DNA Modelling Course Exercise Session 3 Summer 2006 Part 1

SOLUTIONS

1 Configurations and Equilibria of an Extensible Shearable Rod

Kinematics

1.(a) Either by direct calculation, or by observation from the sketch of the configuration, one has

$$\left\{ \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 1+\epsilon \end{array} \right\} \quad \text{and} \quad \left\{ \begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right\} \tag{1.1}$$

where $v_i = \boldsymbol{v} \cdot \boldsymbol{d}_i$ and $u_i = \boldsymbol{u} \cdot \boldsymbol{d}_i$.

(b) In this case there are essentially two possibilities to compute the Euler parameters. For the direct computation we refer to the solution of Exercise 2 (Helical curves)(d). We will then obtain the result in exactly the same way as carried out there, where Q is now given by

 $Q = [d_1, d_2, d_3]$: For $(q_1, q_2, q_3)^T \in ker(Q - Q^T) = span\{((cos(s) - 1)/sin(s), 1, 1)^T\}$ we get

$$\begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} = C \begin{pmatrix} \cos(s) - 1 \\ \sin(s) \\ \sin(s) \end{pmatrix}, \qquad (1.2)$$
$$C^2 = \frac{3 + \cos(s)}{4(3 - 2\cos(s) - \cos^2(s))},$$

and for q_4 we have the relation

$$q_4^2 = \frac{1 - \cos(s)}{4}$$

We now have determined q_4 and (q_1, q_2, q_3) up to the signs. The sign of q_4 can be chosen free but the choice will then fix the sign of (q_1, q_2, q_3) due to $d_i(q) = d_i(-q)$.

We could equivalently compute a unit axis of rotation $\mathbf{k} = (k_1, k_2, k_3)^T$ and the corresponding rotation angle ϕ in order to express \mathbf{q} which is then given by

$$q_i = k_i \sin(\phi/2), \quad i = 1, 2, 3, \quad q_4 = \cos(\phi/2).$$

But k is given by normalizing the vector on the RHS of (1.2). Therefore

$$k = \frac{1}{\sqrt{(1 - \cos(s))^2 + 2\sin^2(s)}} \begin{pmatrix} \cos(s) - 1\\ \sin(s)\\ \sin(s) \end{pmatrix}.$$
 (1.3)

The angle ϕ is computed by using the identity $1 + 2\cos\phi = \operatorname{tr}(Q)$ which immediately provides us with

$$\phi = \pm \arccos(-1/2(1 + \cos(s))).$$

The correct sign is simply obtained by verifying the results. In so doing, we take $s = \pi/2$ and verify the result for the third component of $d_2(q(s))$. We then obtain that ϕ must be given by $\phi = -\arccos(-1/2(1 + \cos(s)))$. Note that the wrong sign will provide us with the rotation matrix Q^{-1} instead of Q. We could also choose $-\mathbf{k}$ for the axis of rotation where the corresponding angle then is $-\phi$. This is due to

$$q_i = -k_i \sin(-\phi/2) = k_i \sin(\phi/2), \qquad i = 1, 2, 3, q_4 = \cos(-\phi/2) = \cos(\phi/2).$$

Second possibility: Composition of Rotation Matrices We only sketch the idea of the method which is based on the following: Suppose that the rotation matrix $\boldsymbol{Q} = [\boldsymbol{d}_1, \boldsymbol{d}_2, \boldsymbol{d}_3]$ with rotation axis \boldsymbol{k} and rotation angle ϕ is composed by two rotation matrices \boldsymbol{Q}_1 and \boldsymbol{Q}_2 , that is,

$$Q(\mathbf{k},\phi) = Q_2(\mathbf{k}_2,\phi_2) Q_1(\mathbf{k}_1,\phi_1),$$
 (1.4)

where the expression in the brackets denote the corresponding (unique) rotation axis and rotation angle, i.e., Q_i , i = 1, 2 represents rotation around the axis k_i with angle ϕ_i . It is shown in a paper of DICHMANN¹ that a straightforward calculation then leads to expressions for k and ϕ if k_i , ϕ_i for i = 1, 2 are known.

