DNA Modelling Course Exercise Session 2 Summer 2006 Part I

1 Kinematics of orthonormal frames and components of vectors I

Throughout the course we will make use of components of vectors in a nonfixed reference frame. These exercises introduce the necessary kinematics (i.e. geometry).

It is a general result that the columns $\{d_i\}$ of a rotation matrix Q define an oriented, orthonormal basis for \mathbb{R}^3 and vice-versa.

Furthermore if $\{d_1, d_2, d_3\}$ is right handed, i.e. $d_3 = d_1 \times d_2$ then Q is a proper rotation matrix, i.e. det Q = |Q| = 1. In Session 1 we have directly seen this in the quaternion parametrization. We now consider families of proper rotation matrices parametrized by $s \in [a, b]$ and $t \ge 0$, and define $\{d_1(s,t), d_2(s,t), d_3(s,t)\}$ to be an orthonormal frame so that the matrix Q(s,t) which has $\{d_i(s,t)\}$ as its columns is our rotation matrix, i.e., $QQ^T =$ Id $\forall s, t$. We recall here that by orthonormal we mean $d_i \cdot d_j = \delta_{ij} \quad \forall s, t$ and that the following notations hold

• Kronecker delta

$$\delta_{ij} = \begin{cases} 1 & i = j, \\ 0 & else. \end{cases}$$

• Total antisymmetric tensor

$$\epsilon_{ijk} = \begin{cases} 1 & ijk = \text{cyclic permutation of 123,} \\ -1 & ijk = \text{cyclic permutation of 132,} \\ 0 & else. \end{cases}$$

• Vector product

$$(\boldsymbol{a} \times \boldsymbol{b})_i = \epsilon_{ijk} a_j b_k$$

The summation convention means to sum over repeated indices. Here are some examples :

$$u_{i}d_{i} \text{ means } \sum_{i=1}^{3} u_{i}d_{i}$$

$$\varepsilon_{ijk}a_{im} \text{ means } \sum_{i=1}^{3} \varepsilon_{ijk}a_{im}$$

$$\varepsilon_{ijk}a_{ij} \text{ means } \sum_{i=1}^{3} \sum_{j=1}^{3} \varepsilon_{ijk}a_{ij}$$

$$\varepsilon_{ijk}a_{mn} \text{ means } \varepsilon_{ijk}a_{mn}$$

Important note: we will use the summation convention on repeated indices unless otherwise is stated.

Finally, whenever we use Roman font indices, e.g., i or j, we mean that they run through the values 1,2 and 3, that is, i = 1, 2, 3 for example.

(a) Assuming differentiability, show that there exists a single vector function $\boldsymbol{u} : [a,b] \times [0,\infty) \to \mathbb{R}^3$ and a single vector function $\boldsymbol{\omega} : [a,b] \times [0,\infty) \to \mathbb{R}^3$ such that

$$\frac{\partial d_i}{\partial s} = \boldsymbol{u} \times \boldsymbol{d}_i \qquad (i = 1, 2, 3), \tag{1.1}$$

$$\frac{\partial d_i}{\partial t} = \omega \times d_i \qquad (i = 1, 2, 3), \tag{1.2}$$

for all $s \in [a, b], \forall t \geq 0$. As has been discussed in class, the vector ω is the angular velocity (in time) whereas u is called the Darboux vector (and can be considered as the 'angular velocity' in arc length).

(b) With the notation

$$u_i = \boldsymbol{u} \cdot \boldsymbol{d}_i \tag{1.3}$$

$$\omega_i = \omega \cdot d_i \tag{1.4}$$

so that

show that the components u_i and ω_i in the director frame $\{d_i\}$ are:

$$u_{i} = \epsilon_{ijk} \frac{\partial d_{j}}{\partial s} \cdot d_{k}$$

$$\omega_{i} = \epsilon_{ijk} \frac{\partial d_{j}}{\partial t} \cdot d_{k}$$
(1.6)

with no summation over indices (that is for all $i\neq j\neq k$), or

$$u_{i} = \frac{1}{2} \epsilon_{ijk} \frac{\partial d_{j}}{\partial s} \cdot d_{k}$$

$$\omega_{i} = \frac{1}{2} \epsilon_{ijk} \frac{\partial d_{j}}{\partial t} \cdot d_{k}$$
(1.7)

with summation over indices.

