | = stabCircle_offplane( K1,K2,K3,A1,L )
Y%STABCIRCLE_OFFPLANE computes the first conjugate point of the out—of—plane
%fluctuations of a circular rod of length L with diagonal stiffness matrix
%given by K1,K2 ,K3,A1,A2 A3

% The strains correspond to

% u= [c;0;0] and v =[0;0;1]

% The strains in the reference state correspond to

% u_ref = [0;0;0] and v_ref = [0;0;1]
% The function also plots the determinant of the Jacobi fields of the
%  out—of—plane fluctuations in [0,L]

% If there is no conjugate point in [0,L], the output is L.
% We should have K2>K1 and the matrix K positive definite.

¢ = 2xpi/L;

Y%We declare U as a global variable in order to use it to define the
%function odefun that we need to solve the ode
global U;
U=[0101/A10 0;...
0 0 cx(2«K2-K1)/(2xK2) 0 1/K2 0;...
0 —cx(2+xK3-K1)/(2«K3) 0 0 0 1/K3;...
000O0O0 Oj...
0 —cxcxK1xK1/(4%K3) 0 —1 0 c*(2xK3-K1)/(2xK3);
0 0 —c*xcxK1xK1/(4*xK2) 0 —cx(2xK2-K1)/(2xK2) 0];

N = 1000;%numbers of points —1 at which the determinant will be computed
tspan = 0:L/N:L;

%@odefun calls the function built with the global variable U that
%corresponds to the ode z’=Uz

[t,hlop] = oded5(@odefun,tspan,[0;0;0;1;0;0]);
[~,h20p] = oded5(@odefun,tspan ,[0;0;0;0;1;0]);
[~,h30p] = oded45(Q@odefun,tspan,[0;0;0;0;0;1]);

clear U;

hlop = hlop(:,1:3);
h2op = h2op(:,1:3);
h3op = h3op (:,1:3);

D = zeros (1,N+1);
for i = 1:N+1
D(i) = det ([hlop(i,:); h20p(i,:); h3op(i,:)]);
end
figure;
plot (t,D);

%choice for the tolerance
zero = 10e—3;

%if D is null only in some points, there is a conjugate point
if ~all(abs(D(2:N+1)) >= zero) && ~all (abs(D(2:N+1)) < zero)
%disp (717);
CPtmp = find (abs(D(2:N+1)) < zero, 1, ’first’);
%if the previous point is also zero, this is not a conjugate point
if abs(D(CPtmp)) >= zero

10



57 CP = length /NxCPtmp;
58 end

59 clear CPtmp;

60 end

62 %if D crosses the horizontal ax, there is a conjugate point
63 if ~all (D>=0) && ~all (D<=0)

64 %disp (727);

65 if D(2)>0

66 CPtmp = find (D<0,1,’ first ’);

67 else

68 CPtmp = find (D>0,1, first ');

69 end

70 CPtmp = —D(CPtmp—1)/(D(CPtmp)—D(CPtmp—1)) + CPtmp—1;
71 CPtmp = (CPtmp—1)*length /N;

if exist(’CP’, var’)

w N

7 CP = min(CP,CPtmp);

74 else

75 CP = CPtmp;

76 end

7s %if D is nonzero (but in 0) we don’t have any conjugate point
70 elseif (all(D>=0) || all(D<=0)) && ~all(abs(D(2:N+1)) < zero)
80 %disp (737);

81 CP = length;

82

s3 %if D is identically null, we can’t say anything about the existence of
s4 %conjugate points

s5 elseif all(abs(D) < zero)

86 %disp (74 7);

87 CP = 0;

ss end

89

o0 end

A.2 In Plane Fluctuations

1 function [ CP | = stabCircle inplane( K1,A2,A3,L )

2 %STABCIRCLE INPLANE computes the first conjugate point of the inplane

3 %fluctuations of a circular rod of length L with diagonal stiffness matrix
1 %given by K1,K2,K3,A1,A2 A3

5 % The stralns correspond to

6 % = [c;0;0] and v =[0;0;1]

7 % The strains in the reference state correspond to

s % u_ref = [0;0;0] and v_ref = [0;0;1]

9 % The function also plots the determinant of the Jacobi fields of the
1w % inplane fluctuations in [0,L]

11 % If there is no conjugate point in [0,L], the output is L.

12 % We should have K2>K1 and the matrix K positive definite.