We restrict to the computation of Q_i and k_i , ϕ_i for i = 1, 2 here. For the computation of k and ϕ by means of k_i , i = 1, 2 and ϕ_i , i = 1, 2 we refer to the article of DICHMANN. A careful inspection of the directors frame $\{d_i(s)\}$ reveals that we basically have two reasonable possibilities to define a composition of rotation matrices. The key step is the definition of a rotation matrix P that gives a permutation of the fixed basis $\{e_1, e_2, e_3\}$ such that e_2 is mapped to e_3 . These assumptions immediately lead to

$$\boldsymbol{P} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right).$$

Now, we can either choose $P = Q_1$ or $P = Q_2$ in order to obtain the decomposition (1.4), for QP^{-1} as well as $P^{-1}Q$ are rotation matrices. Explicitly:

$$Q(\mathbf{k},\phi) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -\sin(s) & 0 & \cos(s) \\ 0 & 1 & 0 \\ -\cos(s) & 0 & -\sin(s) \end{pmatrix}, \quad (1.5)$$
$$Q(\mathbf{k},\phi) = \underbrace{\begin{pmatrix} -\sin(s) & -\cos(s) & 0 \\ \cos(s) & -\sin(s) & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{=QP^{-1}=:R(k_1,\phi_1)} \underbrace{\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}}_{P(k_2,\phi_2)}. \quad (1.6)$$

¹Donald J. Dichmann, Notes on the Mecjanics of Rigid Body Rotations, Quaternions and some Associated Mathematics

We will restrict to the second equality (1.6) and state the rotation axes k_1 and k_2 as well as the rotation angles ϕ_1 and ϕ_2 corresponding to $\mathbf{R} = \mathbf{Q}\mathbf{P}^{-1}$ and \mathbf{P} .

Rotation axis and angle of
$$P$$
: It is easy to see that $P1 = 1$ where 1 denotes the vector where every component is 1. Therefore, we have

$$k_1 = \frac{1}{\sqrt{3}} \mathbf{1}.$$

The angle of rotation will then be given by

$$\operatorname{tr}(\boldsymbol{P}) = 1 + 2\cos\phi_1 = 0 \qquad \Rightarrow \qquad \phi_1 = \pm \operatorname{arccos}(-1/2).$$

Verifying the results we easily obtain $\phi_1 = \arccos(-1/2)$. **Rotation axis and angle of** \mathbf{R} : We immediately obtain $\mathbf{R}(0,0,1)^T = (0,0,1)^T$ such that

$$\boldsymbol{k}_2 = \begin{pmatrix} 0\\0\\1 \end{pmatrix},$$

and the angle ϕ_2 is given by

$$\operatorname{tr}(\boldsymbol{R}) = 1 + 2\cos\phi_2 = 1 - 2\sin(s) \qquad \Rightarrow \qquad \phi_2 = \pm \arccos(-\sin(s)).$$

Verifying the results we easily obtain $\phi_2 = \arccos(-\sin(s))$.

Balance laws

2.(a) For the natural configuration $\{\hat{r}, \hat{d}_i\}$ we find

$$\begin{pmatrix} \hat{v}_1 \\ \hat{v}_2 \\ \hat{v}_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \hat{u}_1 \\ \hat{u}_2 \\ \hat{u}_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

where $\hat{v}_i = \hat{v} \cdot \hat{d}_i$ and $\hat{u}_i = \hat{u} \cdot \hat{d}_i$. Using the results from 1.(a) we then obtain

$$\boldsymbol{n}(s) = \epsilon G_3 \boldsymbol{d}_3(s),$$

$$\boldsymbol{m}(s) = K_2 \boldsymbol{d}_2(s).$$

(b) Assuming $\tau \equiv 0$, a configuration $\{r, d_i\}$ is an equilibrium (with $\{\hat{r}, \hat{d}_i\}$ serving as the reference) if

$$n' = -f$$
 and $m' + r' \times n = 0$, for all $s \in (0, \pi)$.

One can easily verify that the configuration is an equilibrium for the radial force

$$\boldsymbol{f}(s) = -\epsilon \, G_3 \boldsymbol{d}_1(s)$$

Moreover, the endforce g and the end moment h at $s = 0, \pi$ required to maintain this equilibrium are

$$g(0) = -n(0) = -\epsilon G_3 e_2, \qquad g(\pi) = n(\pi) = -\epsilon G_3 e_2$$

$$h(0) = -m(0) = -K_2 e_3, \qquad h(\pi) = m(\pi) = -K_2 e_3.$$

2 Helical curves

(a) By definition arclength s is such that

$$\left|\frac{dr(s)}{ds}\right| = 1\tag{2.1}$$

so clearly the parameter t is not arc-length, as

$$\left|\frac{d\mathbf{r}(t)}{dt}\right| = \sqrt{R^2 + P^2}.$$
(2.2)

Using the chain rule

$$\frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt},\tag{2.3}$$

and solving the resulting differential equation

$$\left. \frac{ds}{dt} \right| = \sqrt{R^2 + P^2},\tag{2.4}$$

we easily get that s arc-length is

$$s = \sqrt{R^2 + P^2} t,$$
 (2.5)

where the constant of integration is chosen such that s = 0 corresponds to t = 0. Finally we then have the new arclength parametrization which reads

$$\boldsymbol{r}(s) = \left(R\,\cos\frac{s}{\alpha}, R\,\sin\frac{s}{\alpha}, P\,\frac{s}{\alpha}\right) \tag{2.6}$$

where $\alpha = \sqrt{R^2 + P^2}$. Note that in general,

$$s(t) = \int_0^t \frac{dr}{dt}(\tau) \, d\tau, \qquad (2.7)$$

but that in this example the quadrature can be carried out explicitly to obtain (2.5) because $\sqrt{R^2 + P^2}$ is a constant along the helix.

