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Abstract. What is the longest rope on the unit sphere? Intuition tells us that the answer to
this packing problem depends on the rope’s thickness. For a countably infinite number of
prescribed thickness values we construct and classify all solution curves. The simplest ones
are similar to the seam lines of a tennis ball; others exhibit a striking resemblance to Turing
patterns in chemistry, or to ordered phases of long elastic rods stuffed into spherical shells.

1. THE PROBLEM. What is the longest curve on the unit sphere? The most prob-
able answer of any mathematically inclined person to this naı̈ve question is: There is
no such thing, since any spherical curve of finite length can be made arbitrarily long
by replacing parts of it by more and more “wavy” arcs; see Figure 1. Rephrasing the
initial query as “What is the longest rope on the unit sphere?” makes a big difference.
A rope, in contrast to a mathematical curve, forms a solid body with positive thickness,
so that now this question addresses a packing problem with obvious parallels in every-
day life. Is there an optimal way of winding electrical cable onto a reel? Similarly,
and economically quite relevantly, can one maximize the volume of yarn wound onto
a given bobbin [18], or how should one store long textile fiber band most efficiently to
save storage space [17]?

Figure 1. Without a lower bound on the thickness there is no longest curve on S2. By inserting more and more
oscillations into a given curve one can make its length arbitrarily large.

Common to all these packing problems, in contrast to the classic Kepler problem
of optimal sphere packing [5, 13], is that long and slender deformable objects are to
be placed into a fixed volume or onto a given surface. Nature displays fascinating
packing strategies on various scales. Extremely long strands of viral DNA are packed
very efficiently into the tiny phage heads of bacteriophages [6], and chromatin fibers
are folded and organized in various aggregates within the chromatid [19].

To model a rope as a mathematical curve with positive thickness in Euclidean
three-space we follow the approach of Gonzalez and Maddocks [11] who considered
all triples of distinct curve points x, y, z on a closed curve γ ⊂ R3, and their respec-
tive circumcircle radii R(x, y, z). The smallest of these radii determines the curve’s
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Figure 2. A positive thickness imposes a lower bound both on radius of curvature (left) as well as on global
self-distance (right). The tubular neighborhood around the curve does not self-intersect.

thickness

4[γ ] := inf
x 6=y 6=z 6=x

x,y,z∈γ

R(x, y, z). (1.1)

A positive lower bound on this quantity controls local curvature but also prevents the
curve from self-intersections; see Figure 2. In fact, it equips the closed curve with a
tubular neighborhood of uniform radius 4[γ ] without self-penetration. This means
that there exists a tubular neighborhood which consists of the disjoint union of open
disks normal to and centered at the curve, and each with radius 4[γ ]. Conversely, a
continuously differentiable closed curve γ that possesses such a tubular neighborhood
of radius 2 without self-penetration can be shown to have thickness at least 2 [12,
Lemma 3]. Furthermore, positive thickness characterizes the set of embedded loops
with bounded curvature (see [12, Lemmata 2 & 3] and [21, Theorem 1]), and we
therefore tacitly assume from now on that our curves are simple, have positive length,
and are continuously differentiable.

With this mathematical concept of thickness at our disposal we can reformulate
the original question of finding the longest ropes on the unit sphere as a variational
problem, where we first focus on closed loops.

Problem (P). For a given constant 2 > 0 find the longest closed curve γ : S1 ∼=

R/(2πZ)→ S2
:= {x ∈ R3

: |x | = 1} with prescribed minimal thickness2, i.e., with
4[γ ] ≥ 2.

Before discussing the solvability of this maximization problem for various thickness
values we would like to point out that every loop γ ⊂ R3 of positive thickness enjoys
a strong geometric property, the presence of forbidden balls: Any open ball B2 ⊂ R3

of radius 2 ≤ 4[γ ] whose boundary ∂B2 touches1 the curve γ at a point p ∈ γ is
not penetrated by the curve, that is, B2 ∩ γ = ∅. In fact, otherwise there would be a
point q ∈ B2 ∩ γ , and the plane spanned by the segment q − p and the tangent vector
of γ at p would intersect B2 in a planar disk of radius at most 2. This disk would
contain the strictly smaller circle through q and p that is tangent to the disk’s boundary
at p. Approximating this circle by the circumcircles of the point triples q, p, pi for
some sequence {pi } of curve points converging to p as i tends to infinity yields a
contradiction via 4[γ ] ≤ R(p, q, pi ) < 2 for sufficiently large i .