14 ¢ = 2xpi/L;

15

16 %We declare U as a global variable in order to use it to define the
17 %function odefun that we need to solve the ode

15 global U;

19 U =[0 ¢ =1 1/A2 0 O0;

20 —c 000 1/A3 0;

21 0000O0O0 1/K1;

22 000O0¢c 0;5...

23 000—-cO0 O03...

24 0001 0 0];

26 N = 1000;%numbers of points —1 at which the determinant will be computed
27 tspan = 0:L/N:L;

28

20 %@odefun calls the function built with the global variable U that
30 %corresponds to the ode z’=Uz

31 [t,hlp] = ode45(@odefun,tspan ,[0;0;0;1;0;0]);
32 [~,h2p] = ode45(@Q@odefun,tspan ,[0;0;0;0;1;0]);
33 [~,h3p] = oded45(@odefun,tspan ,[0;0;0;0;0;1]);
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clear U;

hlp = hlp(:,1:3)
h2p = h2p(:,1:3)
h3p = h3p(:,1:3);

D = zeros (1,N+1);
for i = 1:N+1
D(i) = det ([hip(i,:); h2p(i,:); h3p(i,)]);
end
figure;
plot (t,D);

%choice for the tolerance
zero = 10e—3;

%if D is null only in some points, there is a conjugate point
if ~all(abs(D(2:N+1)) >= zero) && ~all (abs(D(2:N+1)) < zero)
%disp (’17);
CPtmp = find (abs(D(2:N+1)) < zero, 1, ’first’);
%if the previous point is also zero, this is not a conjugate point
if abs(D(CPtmp)) >= zero
CP = L/NxCPtmp;
end
clear CPtmp;
end

%if D crosses the horizontal ax, there is a conjugate point
if ~all (D>=0) && ~all (D<=0)
%disp (727);
if D(2)>0
CPtmp = find (D<0,1, first ’);
else
CPtmp = find (D>0,1,’ first ');
end
CPtmp = —D(CPtmp—1)/(D(CPtmp)—D(CPtmp—1)) + CPtmp—1;
CPtmp = (CPtmp—1)*L/N;
if exist(’CP’, var’)
CP = min(CP,CPtmp);
else
CP = CPtmp;
end

%if D is nonzero (but in 0) we don’t have any conjugate point
elseif (all(D>=0) || all(D<=0)) && ~all (abs(D(2:N+1)) < zero)
%disp (73 7);
CP = L;

%if D is identically null, we can’t say anything about the existence of
%conjugate points
elseif all(abs(D) < zero)
%disp (747);
CP = 0;
end

end

B Circular Case without Decoupling

function [ CP | = stabCircle2( K1,K2,K3,A1,A2,A3,L )

%STABCIRCLE2 computes the first conjugate point in [0,L] of a circular
%of length L with diagonal stiffness matrix given by KI1,K2,K3,A1,A2 A3.
Y%returns L if there is no conjugate point

%  The rod is given by the strains

% u= [c;0;0] and v = [0;0;1]

% its reference state is given by

% u_ref = [0;0;0] and v_ref = [0;0;1]
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9 % the determinant of the Jacobi fields is plotted.
10 %  We should have K2>K1 and the matrix K positive definite.

12 ¢ = 2xpi/L;

I
o &

iag ([Al, A2, A3, K1, K2, K3]);
00O0O0 O0;...

cxcxA3 0 0 0 0;...

0 cxcxA2 —cxA2 0 0;...

Iolye
|

[
0
0
18 0 0 —cxA2 A2 0 0;...
19 0 00 0 cxcx(K3-K1)+Al 0;...
20 00000 cxcx(K2-K1)];
21 C=10 00 0 —A1 0;...
22 0 0 —c*xA2 A2 0 O;...
23 0 cxA3 0 0 0 O;...
24 000O0O0 0
25 00000 c/2%(Kl—-2«K2);...
26 0000 c/2%(2«K3-K1) 0];
27
25 invP = inv (P);
29

30 %We declare U as a global variable in order to use it to define the
31 %function odefun that we need to solve the ode

32 global Uj;

33 U =[—invP*C invP; Q—(C’*invPC) C’%invP |;

35 N = 100;%numbers of points —1 at which the determinant will be computed
36 tspan = 0:L/N:L;

38 %Qodefun calls the function built with the global variable U that
30 %corresponds to the ode z’=Uz