(c) In the quaternion parametrization, $\{d_i(q)\}$ described in Session 1, show that

$$u_{i}(s) = 2\frac{\partial q}{\partial s} \cdot B_{i}q$$

$$\omega_{i}(s) = 2\frac{\partial q}{\partial t} \cdot B_{i}q \qquad (1.8)$$

Hint: Use the chain rule to compute the derivatives

$$\frac{\partial d_j}{\partial s} = \frac{\partial d_j}{\partial q} \frac{\partial q}{\partial s}$$

and note the following algebra

$$egin{aligned} B_1 q &= rac{1}{2} D_2(q) d_3(q) \ B_2 q &= rac{1}{2} D_3(q) d_1(q) \ B_3 q &= rac{1}{2} D_1(q) d_2(q) \end{aligned}$$

where the B_i matrices were defined in session 1, and the three 4×3 matrices $D_i(q)$ are defined by $D_i(q) = \left(\frac{\partial d_i}{\partial q}(q)\right)^T$.

2 Kinematics of orthonormal frames and components of vectors II

(a) Let $\{e_1, e_2, e_3\}$ be a fixed basis for \mathbb{R}^3 and y(s, t) be an arbitrary vector field with components $Y_i(s, t)$ with respect to $\{e_1, e_2, e_3\}$ and $y_i(s, t)$ with respect to the orthonormal frame $\{d_1(s, t)d_2(s, t), d_3(s, t)\}, s \in [a, b], t \ge 0.$

Show that

$$\frac{\partial \boldsymbol{y}}{\partial s} \cdot \boldsymbol{e}_i = \frac{\partial Y_i}{\partial s} \qquad (i = 1, 2, 3), \tag{2.1}$$

$$\frac{\partial \boldsymbol{y}}{\partial t} \cdot \boldsymbol{e}_i = \frac{\partial Y_i}{\partial t} \qquad (i = 1, 2, 3). \tag{2.2}$$

for all $s \in [a, b]$, $\forall t \geq 0$. That is the e_i component of the derivative is just the derivative of the e_i component.

For the variable basis $\{d_i(s,t)\}$ this result is not true for a general vector. Consider the relation between components of the derivative $\frac{\partial y}{\partial s}$ w.r.t. $\{d_i(s,t)\}$ and the derivative of the components $y_i(s,t)$.

Show that

$$\frac{\partial \boldsymbol{y}}{\partial s} \cdot \boldsymbol{d}_i = \frac{\partial y_i}{\partial s} + (\boldsymbol{u} \times \boldsymbol{y}) \cdot \boldsymbol{d}_i \qquad (i = 1, 2, 3), \tag{2.3}$$

$$\frac{\partial \boldsymbol{y}}{\partial t} \cdot \boldsymbol{d}_i = \frac{\partial y_i}{\partial t} + (\boldsymbol{\omega} \times \boldsymbol{y}) \cdot \boldsymbol{d}_i \qquad (i = 1, 2, 3).$$
(2.4)

for all $s \in [a, b], \forall t \ge 0$.

(b) In contrast show that the Darboux vector \boldsymbol{u} and the angular velocity $\boldsymbol{\omega}$ have the special properties

$$\frac{\partial \boldsymbol{u}}{\partial s} \cdot \boldsymbol{d}_i = \frac{\partial u_i}{\partial s} \qquad (i = 1, 2, 3), \tag{2.5}$$

$$\frac{\partial \omega}{\partial t} \cdot d_i = \frac{\partial \omega_i}{\partial t} \qquad (i = 1, 2, 3).$$
 (2.6)

for all $s \in [a, b], \forall t \ge 0$.

That is, the space derivative of the component of the Darboux vector \boldsymbol{u} is just the component of the space derivative of \boldsymbol{u} . Analogously, the time derivative of the component of the angular velocity $\boldsymbol{\omega}$ is just the component of the time derivative of $\boldsymbol{\omega}$.

(c) Assuming smoothness, show further that the space derivative of the angular velocity is related to the time derivative of the Darboux vector through the relation

$$\frac{\partial \omega}{\partial s} - \frac{\partial u}{\partial t} = u \times \omega \tag{2.7}$$

 $s\in [a,b],\,\forall t\geq 0.$

(Hint: Compute $\frac{\partial^2 d_i}{\partial t \partial s}$ and $\frac{\partial^2 d_i}{\partial s \partial t}$.)