A direct consequence of the presence of forbidden balls is that Problem (P) is not
solvable at all if the prescribed thickness is strictly greater than 1; there are simply
no spherical curves whose thickness exceeds the value 1. Indeed, for any point p on

1Throughout the paper we say that a submanifold M ⊂ R3 touches another submanifold N ⊂ R3 if their
topological boundaries intersect non-transversally. In the present case it means that γ is tangent to ∂B2 at p.
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a spherical curve γ with thickness 4[γ ] > 1 there exists an open ball of radius 4[γ ]
touching the unit sphere (and therefore γ as well) at p and containing all of the unit
sphere but p. However, this ball is forbidden and hence contains no curve point, so
that p is the only curve point on S2. This settles Problem (P) for 2 > 1.

If we intersect the union of all forbidden touching balls B2, 2 ≤ 4[γ ], for a loop
γ ⊂ S2 with the unit sphere, we easily deduce (see Figure 3) that every curve point of
a spherical curve carries a pair of geodesic balls Bϑ(ξ) := {η ∈ S2

: distS2(η, ξ) < ϑ}

of radius ϑ := arcsin2 on S2 that do not intersect γ . Here distS2(ξ, η) := ](ξ, η) for
ξ, η ∈ S2 denotes the intrinsic distance on S2. Thus we have shown:

Forbidden Geodesic Balls (FGB). A closed spherical curve γ : S1
→ S2 with thick-

ness 4[γ ] ≥ 2 > 0 does not intersect any open geodesic ball Bϑ(ξ) on S2 whose
boundary ∂Bϑ(ξ) is tangent to γ in at least one curve point.

One can imagine a bow tie consisting of two open geodesic balls of spherical radius
ϑ attached to the curve at their common boundary point. This bow tie can be moved
freely along the curve without ever hitting any part of the curve.

S2

1

p ∈ 
2 2

Figure 3. Left: A great circle is the thickest curve on S2. Right: The unit sphere cut along a normal plane that
is orthogonal to γ at the point p ∈ γ . The grey spatial forbidden ball rotated along the dashed circle generates

a forbidden geodesic ball of radius ϑ = arcsin2 on S2
.

The full strength of Property (FGB) is frequently used later on to completely clas-
sify infinitely many explicit solutions of Problem (P). For the moment it helps us to
quickly solve that problem for 2 = 1. Take any point p on an arbitrary spherical
curve γ with thickness 1. The two forbidden open geodesic balls of spherical radius
ϑ = arcsin 1 = π

2 touching γ at p are two complementary hemispheres S+ and S−
that—according to (FGB)—do not intersect γ . Hence γ must be the equator as the
only closed curve contained in the complement S2

\ (S+ ∪ S−). Thus the equator is
the only spherical curve with thickness 1 and hence—up to congruence—the unique
solution to Problem (P) for 2 = 1.

But what about other thickness values 2 ∈ (0, 1)? Is the variational problem (P)
solvable at all? The answer is yes, and once one has analyzed the continuity prop-
erties of the constraint 4[γ ] ≥ 2, this can be proven with the direct method in the
calculus of variations. The necessary arguments for this (and for the constructions and
classification results in Sections 2 and 3) are carried out in full detail in [9].

Theorem 1.1 (Existence [9, Theorem 1.1]). For each prescribed minimal thickness
2 ∈ (0, 1] Problem (P) possesses (at least) one solution γ2. In addition, every such
solution attains the minimal thickness, i.e., 4[γ2] = 2.
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2. INFINITELY MANY EXPLICIT SOLUTIONS. Knowing that solutions exist
does not necessarily mean that we know their actual shapes, unless 2 = 1 where we
have identified the equator as the only solution. For general variational problems it is
mostly impossible to extract explicit information about the shapes of solutions; even
uniqueness is usually a challenging issue. Here, however, the situation is different,
and this has to do with the fact that every spherical curve γ with positive thickness
4[γ ] ≥ 2 > 0 carries an open spherical tubular neighborhood of radius ϑ := arcsin2

Tϑ(γ ) := {ξ ∈ S2
: distS2(γ, ξ) < ϑ},

which equals the disjoint union of open subarcs of great circles of uniform length
2ϑ on the sphere. Each of these great arcs is centered at a curve point p ∈ γ , and is
orthogonal to the tangent vector of γ at p. In accordance with the spatial case, we say
that such a spherical tubular neighborhood has no self-penetration.

The converse is also true: the existence of such a spherical tubular neighborhood
Tϑ(γ ) around a curve γ ⊂ S2 implies that this curve has thickness 4[γ ] ≥ sinϑ . To
see this correspondence, it is enough to show that the normal disks constituting the
spatial tubular neighborhood B2(γ ) are disjoint if and only if the great arcs of length
2ϑ whose union equals Tϑ(γ ) ⊂ S2 are disjoint. This can easily be verified using the
central projection from the origin (see Figure 4). We define the spherical thickness of
a curve γ ⊂ S2 as the supremum of all radii τ such that the spherical tubular neigh-
borhood Tτ (γ ) has no self-penetration. Thus we conclude that a spherical curve γ has
(spatial) thickness 2 := 4[γ ] if and only if it has spherical thickness ϑ = arcsin2.