10 [t,hl] = ode45(@odefun,tspan,[0;0;0;0;0;0;1;0;0;0;0;0]);
11 [~,h2] = ode45(Qodefun,tspan,[0;0;0;0;0;0;0;1;0;0;0;0]);
12 [~,h3] = ode45(@odefun,tspan,[0;0;0;0;0;0;0;0;1;0;0;0]);
13 [~,h4] = oded5(Q@odefun,tspan ,[0;0;0;0;0;0;0;0;0;1;0;0]);
114 [~,h5] = ode45(@odefun,tspan ,[0;0;0;0;0;0;0;0;0;0;1;0]);
15 [~,h6] = ode45(@odefun,tspan,[0;0;0;0;0;0;0;0;0;0;0;1]);
46

17 clear U;

48

29 hl = hl1(:,1:6);

50 h2 = h2(:,1:6);

51 h3 = h3(:,1:6);

52 h4 = h4(:,1:6);

55 h5 = h5(:,1:6);

54 h6 = h6(:,1:6);

56 D = zeros (1,N+1);

57 for i = 1:N+41

58 D(i) = det ([h1(i,:); h2(i,:); h3(i,:); h4(i,:); h5(i,:); h6(i,:)]);
50 end

60 figure;
61 plot (t,D,t,0%t);

63 %choice for the tolerance
61 zero = 10e—3;

66 %if D is null only in some points, there is a conjugate point
67 if ~all(abs(D(2:N+1)) >= zero) && ~all (abs(D(2:N+1)) < zero)

68 %disp (’17);

69 CPtmp = find (abs(D(2:N+1)) < zero, 1, ’first’);

70 %if the previous point is also zero, this is not a conjugate point
71 if abs(D(CPtmp)) >= zero

72 CP = length /NxCPtmp;

73 end

74 clear CPtmp;

75 end

~

%if D crosses the horizontal ax, there is a conjugate point
s if ~all(D>=0) && ~all (D<=0)

9
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79 %odisp (727);

80 if D(2)>0

81 CPtmp = find (D<0,1,’ first ’);
82 else

83 CPtmp = find (D>0,1, first ');
84 end

85 CPtmp = —D(CPtmp—1)/(D(CPtmp)—D(CPtmp—1)) + CPtmp—1;
86 CPtmp = (CPtmp—1)xlength /N;

87 if exist(’CP’, var’)

88 CP = min(CP,CPtmp);

89 else

90 CP = CPtmp;

91 end

92

93 %if D is nonzero (but in 0) we don’t have any conjugate point
o1 elseif (all(D>=0) || all(D<=0)) && ~all(abs(D(2:N+1)) < zero)
95 %disp (737);

96 CP = length;

07

98 %if D is identically null, we can’t say anything about the existence of
99 %conjugate points

1o elseif all(abs(D) < zero)

101 %disp (747);

102 CP = 0;

103 end

104

105 end

C Unshearable Inextensible Case without Mesh

C.1 Equilibria

1 function [ u ] = equ_unsh_inext( K1,K2,K13,K23,u_ref, pitch ,rad )

2 YFEQU_UNSH_INEXT computes every unshearable inextensible helical rod at

3 %equilibrium with given pitch and radius, reference state given by the

1 %strain u_ref and symmetric stiffness matrix given by KI1,K2,K3,K13,K23.

5 %The output is a matrix whose columns are the u—points i.e. each column is
6 %ul,u2,u3 for one equilibrium.

7 % v_ref = [0;0;1]

s % Equilibrium conditions don’t depend on K3.

9 %  We should have K2>K1 and K positive definite for some K3.

11 if Kl >= K2
12 error (K1 must be smaller than K2');
13 end

15 tau = pitch/(rad+*rad + pitch*pitch);
16 etal = 1/sqrt(rad*rad 4+ pitchxpitch);

17
15 %constraints on u : <u,u> = etal”2 and

19 u3 = tau;

20

21 a = (Klxu_ref(1) + Kl13xu_ref(3))/(KI1-K2);
22 b = K13/(K2-K1);

23 ¢ = (K2+u_ref(2) + K23xu_ref(3))/(K2-Kl1);
20 d = K23/(K1-K2);

25 X = a + bxu3;

26y = ¢ + dxu3;

25 %ul is equal to the roots of the polynomial with the following coefficients
20 ulecpx = roots ([1,...