(b) The Frenet-Serret frame is an intrinsic framing, given by the tangent T(s) to the curveline r(s), the principal normal N(s) defined via T'(s), and the binormal B(s). The following equivalences hold

$$T(s) = \frac{dr}{ds} \tag{2.8}$$

$$\mathbf{T}'(s) = \frac{d\mathbf{T}(s)}{ds} = \kappa(s)\mathbf{N}(s)$$
(2.9)

where the curvature $\kappa(s)$ is a non negative scalar, and N(s) is the principal normal, which is well defined as soon as T'(s) does not vanish at any s. Then B(s) is found as $T(s) \times N(s)$. The (geometrical) torsion can be extracted from the equations

$$[\mathbf{NBT}]' = [\mathbf{NBT}] \begin{pmatrix} 0 & -\tau & \kappa \\ \tau & 0 & 0 \\ -\kappa & 0 & 0 \end{pmatrix}$$
(2.10)

It is then easy to check that on a helix

$$\mathbf{T}(s) = \left(-\frac{R}{\alpha}\sin\frac{s}{\alpha}, \frac{R}{\alpha}\cos\frac{s}{\alpha}, \frac{P}{\alpha}\right)$$
(2.11)

$$\mathbf{N}(s) = \left(-\cos\frac{s}{\alpha}, -\sin\frac{s}{\alpha}, 0\right) \tag{2.12}$$

$$\boldsymbol{B}(s) = \left(\frac{P}{\alpha}\sin\frac{s}{\alpha}, -\frac{P}{\alpha}\cos\frac{s}{\alpha}, \frac{R}{\alpha}\right), \qquad (2.13)$$

and that

$$\kappa = \frac{R}{\alpha^2} \tag{2.14}$$

$$\tau = \frac{P}{\alpha^2} \tag{2.15}$$

- (c) By construction of the Frenet equations (2.10), it should be clear that the curvature and the torsion are the only non-vanishing components of the Darboux vector \boldsymbol{u} expressed in the Frenet frame $\{\boldsymbol{N}, \boldsymbol{B}, \boldsymbol{T}\}$, specifically $\boldsymbol{u} = \kappa \boldsymbol{B} + \tau \boldsymbol{t}$, which is true for any curve whatsoever. For the helix after substitution of the previously computed specific forms of κ , \boldsymbol{B}, τ , and \boldsymbol{T} we find that $\boldsymbol{u} = \frac{1}{\alpha} \boldsymbol{e}_z$, which is a very special property of the helix resulting from symmetry of rotation about the z-axis.
- (d) We first make some remarks.

• The Darboux vector \boldsymbol{u} is the axial vector of a skew matrix \boldsymbol{S} , given by

$$\boldsymbol{S} = \boldsymbol{Q}'(s)\boldsymbol{Q}^T(s). \tag{2.16}$$

It represents the infinitesimal change, or 'angular velocity' of the rotation matrix Q(s) along the one-parameter family of rotation matrices parametrized by s. The Darboux vector u has no relation with the axial vector of the skew matrix $\tilde{\mathbf{S}}$

$$\tilde{\mathbf{S}} = \boldsymbol{Q}(s) - \boldsymbol{Q}^T(s), \qquad (2.17)$$

defined at each fixed value of s. At each s, $\tilde{\mathbf{S}}(s)$ determines the Euler axis of rotation of the given rotation matrix Q(s) as described in Session 1.

• The quaternion parametrization is particular in the fact it gives immediately the axis of rotation, as the first three components (q_1, q_2, q_3) define this axis up to a constant, i.e. Qk = k if $k = (q_1, q_2, q_3)^{T2}$, and the angle of rotation up to a sign as $q_4^2 = \cos^2 \theta/2$.