S2

0
1

2

p ∈ 

Figure 4. Orthogonal cross section of the spatial tubular neighborhood B2(γ ) (grey region). Illuminated by a
point-like light source at the origin, each such cross section casts a shadow on the surface of the sphere in the
form of a great arc of length 2ϑ centered at p and normal to γ (black arc). If two different grey disks intersect
then the corresponding black great arcs must intersect as well. If, on the other hand, two such black great arcs
intersect, then consider the two dashed arcs, each of which is in 1-1 correspondence to the respective great arc
under the central projection from the origin. Those two dashed arcs must intersect as well, and therefore also
the respective grey disks that contain them.

It was shown more than 70 years ago by Hotelling [14] and in more generality by
Weyl [24] that the volume of such a uniform tubular neighborhood is proportional to
the length L of its centerline. Adapted to the present situation of thick curves on the
unit sphere, this classic theorem reads

area(Tϑ(γ )) = 2 sinϑ ·L (γ )
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for any curve γ ⊂ S2 with (spatial) thickness 4[γ ] ≥ 2 = sinϑ . Consequently, any
curve γ ⊂ S2 with thickness 4[γ ] ≥ 2 whose spherical tubular neighborhood Tϑ(γ )

covers all of S2, i.e., with

area(Tϑ(γ )) = 4π = area(S2
), (2.2)

has maximal length among all spherical curves with prescribed minimal thickness 2.
In other words, sphere-filling thick curves provide solutions to Problem (P).

Are there any thickness values 2 ∈ (0, 1) such that we find sphere-filling curves of
that minimal thickness, i.e., curves γ ⊂ S2 with4[γ ] ≥ 2 such that for ϑ = arcsin2
we have relation (2.2)?

If we relax for a moment our assumption that we are searching for one con-
nected closed curve then we easily find sphere-filling ensembles of curves. For
2n := sin(π/2n) =: sinϑn , n ∈ N, the stack of latitudinal circles Ci with distS2(C0,

north pole) = ϑn and mutual distance distS2(Ci ,Ci−1) = 2ϑn for i = 1, . . . , n − 1
forms a set of n spherical curves, and this ensemble has spherical thickness ϑn = π/2n.
Their mutually disjoint spherical tubular neighborhoods completely cover the sphere:

area

[
n−1⋃
i=0

Tϑn (Ci )

]
= 4π.

This collection of latitudinal circles can now be used to construct one closed sphere-
filling curve. Let us explain in detail how, for the case n = 4. We cut the sphere with
the 4 latitudinal circles along a longitudinal circle into an eastern hemisphere Se and a
western hemisphere Sw. Each hemisphere now contains a stack of 4 latitudinal semi-
circles. Keeping the western hemisphere Sw fixed, we rotate the eastern hemisphere
Se by an angle of 2ϑ4 = π/4 so that all the endpoints of the now-turned semicircles
on Se meet endpoints of the semicircles on Sw; see Figure 5.

Figure 5. The construction of solutions for n = 4. The third and the fifth image depict the sphere-filling curves
for turning angles 2ϑ4 and 6ϑ4. The fourth image, in contrast, contains a disconnected sphere-filling ensemble
with two components (an animation of this construction is available at [7]).

This modified collection of semicircles still has spherical thickness ϑ4 = π/8 and
is sphere filling, since in the construction the sphere-filling stack of the original lati-
tudinal circles was only cut orthogonally and reunited along one longitudinal circle,
which does not change the thickness and sphere-filling property of the ensemble. We
also observe that this new ensemble, which resembles to some extent the seam lines
on a tennis ball, forms one closed curve, and hence solves our problem—at least for
this particular given spatial thickness 24 = sinϑ4 = sin(π/8). Are there other solu-
tions for n = 4? Why not continue rotating the eastern hemisphere Se against the fixed
hemisphere Sw to obtain more solutions? It turns out that a total rotation by 4ϑ4 = π/2
yields two connected components, which is not what we are looking for. But turning Se

by an angle of 6ϑ4 = 3π/4 leads to another solution: a new single closed loop which
is the mirror image of the first one; see Figure 5.
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One can show that this procedure works well for arbitrary n ∈ N, and with a little
elementary algebra2 we can determine the exact number of solutions:

Theorem 2.1 (Explicit solutions). For each n ∈ N and each k ∈ {0, . . . , n − 1}
whose greatest common divisor with n equals 1, the construction described above
starting with n latitudinal circles C0, . . . ,Cn−1 with spherical distance

distS2(C0, north pole ) = ϑn =
π

2n
, distS2(Ci ,Ci−1) = 2ϑn, i = 1, . . . , n − 1,

and rotating the eastern hemisphere against the fixed western hemisphere by an angle
of 2kϑn leads to ϕ(n) explicit piecewise circular solutions of the variational problem
(P) for prescribed minimal thickness 2n = sinϑn .