30 —2xx, x*x+yxy—u3d*ud—etalx*etal ,...
31 2xx*(2*xy*ky—etalxetal—u3*u3) ,...
32 —x*x*(y*yt+etalxetal+u3*u3)]);

33 j = 05

s34 for i = l:length(ulcpx)

35 if isreal (ulcpx(i))

36 tmp = y + xxy/(ulcpx(i)—x);
37 if isreal (tmp)

14



15
16
17
18
19
20
21
22
23
24

25

I =j+L
u2(j) = tmp;
ul(j) = ulepx(i);

end

end
end
u = zeros(3,j);
for i = 1:j

u(:,1) = [ul(i);u2(i);ud];
end
end

C.2 Stability

function [ cp | = stab_unsh_inext( K1,K2,K3,K13,K23,u_ref, pitch ,rad ,L )
7%STAB UNSH INEXT computes the first conjugate point in [0,L] of every
%helical rod at equilibrium with given pitch and radius and with reference
Y%state given by u_ref and symmetric positive definite stiffness matrix
%given by K1,K2,K3,K13,K23

%The output is a vector of the length equals to the number of equilibria
% v_ref = [0;0;1];

% u_ref is constant => the center line of the ref state is helical

% The function also plots the determinant of the Jacobi fields in [0,L].
% If there is no conjugate point in [0,L], the output is L

%  We should have K2>K1 and the matrix K positive definite.

K= [Kl 0 K13;0 K2 K23;K13 K23 K3];

%computation of equilibria for the given parameters
us = equ_unsh_inext(K1,K2,K3,K13,K23,u_ref,pitch ,rad);

N = 100;%numbers of points —1 at which the determinant will be computed
tspan = 0:L/N:L;

cp = zeros(1,size(us,2));

for i = 1:size(us,2)
u=us(:,i);
if u(l) 0 && u(2) =0

break;
end
%m and n are constant and n parallel to u
m = Kx(u—u_ref);

if u(l) =0

mul = m(2)/u(2);
else

mul = m(1)/u(1);
end
n = (m(3) — mulsu(3))x*u;
v = [0;0;1];
ux = vectCross(u);
vx = vectCross(v);
mx = vectCross (m);
nx = vectCross(n);
global U;

U= [-ux, —vx, zeros (3,6);...
zeros (3,3), 1/2%(K\mx)—ux, zeros(3,3), inv(K);...
zeros (3,6), —ux, zeros(3,3);...
zeros (3,3), 1/4xmx/Ksmx—1/2%(vx*nx+nx*vx), —vx, 1/2xmx/K—ux];

%@odefun calls the function built with the global variable U that
%corresponds to the ode z’=Uz
[t,z1] = oded5(@odefun,tspan,[0;0;0;0;0;0;1;0;0;0;0;0])
[~,22] = ode45(@odefun,tspan,[0;0;0;0;0;0;0;1;0;0;0;0])
[~,23] = oded5(@odefun,tspan,[0;0;0;0;0;0;0;0;1;0;0;0]);
[~,z4] = oded5 (@odefun,tspan,[0;0;0;0;0;0;0;0;0;1;0;0])
[~,2z5] = oded5(@odefun,tspan,[0;0;0;0;0;0;0;0;0;0;1;0])



55 [~,26] = ode45(@odefun,tspan ,[0;0;0;0;0;0;0;0;0;0;0;1]);

56

57 hl = z1(:,1:6);

58 h2 = 22 (:,1:6);

59 h3 = z3(:,1:6);

60 hd = z4 (:,1:6);

61 h5 = z5(:,1:6);

62 h6 = z6(:,1:6);

63

64 clear U;

65

66 D = zeros(1,N+1);

67 for j = 1:N+1

68 D(j) = det ([h1(j,:); h2(j,:); h3(j,:); h4(j,:); h5(j,:); h6(j,:)]);
69 end

70 figure;

71 plot (t,D,t,0xt);

73 %choice for the tolerance

74 zero = 10e—3;

76 %if D is null only in some points, there is a conjugate point

if ~all(abs(D(2:N+1)) >= zero) && ~all(abs(D(2:N+1)) < zero)

)

78 Podisp (717);

79 CPtmp = find (abs(D(2:N+1)) < zero, 1, ’first’);

80 %if the previous point is also zero, this is not a conjugate point
81 if abs(D(CPtmp)) >= zero

82 CP = L/NxCPtmp;

83 end

84 clear CPtmp;

85 end

86

87 %if D crosses the horizontal ax, there is a conjugate point
88 if ~all(D>=0) && ~all (D<=0)

89 Podisp (727);

90 if D(2)>0

91 CPtmp = find (D<0,1,’ first ');

92 else

93 CPtmp = find (D>0,1, first ’);

94 end

95 CPtmp = —D(CPtmp—1)/(D(CPtmp)—D(CPtmp—1)) + CPtmp—1;

96 CPtmp = (CPtmp—1)*L/N;

97 if exist(’CP’, var’)

