
DNA Modelling Course
Exercise Session 2
Winter 2003/04

SOLUTIONS

1 Kinematics of orthonormal frames and compo-

nents of vectors I

(a) It is sufficient to prove (1.1) since (1.2) is shown in an analogous way.
We consider the matrix Q(s, t) = [d1(s, t), d2(s, t), d3(s, t)], di ∈ R

3

and define Q′ to be the derivative wrt. s, that is1,

Q
′ =

[

∂d1

∂s
,
∂d2

∂s
,
∂d3

∂s

]

.

First, we derive an expression for Q′ which allows us to conlcude Q′ =
SQ with S being skew-symmetric: As Q is a proper rotation matrix,
we have Q′ = Q′(QT Q) = (Q′QT )Q. Thus, we only have to show that
S := Q′QT is skew symmetric. But this follows from (Q′)T = (QT )′

and
QQT = Id =⇒ Q′QT + Q(QT )′ = 0.

Conclusively, we obtain

Q
′ = SQ = [Sd1, Sd2, Sd3] (1.1)

with S = Q′QT being a skew symmetric matrix.
Therefore, it exists a unique axial vector2 u such that Sz = u × z for
all z, that is, using the notation from Session 1 (solution!) S = u×.
Hence, equation (1.1) is expressed

Q
′ = u

×
Q,

which is, by definition,

∂di

∂s
= u × di, i = 1, 2, 3.

1The derivative of a matrix is the matrix of the derivatives of its components.
2Compare Exercise 2 of Session 1!!
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Note, that the existence of a second vector v with Q′ = v×Q would
immediately imply S = v× resulting in v = u!

(b) It is sufficient to prove (1.6) and (1.7). The results for t can then be
derived analogously! In the following we make use of

di = εijkdj × dk, for fixed i, j, k with i 6= j 6= k (1.2)

di =
∑

k,j

1

2
εijkdj × dk. (1.3)

Note that both representations of di are valid, where (1.3) obviously
follows from (1.2) (but not vice versa). In the same way we could
immediately infer from (1.6) to (1.7). (1.2) is used to show (1.6),
whereas we prefer equality (1.3) in order to show (1.7). We moreover
need the following rule for the vector product:

(v × w) · z = (w × z) · v = (z × v) · w.

Now, we obtain from (1.2) for fixed i, j, k and i 6= j 6= k

ui = u · di = εijku · (dj × dk) = εijk(dj × dk) · u

= εijk(u × dj) · dk = εijk

∂dj

∂s
· dk.

Note that we deal with real vectors here, such that v · z = z · v. In
order to verify (1.7) we use (1.3) instead of (1.2) and exploit bilinearity
of the scalar product for real vectors:

ui = u · di =
1

2

∑

j,k

εijku · (dj × dk) =
1

2

∑

j,k

εijk(dj × dk) · u

=
1

2

∑

j,k

εijk(u × dj) · dk =
1

2

∑

j,k

εijk

∂dj

∂s
· dk.

(c) Note that we now have

∂

∂s
(di(q(s))) = u(s) × di(q(s)), i = 1, 2, 3.

Using the hints, we obtain for fixed i, j, k such that ijk is a cyclic
permutation of 123:

ui = u · di(q) = u · (dj × dk) = (u × dj) · dk =
∂

∂s
(dj(q(s))) · dk

=

(

∂dj

∂q
(q(s))

)

∂q

∂s
· dk =

∂q

∂s
· (Dj(q(s)))dk = 2

∂q

∂s
· Biq.

The result for t is derived analogously.
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2 Kinematics II

(a) We remark that for any two vectors a(s), b(s) ∈ C| 3 we have

∂

∂s
(a · b) =

∂a

∂s
· b + a ·

∂b

∂s
,

∂

∂s
(a × b) =

∂a

∂s
× b + a ×

∂b

∂s
,

which follows easily from the product rule, the fact that the derivative
of the vectors is defined componentwise and the definition of inner
product and vector product, respectively.
Taking the derivative we have

∂

∂s
(y · ei) =

∂y

∂s
· ei + y ·

∂ei

∂s
=

∂y

∂s
· ei.

The last equation holds since {e1, e2, e3} is a fixed basis.
Using the variable frame di we get

∂y

∂s
=

∂

∂s
(yidi) =

∂yi

∂s
di + yi

∂di

∂s
=

∂yi

∂s
di + yi(u × di)

=
∂yi

∂s
di + (u × yidi) =

∂yi

∂s
di + u × y,

and therefore
∂y

∂s
· di =

∂yi

∂s
+ (u × y) · di. (2.1)

The results for t can be derived analogously.

(b) Simply set y = u in (2.1) and use u × u = 0. Analogously for t.

(c) We have

∂2di

∂s∂t
=

∂

∂s
(ω × di) =

∂ω

∂s
× di + ω × (u × di) (2.2)

∂2di

∂t∂s
=

∂

∂t
(u × di) =

∂u

∂s
× di + u × (ω × di) (2.3)

Using smoothness of the di we have ∂2di

∂t∂s
= ∂2di

∂s∂t
and therefore

∂ω

∂s
× di −

∂u

∂t
× di = u × (ω × di) − ω × (u × di) (2.4)
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Using now the relations

(a × b) × c = (a · c) b − (b · c) a

a × (b × c) = (c · a) b − (b · a) c (2.5)

where a, b, c are three arbitrary vectors, we get from (2.4)

[

∂ω

∂s
−

∂u

∂t

]

× di = (u · di)ω − (ω · di)u = (u × ω) × di (2.6)

which concludes the proof.