Here, ϕ denotes the Eulerian totient function from number theory: ϕ(n) gives the num-
ber of positive integers k ≤ n so that the greatest common divisor of k and n equals 1.
In our example above, n = 4, we indeed found ϕ(4) = 2 explicit solutions by rotating
the eastern hemisphere by the amount of 2kϑ4 for k = 1 and for k = 3.

Figure 6 depicts such sphere-filling closed curves for various n, and one notices
a striking resemblance with certain so-called Turing patterns (see Figure 10(a)) ob-
served and analyzed in chemistry and biology as characteristic concentration distri-
butions of different substances; see, e.g., [23]. In that context, the patterns are caused
by diffusion-driven instabilities; here, in contrast, the shapes of solutions are a conse-
quence of a simple variational principle.

n = 2, k = 1 n = 3, k = 1 n = 5, k = 2

n = 7, k = 2 n = 11, k = 5 n = 12, k = 7

Figure 6. Various solutions of Problem (P). All curves are visualized as tubes of a fixed radius 2 = π/24,
which coincides with the actual spatial thickness 4[γ ] = 2n only for the last curve with n = 12. The remain-
ing values of spatial thickness 2n , for n = 2, 3, 5, 7, 11, all exceed the tubes’ radii depicted in the image.

2Such a construction was used for a bead puzzle called the orb or orb it [25] in the 1980s, and the algebra
involved was probably known to its inventors.
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Similar constructions for thickness values �n := sin(π/n), n ∈ N, starting from
an initial ensemble of semicircles together with one or two poles on S2, lead to two
disjoint families of sphere-filling open curves3 distinguished by the relative positions
of the two endpoints on the sphere; see Figure 7. For all even n ∈ N the resulting
sphere-filling open curves have antipodal endpoints, which is not the case if n is odd.
Let us point out that these open curves occur in the different context of statistical
physics, namely as two of three possible configurations of ordered phases of long
elastic rods densely stuffed into spherical shells; see [15], in particular their Figures
4a and 4c. Those studies aimed at explaining the possible nematic order of densely
packed long DNA in viral capsids.

n = 3, k = 1 n = 5, k = 1 n = 25, k = 6

n = 4, k = 0 n = 6, k = 0 n = 26, k = 0

Figure 7. Various solutions of a version of Problem (P) for open curves. Only the last ones in each row are
depicted with full spatial thickness.

3. CLASSIFICATION OF SPHERE-FILLING ROPES. For each positive integer
n we have constructed explicitly longest closed ropes of thickness 2n = sin(π/2n)
on the unit sphere. Are there more? We know there are for intermediate values 2 6=
2n by Theorem 1.1, but even if we stick to these specific countably many values
2n of given minimal thickness might we find more sphere-filling and thus length-
maximizing curves of considerably different shapes? The answer may be surprising,
but, no, up to rotations our solutions are the only ones, and this “uniqueness” result is
actually a consequence of a complete classification of sphere-filling thick curves:

Theorem 3.1 (Classification of sphere-filling loops). If the spherical tubular neigh-
borhood Tϑ(γ ), ϑ ∈ (0, π/2], of a closed spherical curve γ ⊂ S2 with thickness

3The (spatial) thickness of an open curve γ with two endpoints p and q is the supremum of all radii r > 0
such that the tubular neighborhood Br (γ ) has no self-penetration, where Br (γ ) consists of three disjoint parts:
an open half-ball cap at p and at q, and the disjoint union of open normal disks centered on the curve.
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4[γ ] ≥ 2 = sinϑ satisfies

area
(
Tϑ(γ )

)
= 4π = area(S2

),

then there exists a positive integer n, and an integer k ∈ {0, . . . , n − 1}, with greatest
common divisor equal to 1, such that ϑ = ϑn = π/(2n), 4[γ ] = 2n = sinϑn , and
such that γ coincides—up to a rotation—with one of the ϕ(n) explicit solutions of
Problem (P) exhibited in Theorem 2.1.

An analogous result holds also for open curves: any sphere-filling thick open curve
must have spherical thickness ωn = arcsin�n = π/n for some n ∈ N, and coincides
with a member of one of the two explicitly constructed families of open spherical
curves, depending on whether n is even or odd. So, if one was given the (somewhat
strange) task to produce a soccer ball of a given size by deforming a continuous piece
of thick rope of suitable length into an airtight spherical hull, then only specific values
of rope thickness are possible, and our theorem tells us how one should proceed. There
is simply no other way!