98 CP = min(CP,CPtmp);

99 else

100 CP = CPtmp;

101 end

102

103 %if D is nonzero (but in 0) we don’t have any conjugate point
104 elseif (all(D>=0) || all(D<=0)) && ~all(abs(D(2:N+1)) < zero)
105 Podisp (737);

106 CP = L;

107

108 %if D is identically null, we can’t say anything about the existence of
109 %conjugate points

110 elseif all(abs(D) < zero)

111 %disp (’47);

112 CP = 0;

113 end

114 end

115

116 end

D Unshearable Inextensible Case with Mesh

D.1 Stability

1 function [ CP | = stab_unsh inext2( K1,K2,K3,K13,K23,u ref,u,L )
2 %STAB_UNSH_INEXT2 computes the first conjugate point in [0,L] of the
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29

%unshearable inextensible rod at equilibrium given by the strain u, having
%a reference state given by u_ref and a symmetric positive definite
Y%stiffness matrix given by Kl1,K2,K3,K13,K23.

% v_ref = [0;0;1];

% u_ref is constant => the center line of the ref state is helical

% If there is no conjugate point in [0,L], the output is L.

%  We should have K2>K1 and the matrix K positive definite.

K= [Kl 0 K13;0 K2 K23;K13 K23 K3];
N = 1000;%numbers of points —1 at which the determinant will be computed
tspan = 0:L/N:L;

%m and n are constant and n parallel to u
m = Kx(u—u_ref);

if u(l) =20

mul = m(2)/u(2);
else

mul = m(1l)/u(1);
end
mu2 = (m(3) — mulxu(3));
n = mu2xu;
v = [0;0;1];
ux = vectCross(u);
vx = vectCross(v);
mx = vectCross (m);
nx = vectCross(n);

invK = inv (K);

global U;
U= [-ux, —vx, zeros (3,6);...
zeros (3,3), 1/2x(invK#mx)—ux, zeros(3,3), invK;...
zeros (3,6), —ux, zeros(3,3);...
zeros (3,3), 1/4smxxinvKsmx—1/2*(vx*nxtnx*vx), —vx, 1/2xmxxinvK—ux];

%@odefun calls the function built with the global variable U that
%corresponds to the ode z’=Uz
[t,zl] = ode45(@odefun,tspan,
] = ode45(@odefun, tspan ,
] = ode45(@odefun, tspan ,
[~,z4] = oded5(@odefun, tspan ,
] ode45 (@Qodefun , tspan ,
] = ode45(@odefun, tspan ,

)

)
)

(ool

)
)
)
);
)
)

h6 = z6 (:

D = zeros (1,N+1);
for j = 1:N+1
D(j) = det ([h1(j,:); h2(j,:); h3(j,:); h4(j,:); h5(j,:); h6(j,:)]);
end
clear U;
% figure;
% plot (t,D);

%choice for the tolerance
zero = 10e—3;

%if D is null only in some points, there is a conjugate point
if ~all(abs(D(2:N+1)) >= zero) && ~all (abs(D(2:N+1)) < zero)
%odisp (717);
CPtmp = find (abs(D(2:N+1)) < zero, 1, ’first’);
%if the previous point is also zero, this is not a conjugate point
if abs(D(CPtmp)) >= zero
CP = L/NxCPtmp;
end
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clear CPtmp;
end

%if D crosses the horizontal ax

if ~all (D>=0) && ~all (D<=0)

there is a conjugate point

)

%disp (727);
if D(2)>0
CPtmp = find (D<0,1,’ first ’);
else
CPtmp = find (D>0,1, first ' );
end
CPtmp = —D(CPtmp—1)/(D(CPtmp)—D(CPtmp—1)) + CPtmp—1;

CPtmp = (CPtmp—1)*L/N;
if exist(’CP’,’var’)

CP = min(CP,CPtmp);
else

CP = CPtmp;
end

%if D is nonzero (but in 0) we don’t have any conjugate point
elseif (all(D>=0) || all(D<=0)) && ~all(abs(D(2:N+1)) < zero)
%disp (’37);
CP = L;

%if D is identically null, we can’t say anything about the existence of
%conjugate points
elseif all(abs(D) < zero)
%disp (74 7);
CP = 0;
end

end

E Circular Inextensible Unshearable Case

function [ CP | = stabCircleUnshInext( K1,K2,K3,L )
7%STABCIRCLEUNSHINEXT computes the first conjugate point in [0,L] of a
%cirular unshearable inextensible rod of length L at equilibrium with a
%diagonal stiffness matrix given by KI1,K2,K3.

