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Summer 2006 Part 1

SOLUTIONS

Problem 1

(a) The equations are
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. (1.1)

and clearly
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. (1.2)

is a trivial solution for each λ > 0.

(b) Here we essentially search for other equilibria in a neighborhood of the
trivial one u0 with φ0 ≡ 0 (see (1.2) ). To do this, we suppose there is a
family of equilibria uε = u0 + ε u1 + ε2 u2 + · · · , parametrized by |ε| � 1,
of the form

uε =
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N1,0 + ε N1,1 + ε2 N1,2 + · · ·
N3,0 + ε N3,1 + ε2 N3,2 + · · ·
m2,0 + ε m2,1 + ε2 m2,2 + · · ·
φ0 + ε φ1 + ε2 φ2 + · · ·
r1,0 + ε r1,1 + ε2 r1,2 + · · ·
r3,0 + ε r3,1 + ε2 r3,2 + · · ·































, (1.3)

where N1,0 is the first component of the trivial solution, N1,1 is the linear
term of the approximation, N1,2 is the second order term of the approxi-
mation. For the other components respectively.
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We insert uε into the equations (1.1) and gather terms of order ε. One
way to do this is a Taylor expansion in ε. Another equal way is to regard
(1.1) as a general system of the Form F [z(ε), ε] = 0 ( ∀ |ε| � 1) and the

linear terms are d
dε

∣

∣

∣

ε=0

F [z(ε), ε] = 0.

After much simplification (including use of boundary conditions) we get
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= 0 (1.4)

and we seek non-trivial solutions φ1 to the linear equation (1.4). The most
general solution of the differential equation in (1.4) is

φ1(s) = a cos(ωs) + b sin(ωs), ω =

√

λ

K
> 0. (1.5)

If φ1 is to be non-trivial and satisfy the boundary conditions, then we
must have ω = nπ for n = 1, 2, 3, . . .. The values of λ for which (1.4)
admits non-trivial solutions are thus

λ = n2π2K, n = 1, 2, 3, . . . (1.6)

For these values of λ we expect new, non-trivial equilibrium solutions
u = (N1, N3, m2, φ, r1, r3)

t to bifurcate from the trivial solution u0 (with
φ0 ≡ 0).

For λ = n2π2K the solution is given by

uε =
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+ O(ε2). (1.7)

Hereby we used b = 1, all other cases may be absorbed into ε.

Problem 2

(a) As in Problem 1.

(b) Here we search for other equilibria in a neighborhood of the trivial one u0

with (φ0, N1,0) ≡ (0, 0). As in Problem 1, we suppose there is a family of
equilibria uε, parametrized by |ε| � 1, of the form (1.3).

Again we insert uε into the equations (1.1) and gather terms of order ε,
but this time N1 is unknown. After much simplification (including use of
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boundary conditions) we get therefore
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. (2.1)

We seek non-trivial solutions (φ1, N1,1) to (2.1). The most general solution
of the differential equation in (2.1)1 is

φ1(s) = a cos(ωs) + b sin(ωs) −
N1,1

λ
, ω =

√

λ

K
> 0. (2.2)

Substituting (2.2) into the three equations (2.1)2,3,4 leads to a homoge-
neous linear system of equations for a, b and N1,1, namely





1 0 −1/λ
cosω sin ω −1/λ
sin ω 1 − cosω −ω/λ
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. (2.3)

A non-trivial solution (φ1, N1,1) to (2.1) can exist if and only if (2.3)
admits non-trivial solutions. Thus we must have

det





1 0 −1/λ
cosω sinω −1/λ
sin ω 1 − cosω −ω/λ



 = 0 ⇔ ω sin ω = 2[1 − cosω].

(2.4)
For any n = 1, 2, 3, . . . note that ω = 2nπ is a bifurcation point, and that
there is another in each interval 2nπ < ω < (2n + 1)π. Given these bi-
furcation points, the constants a, b and N1,1 can be determined from the
null space of the matrix appearing in (2.3).

Note that a non-trivial solution (φ1, N1,1) is defined only up to a multi-
plicative constant. W. l. o. g. we have N1,1 = 0 or N1,1 = 1, all other
cases may be absorbed into ε. The solutions at λ = 4n2π2K correspond
to the solutions with N1,1 = 0, the solutions at λ with 4n2π2K < λ <
(2n + 1)2π2K correspond to the solutions with N1,1 = 1.