Let us explain the main ideas of the proof of this classification result. The presence
of forbidden geodesic balls (FGB) allows us to prove a fundamental touching principle
for spherical curves γ with positive thickness 4[γ ]; see Part A below. This principle
guarantees then that the number of possible local touching situations between the curve
and geodesic balls with radius equal to4[γ ] is very limited (Part B). The combination
of these pieces of information leads to a geometric rigidity for sphere-filling curves
reflected in two sorts of possible global patterns (Part C).

P

Q

Figure 8. A curve γ with spherical thickness ϑ that touches a geodesic circle of radius ϑ in two non-antipodal
points P and Q joins them with a subarc of that circle. Otherwise one of the dotted geodesic circles would
intersect γ three times, leading to a lower thickness.

A. The touching principle addresses the situation when a spherical curve γ with
4[γ ] ≥ 2 = sinϑ touches the boundary ∂Bϑ(ξ0) of a geodesic ball Bϑ(ξ0) in S2 in
at least two non-antipodal points P, Q ∈ ∂Bϑ(ξ0) with distS2(P, Q) =: 2ϑ1 < 2ϑ . In
this situation the boundary of the strictly smaller geodesic ball Bϑ1(ξ1) for which P
and Q are antipodal is intersected transversally by γ at P and Q, which means that
the open geodesic ball Bϑ1(ξ1) contains curve points; see Figure 8. On the other hand,
∂Bϑ1(ξ1) contains no further curve point T different from P and Q, since this would
imply for the corresponding (Euclidean) circumcircle that

R(P, Q, T ) ≤ sinϑ1 < sinϑ = 2, (3.3)

contradicting our assumption 4[γ ] ≥ 2; recall formula (1.1). Consequently, there is
a whole subarc of γ connecting P and Q contained in Bϑ1(ξ1), but not in the original
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larger ball Bϑ(ξ0) since this one is a forbidden ball according to (FGB). Where can
we locate this arc within the set Bϑ1(ξ1) \Bϑ(ξ0)? Sweeping out the region Bϑ1(ξ1) \

Bϑ(ξ0) with intermediate geodesic circles ∂Bϑs (ξs) with center ξs on the great arc
connecting ξ0 and ξ1 and containing P and Q for each s ∈ [0, 1] (so that ϑs = |P − ξs |,
ϑ0 := ϑ), we use the same argument as the one that led to (3.3) to show that there are
no curve points in Bϑ1(ξ1) \Bϑ(ξ0). Thus we have proven:

Touching Principle (TP). A closed spherical curve γ : S1
→ S2 with (spatial) thick-

ness 4[γ ] ≥ 2 = sinϑ that touches a geodesic circle ∂Bϑ ⊂ S2 of spherical radius
ϑ at two non-antipodal points P and Q contains the shorter circular subarc of ∂Bϑ

connecting P and Q.

We benefit from the touching principle since it allows us to characterize sphere-
filling curves of thickness 2 = 4[γ ] = sinϑ in terms of their local behavior when
touching geodesic balls of spherical radius ϑ : for any open geodesic ball Bϑ disjoint
from γ—and there are plenty of those, e.g., all forbidden balls by (FGB)—one of the
following three touching situations is guaranteed for the intersection S := ∂Bϑ ∩ γ :

B. Possible local touching situations.

(a) γ touches ∂Bϑ in exactly two antipodal points, i.e., S = {P, Q} with
distS2(P, Q) = 2ϑ , or

(b) the intersection S is a relatively closed semicircle of spherical radius ϑ , or
(c) this intersection S equals the full geodesic circle ∂Bϑ .

To see this we notice first that for a sphere-filling curve the relatively closed inter-
section S is nonempty, since otherwise a slightly larger ball Bϑ+ε for some small
positive ε would not contain any curve point, which leads to Bε ∩ Tϑ(γ ) = ∅, and
hence 4π = area(Tϑ(γ )) ≤ area(S2

\Bε) < 4π contradicting (2.2).
Similarly, one can rule out that the set S is contained in a relatively open semicircle

on ∂Bϑ , since then two extremal points η, ζ ∈ S realizing the diameter of S would
have spherical distance distS2(η, ζ ) < 2ϑ . This is one of the frequent occasions that
the touching principle (TP) comes into play. It implies that the whole circular subarc
of ∂Bϑ connecting η and ζ is contained in S and therefore equals S in this situation.
But the fact that γ lifts off the geodesic circle ∂Bϑ at η and ζ before completing a full
semicircle allows us to move the closed ball Bϑ slightly “away” from S , that is, in
the direction orthogonal to and away from the geodesic arc connecting η and ζ . This
way we obtain a slightly shifted closed ball of the same radius without any contact
to γ , a situation that we have ruled out above. Therefore, S is not contained in any
relatively open semicircle on ∂Bϑ .