Having said this, we can proceed in finding the quaternion parametrization for $t = \pi$ (note that t is not arc-length!). Bearing in mind that in the Frenet frame $\mathbf{Q} = [NBT]$, for $t = \pi$ we have

$$\boldsymbol{Q} - \boldsymbol{Q}^T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2R/\alpha \\ 0 & 2R/\alpha & 0 \end{pmatrix}$$
(2.18)

Therefore the axial vector of $\boldsymbol{Q} - \boldsymbol{Q}^T$ is some $\boldsymbol{z} = (2R/\alpha, 0, 0)^T$, and since the axis of rotation is a unit vector parallel to \boldsymbol{z} , we have that

axis of rotation =
$$\boldsymbol{w} = (1, 0, 0)^T$$
 (2.19)

so that

$$\mathbf{k} = (q_1, q_2, q_3)^T = C \mathbf{w}$$
 (2.20)

where C is a constant. Moreover, still in $t = \pi$,

$$\operatorname{tr}[\boldsymbol{Q}] = 1 + 2\cos\theta = 1 + 2\frac{P}{\alpha} \tag{2.21}$$

²The axis of rotation is a unit vector wheras \boldsymbol{k} in general has the norm fixed by the condition $\boldsymbol{q} \cdot \boldsymbol{q} = 1$, so typically it will be $\boldsymbol{k} = \pm \sin \theta / 2\boldsymbol{w}$ where \boldsymbol{w} is the axis of rotation, i.e. $||\boldsymbol{w}|| = 1$

which in turn implies

$$q_4^2 = \frac{1 + \frac{P}{\alpha}}{2}.$$
 (2.22)

Finally then from the normalization condition on q, we get

$$C^2 = 1 - q_4^2 = \frac{1 - \frac{P}{\alpha}}{2}.$$
 (2.23)

Now, we have determined q_4 and $\mathbf{k} = (q_1, q_2, q_3)^T$ up to the signs. Recalling that $\mathbf{q} = (q_1, q_2, q_3, q_4)^T$ and $-\mathbf{q}$ define the same rotation matrix we can choose q_4 to be

$$q_4 = \sqrt{\frac{1+\frac{P}{\alpha}}{2}}$$
 or $q_4 = -\sqrt{\frac{1+\frac{P}{\alpha}}{2}}$,

but the choice of the sign of q_4 will determine the sign of k. Thus, let us choose

$$q_4 = \sqrt{\frac{1 + \frac{P}{\alpha}}{2}}$$

Then, we find that

$$C = -\sqrt{\frac{1-\frac{P}{\alpha}}{2}},$$

which can be verified by calculating $B(s = \alpha \pi)$ in terms of q and comparing the result³ to (2.13).

3 Transformation of Cross Products

(a) Consider a vector $v \in {}^3$. Then we have for any two vectors $a, b \in \mathbb{R}^3$

$$\boldsymbol{v} \cdot (\boldsymbol{a} \times \boldsymbol{b}) = \det([\boldsymbol{v}, \boldsymbol{a}, \boldsymbol{b}]).$$

³For

$$C = \sqrt{\frac{1 - \frac{P}{\alpha}}{2}}$$

we obtain for the third component B_3 of B the expression $B_3 = \frac{-R}{\alpha}$ which contradicts (2.13).

Therefore,

$$\begin{aligned} \boldsymbol{v} \cdot (\boldsymbol{A}\boldsymbol{a} \times \boldsymbol{A}\boldsymbol{b}) &= \det([\boldsymbol{v}, \boldsymbol{A}\boldsymbol{a}, \boldsymbol{A}\boldsymbol{b}]) \\ &= \det(\boldsymbol{A}[\boldsymbol{A}^{-1}\boldsymbol{v}, \boldsymbol{a}, \boldsymbol{b}]) \\ &= \det(\boldsymbol{A})\det([\boldsymbol{A}^{-1}\boldsymbol{v}, \boldsymbol{a}, \boldsymbol{b}]) \\ &= \det(\boldsymbol{A})\left(\boldsymbol{A}^{-1}\boldsymbol{v} \cdot (\boldsymbol{a} \times \boldsymbol{b})\right) \\ &= \det(\boldsymbol{A})(\boldsymbol{v}\boldsymbol{A}^{-T}(\boldsymbol{a} \times \boldsymbol{b})) \\ &= \boldsymbol{v} \cdot (\det(\boldsymbol{A})\boldsymbol{A}^{-T}(\boldsymbol{a} \times \boldsymbol{b})). \end{aligned}$$

This is true for any $\boldsymbol{v} \in \mathbb{R}^3$. Therefore,

$$Aa \times Ab = \det(A)A^{-T}(a \times b).$$

(b) For an orthogonal matrix $\boldsymbol{Q} \in SO(3), \det(\boldsymbol{Q}) = 1$ and $\boldsymbol{Q} = \boldsymbol{Q}^{-T}$.