% The rod is given by the strains:

% u= [c;0;0] and v = [0;0;1]

% Its reference state is given by

% u_ref = [0;0;0] and v_ref = [0;0;1]

% The function also plots the determinant of the Jacobi fields in [0,L]
% If there is no conjugate point in [0,L], the output is L.

%  We should have K2>K1 and the matrix K positive definite.

¢ = 2xpi/L;

N = 100;%numbers of points —1 at which the determinant will be computed
tspan = 0:L/N:L;

global U;
U=[010000;...
0 0 cx(2xK2-K1)/(2«K2) 0 1/K2 0;...
0 —c#(2%K3-K1)/(2+K3) 0 0 0 1/K3;...
00000 0;...
0 —ckcxKIxK1/(4%xK3) 0 —1 0 c#(2%K3-K1)/(2+K3);
0 0 —cxexK1xK1/(4*xK2) 0 —cx(2xK2-K1)/(2xK2) 0];

%@odefun calls the function built with the global variable U that
%corresponds to the ode z’=Uz

[~,hlop] = ode45(@odefun,tspan,[0;0;0;1;0;0]);
[~,h20p] = oded5(@odefun,tspan ,[0;0;0;0;1;0]);
[~,h30p] = oded45(Q@odefun,tspan,[0;0;0;0;0;1]);
clear U;
global U;
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35 U=[0c—-100 0;...

36 —c 0000 0
37 0000O0O0 1/K1;
38 000O0TCc 0j.

39 000—-c 0 Oy
40 00010 0];

41

12 %@odefun calls the function built with the global variable U that
13 Y%corresponds to the ode z’=Uz

414 [t,hlp] = oded5(@odefun,tspan,[0;0;0;1;0;0]);

15 [~,h2p] = ode45(@odefun,tspan,[0;0;0;0;1;0]);

16 [~,h3p] = oded45(Q@odefun,tspan ,[0;0;0;0;0;1]);

47

15 clear U;

49

50 hlp = hlp(:,1:3);

51 h2p = h2p(:,1:3);

52 h3p = h3p (:,1:3);

53 hlop = hlop(:,1:3);

54 h2op = h2op (:,1:3);

55 h3op = h3op (:,1:3);

56

57 D = zeros (1,N+1);

55 for i = 1:N+41

59 %D(i) = det ([h1(i,:); h2(i,:); h3(i,:); h4(i,:); h5(i,:); h6(i,:)]);
60 D(i) = det ([hlp(i,:);h2p(i,:);h3p(i,:)])*xdet ([hlop(i,:);h20p(i,:);h30p(i,:)]);

61 end
62 figure;
63 plot (t,D,t,0%xt);

64

65 %choice for the tolerance
66 zero = 10e—3;

67

s %if D is null only in some points, there is a conjugate point

o if ~all(abs(D(2:N+1)) >= zero) && ~all(abs(D(2:N+1)) < zero)

o o

70 %disp (717);

71 CPtmp = find (abs(D(2:N+1)) < zero, 1, ’first’);

72 %if the previous point is also zero, this is not a conjugate point
73 if abs(D(CPtmp)) >= zero

74 CP = L/NxCPtmp;

75 end

76 clear CPtmp;

77 end

79 %if D crosses the horizontal ax, there is a conjugate point

so if ~all(D>=0) && ~all (D<=0)

81 %odisp (727);

82 if D(2)>0

83 CPtmp = find (D<0,1,’ first ’);
84 else

85 CPtmp = find (D>0,1, first ');
86 end

87 CPtmp = —D(CPtmp—1)/(D(CPtmp)—D(CPtmp—1)) 4+ CPtmp—1;
88 CPtmp = (CPtmp—1)*L/N;

89 if exist (’CP’,’var’)

90 CP = min(CP,CPtmp);

91 else

92 CP = CPtmp;

93 end

95 %if D is mnonzero (but in 0) we don’t have any conjugate point
o6 elseif (all(D>=0) || all(D<=0)) && ~all(abs(D(2:N+1)) < zero)

97 %disp (737);
98 CP = L;
99

10 %if D is identically null, we can’t say anything about the existence of
101 %conjugate points

102 elseif all(abs(D) < zero)

103 %disp (747);

104 CP = 0;
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105 end
106

107 end
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