If S is contained in a relatively closed semicircle we may assume that it contains
apart from the antipodal endpoints of that semicircle also at least one third point, since
otherwise we would be in situation (a) and could stop here. Therefore, by virtue of the
touching principle (TP) S coincides completely with that closed semicircle, which is
option (b). If, however, S is not contained in any semicircle we can simply look at
one point q ∈ S and its antipodal point q ′ ∈ ∂Bϑ . If q ′ happens to be also in γ , then
both semicircles connecting q and q ′ would contain further curve points and therefore
S = ∂B again by the touching principle, and we end up with option (c).

If q ′ 6∈ S , then the largest open subarc α of ∂Bϑ containing q ′ but no point of γ
must be shorter than π unless S is contained in a semicircle, a situation we brought
to a close before. Applying the touching principle to the two endpoints of α we find in
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fact that q ′ lies on the subarc of γ connecting these endpoints on ∂Bϑ , which exhausts
the last possible situation to verify that our list of situations (a)–(c) is complete.

We are going to use the local structure established in Parts A and B to prove geo-
metric rigidity of sphere-filling curves γ with positive spatial thickness 2 = sinϑ .

C. Global patterns of sphere-filling curves.

(C1). If γ ⊂ S2 intersects a normal plane E orthogonally at k distinct points whose
mutual spherical distance equals 2ϑ , then k is even and γ contains a semicircle of
spherical radius ϑ in each of the two hemispheres bounded by E ∩ S2.

(C2). If γ contains one latitudinal semicircle S ⊂ ∂Bϑ , then ϑ = π/2n for some
n ∈ N and the portion of γ in the corresponding hemisphere consists of the whole
stack of n latitudinal semicircles (including S) with mutual spherical distance ϑ .

Before providing the proofs for these rigidity results let us explain how we can com-
bine these to prove Theorem 3.1.

Proof of Theorem 3.1. The goal is to show the existence of a latitudinal semicircle of
spherical radius ϑ contained in γ in order to apply the global pattern (C2), which
then assures that γ consists of a stack of latitudinal semicircles with mutual spheri-
cal distance ϑ in one hemisphere, say in Sw. This behavior in Sw leads to the char-
acteristic intersection point pattern in the longitudinal circle ∂Sw needed in order to
apply (C1), which in turn guarantees the existence of a semicircle of radius ϑ on Se

whose endpoints a priori do not need to lie on ∂Se. Again property (C2) applied to
this semicircle on Se leads to a whole stack of n equidistant semicircles now at least
partially contained in Se. The only way both stacks of semicircles fit together to form
one closed spherical curve of prescribed spherical thickness ϑ is that the second stack
is completely contained in Se. Our construction described in Section 2 finally reveals
the only possible loops made of two such stacks of equidistant latitudinal semicircles
meeting ∂Se

= ∂Sw orthogonally, which completes the proof of the classification the-
orem. The logic of the proof resembles a ride on a merry-go-round; (C1) produces the
semicircle on Sw necessary to use (C2) to obtain the stack of semicircles on Sw, which
itself generates the point pattern needed to apply (C1) on Se and finish the task via
(C2) on Se. The only problem is: how do we enter the merry-go-round? We have to
show that one portion of γ is a semicircle of spherical radius ϑ without assuming the
intersection point pattern needed in (C1).

Let k be the integer such that (k − 1)ϑ < π ≤ kϑ . For a fixed point p ∈ γ we walk
along a unit-speed geodesic ray ηp emanating from p in a direction orthogonal to γ at
p in search of such a semicircle. The geodesic ball Bϑ(ηp(ϑ)) is a forbidden ball by
means of (FGB), i.e., γ ∩Bϑ(ηp(ϑ)) = ∅, where ηp(ϑ) denotes the point reached on
the geodesic ray after a spherical distance ϑ . According to the possible local touching
situations we find the desired semicircle on ∂Bϑ(ηp(ϑ)) ∩ γ (option (b) or (c) in B),
unless the antipodal point ηp(2ϑ) is contained in γ . In that case we continue along
the same geodesic ray passing through ηp(2ϑ) orthogonally to γ , until we either find a
closed semicircle on one of the geodesic circles ∂Bϑ(ηp((2i − 1)ϑ)), i = 1, . . . , k, or
ϑ = π/k, and all “antipodal points” ηp(2iϑ) are contained in γ , so that ηp(2kϑ) = p.
In other words, either we have found the desired semicircle during the walk along
ηp, or we have walked once around the whole longitudinal circle traced out by ηp

generating k equidistant points where γ intersects ηp orthogonally. But this is exactly
what is needed to apply (C1) to finally establish the existence of the semicircle we are
looking for.
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One final comment on why this exact quantization takes place, i.e., why we find
ϑ = π/k so that the walk along ηp, pinpointing the centers ηp((2i − 1)ϑ) of geodesic
balls on the way, actually leads exactly back to the starting point p = ηp(2π). The
successive localization of forbidden balls according to (FGB) and the possible lo-
cal touching situations yield the fact that all open geodesic balls Bϑ(ηp((2i − 1)ϑ))
for i = 1, . . . , k are disjoint from γ . If, for instance, the walk had stopped too late
since the step size ϑ was too large, kϑ > π , then distS2(p, ηp((2k − 1)ϑ)) = 2π −
(2k − 1)ϑ < ϑ , that is, p ∈Bϑ(ηp((2k − 1)ϑ)) ∩ γ , a contradiction.

Let us establish the global patterns (C1) and (C2) in more detail since they served
as the core tools in the proof of our classification theorem.

We start with the proof of (C1). Here it suffices to focus on one of the two hemi-
spheres Sw and Se determined by E , say on Sw. Since γ is simple and closed the
curve can leave Sw merely as often as it enters Sw, which immediately gives k = 2n
for some n ∈ N. Moreover, Sw is homeomorphic to a flat disk so that we can find
nearest neighboring exit and entrance points p, q ∈ E ∩ γ with minimal spherical dis-
tance distS2(p, q) = 2ϑ such that the closed subarc β ⊂ Sw ∩ γ connecting p and q
satisfies E ∩ β = {p, q}. We will show that β contains the desired semicircle of spher-
ical radius ϑ . Since γ intersects E orthogonally we infer from (FGB) that the open
geodesic ball B ≡Bϑ with p, q ∈ ∂B as antipodal boundary points is disjoint from
γ . If there were a third point b ∈ β ∩ ∂B distinct from p and q , then—according
to the touching principle (TP)—the whole semicircle on ∂B with endpoints p and q
would be contained in γ , and we would be done. Otherwise we trace the open spherical
region R bounded by β ∪ (Se

∩ ∂B) with geodesic rays ηb emanating from arbitrary
points b ∈ β orthogonally into the region R. Notice that R is disjoint from γ , and that
ηp(2ϑ) = q and ηq(2ϑ) = p, where the argument of η indicates how long one has to
travel along the geodesic ray to reach the destination point. In addition, the forbidden
ball property (FGB) implies γ ∩Bϑ(ηb(ϑ)) = ∅ and therefore Bϑ(ηb(ϑ)) ⊂ R for
all points b ∈ β; see Figure 9.

bp

q
ηb(2ϑ)

Bϑ (ηb(ϑ))

Figure 9. Towards the proof of (C1). Geodesic rays ηb emanating from points b on the subarc β ⊂ γ ∩ Sw
to trace the enclosed spherical region R. The depicted antipodal touching (3.4) cannot hold throughout β by
virtue of Brouwer’s fixed point theorem.

According to Part B either

∂Bϑ(ηb(ϑ)) ∩ γ = {b, ηb(2ϑ)} for all b ∈ β (3.4)

(the antipodal situation (a)), or γ contains a semicircle Sb = ∂Bϑ(ηb(ϑ)) ∩ γ contain-
ing itself the point b for some b ∈ β. This semicircle lies completely in the western
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hemisphere Sw, which concludes the proof of (C1). To see the latter assume contrari-
wise that there exists a point z on Se

∩ Sb \ E . Then by connectivity p or q would lie on
the semicircle Sb, too, which immediately implies that Sb and hence also b ∈ ∂B ∩ β
lies on the original geodesic circle ∂B, a situation that we had excluded already.

It remains to exclude the antipodal touching (3.4) throughout the subarc β ⊂ γ ∩
Sw. We use Brouwer’s fixed point theorem for the continuous map f : β → S2 defined
by f (b) := ηb(2ϑ), which we claim actually maps β into β. Relation (3.4) in fact
guarantees that f (b) ∈ γ \B. Hence f (b) is either contained in Sw ∩R ∩ γ = β in
which case we are done, or f (b) lies in ∂B ∩ Se

∩ γ . But then the antipodal partner b
of f (b) would also lie on ∂B, which was excluded earlier. Consequently, Brouwer’s
theorem is applicable and leads to a fixed point b∗ = f (b∗) = ηb∗(2ϑ), which implies
2ϑ = 2π because ηb∗ parametrizes a unit speed great circle on S2. But this contradicts
our assumption that ϑ ∈ (0, π/2].

The proof of (C2) can be sketched as follows. Let n be the integer such that
π/(2n) ≤ ϑ < π/(2n − 2). According to (FGB) one has a forbidden ball: γ ∩Bϑ =

∅, and the idea is to start from the initial semicircle S1 := S ⊂ ∂Bϑ and “scan” the
remaining part S2

\Bϑ with unit speed geodesic rays ηp emanating from every point
p ∈ S1 orthogonally to S1 into the open region S2

\Bϑ . Again by (FGB) we find
Bϑ(ηp(ϑ)) ∩ γ = ∅ for each such starting point p ∈ S1. All possible touching situa-
tions documented in Part B guarantee the existence of at least one second curve point
q on ∂Bϑ(ηp(ϑ)), and we claim that q must be antipodal to p, i.e., q = ηp(2ϑ). If
not, then according to option (b) or (c) in Part B, the points p and q are contained in
a semicircle on ∂Bϑ(ηp(ϑ)) ∩ γ . But this semicircle is hit by neighboring geodesic
“scanning” rays ηr emanating from r ∈ S1 for r close to p, which would lead to a
nonempty intersection of γ with the neighboring forbidden ball Bϑ(ηr (ϑ)) contradict-
ing (FGB). Hence we have shown that only antipodal curve points can be generated
by this procedure: ∂Bϑ(ηp(ϑ)) ∩ γ = {p, ηp(2ϑ)} for all p ∈ S1, which produces a
second semicircle S2 := {ηp(2ϑ) : p ∈ S1} ⊂ ∂B3ϑ contained in γ , with spherical
distance 2ϑ to the first semicircle S1.

It is obvious how to continue this procedure—now starting the “scanning” rays
from S2—to obtain a whole stack of semicircles Si = ∂B(2i−1)ϑ for i = 1, . . . , n. If
this stack is too high because the spherical thickness is too large with respect to n,
i.e., if π/(2n − 1) ≤ ϑ < π/(2n − 2), then the stack would “spill over” onto the other
hemisphere Se producing a final semicircle Sn contained in Se

∩ γ with spherical ra-
dius (2n − 1)ϑ − π ∈ [0, ϑ) that is too small: it contradicts the spherical thickness
ϑ = arcsin4[γ ] of γ since its curvature is too large. If the stack is not high enough
(π/2n < ϑ < π/(2n − 1)) then the last semicircle Sn is still on the correct hemisphere
Sw but has spherical radius π − (2n − 1)ϑ ∈ (0, ϑ), which is again to small for the
thick curve γ .

4. FINAL REMARKS AND OPEN PROBLEMS. For a countably infinite number
of thickness values we have established a complete picture of the solution set for Prob-
lem (P) using the sphere-filling property to a large extent. The general existence theo-
rem, Theorem 1.1, however, also guarantees the existence of longest ropes on the unit
sphere for all intermediate thickness values 2 6= 2n . What are their actual shapes?
Theorem 3.1 ascertains that those solutions cannot be sphere-filling. In [9] we con-
structed a comparison curve that could serve as a promising candidate for prescribed
minimal thickness 2 ∈ (22,21), but this question remains to be investigated, as well
as the interesting connections to Turing patterns and the statistical behavior of long
elastic rods under spherical confinement mentioned in Sections 1 and 2. In addition,
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(a) (b)

(c) (d)

Figure 10. (a) A numerical simulation of a Turing pattern on the two-sphere resembles the solutions to Prob-
lem (P); reprinted with permission from [23], copyright (1999) by the American Physical Society. (b) Only
numerical approximations of the ideal trefoil are known [20, 4, 1]. (c) The depicted ideal link is a member of
a whole family. For example the configuration stays ideal when rotating the loop on the left out of the drawing
plane [3]; reprinted with permission from [2]. (d) Assuming some natural symmetries the ideal Borromean
rings are one of the most complex analytically known ideal shapes [22] (cf. [2]).

if one replaces the unit sphere with other supporting manifolds such as the standard
torus or higher-dimensional spheres or even R3, then the issue of analyzing the shapes
of optimally packed ropes is wide open; see for example the interesting conjectures
in [16].

Thickness as defined in (1.1) can be attributed to curves of low regularity, which
turned out to be useful to prove general existence results for thick elastic rods and
ideal knots and links [12, 3, 10]. An ideal knot or link, in particular, is a minimizer
of ropelength, the quotient of length and thickness, within its isotopy class. The only
analytically known ideal knot, however, is the circle. Cantarella, Kusner, and Sullivan
[3] have identified several families of ideal links (see Figure 10(c)), whereas the shape
of the ideal trefoil depicted in Figure 10(b) is only a numerical approximation. In gen-
eral questions regarding shape, uniqueness, and even regularity of ideal configurations
are open.
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