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Abstract. Many different physical systems, e.g. super-coiled DNA molecules, have been
successfully modelled as elastic curves, ribbons or rods. We will describe all such systems
asframed curves, and will consider problems in which a three dimensional framed curve has
an associated energy that is to be minimized subject to the constraint of there being no self-
intersection. For closed curves the knot type may therefore be specified a priori. Depending
on the precise form of the energy and imposed boundary conditions, local minima of both
open and closed framed curves often appear to involve regions of self-contact, that is, regions
in which points that are distant along the curve are close in space. While this phenomenon
of self-contact is familiar through every day experience with string, rope and wire, the
idea is surprisingly difficult to define in a way that is simultaneously physically reasonable,
mathematically precise, and analytically tractable. Here we use the notion of global radius
of curvature of a space curve in a new formulation of the self-contact constraint, and exploit
our formulation to derive existence results for minimizers, in the presence of self-contact,
of a range of elastic energies that define various framed curve models. As a special case we
establish the existence ofideal shapesof knots.

Mathematics Subject Classification (2000):49J99, 53A04, 57M25, 74B20, 92C40

1. Introduction

The basic question we address is the existence of curves that minimize one of a
variety of prescribed elastic energies, all subject to the constraint that some tube
surrounding the curve does not intersect itself. Elastic curves subject to this type
of constraint provide a model for physical objects that exhibit self-contact, such
as those illustrated in Fig. 1. Figure 1a is an image of a bacterium which appears
to exhibit extended regions of self-contact between nearly helical segments and
circular arcs. Figure 1b is an electron-micrograph of a DNA fragment which, after
drying onto a planar substrate, exhibits a small overhand knot and regions of both
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Fig. 1. Images of four different physical systems exhibiting the phenomenon of self-contact
of a tube-like object: (a) an image of the bacteria B. subtilis (courtesy of M.J. Tilby [28]), (b)
an electron-micrograph of a DNA fragment (courtesy of A. Stasiak [27]), (c) a photograph
of a knottedmetal wire loop (actually a ‘Jumping Knot’ of J. Langer, with the apple included
for scale and enhanced three-dimensionality), (d) a numerically computedidealshape of a
trefoil knot (image generated by smoothing data of [16]).

point and extended self-contact. Figure 1c is a photograph of a knotted metal wire
loop which apparently exhibits three regions of line contact, and Fig. 1d illustrates
a numerically computedideal shapeof a knotted closed loop which exhibits self-
contact along its entire length (seeSection5 for further explanationof this problem).
Perhaps the most familiar example of all is the tightly coiled, helical cord used on
many telephones. The objective of this article is to develop amathematically precise
model of the phenomenonof self-contact of such tubular objects, whichwedescribe
as framed curves, and to use this characterization to demonstrate the existence of
minimizers, in appropriate function spaces, for various elastic energies, all subject
to our self-contact constraint.

For our purposes, the dominant feature in all four of the examples depicted in
Fig. 1 is the phenomenonof self-contact of a physical object that has thegeometrical
properties of a tube.When such a tube is described by its centreline curve, points of
self-contact on the tubular surface correspond to pairs of points along the centreline
that are close in space, but not necessarily close in arclength. The condition that the
tube not pass through itself, or self-intersect, is transferred to the centreline curve;
in particular, the centreline is kept suitably far from self-intersection.

There are various ways to prevent a curve from self-intersecting. One intuitive
mechanical approach is to introduceexplicit repulsive forcesbetweenpairs of points
along the curve; for example, a repulsive force which is inversely proportional to
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some power of the pairwise Euclidean distance. Such forces certainly discourage
self-intersection, and can even be made to prevent it, but they typically need to
be regularized in some way to account for points immediately adjacent in arc-
length. The necessity for this regularization can lead to non-trivial mathematical
and computational difficulties (see for example [10], [22], [31]). Natural choices
for repulsive forces may be available depending on the detailed physics of the
system, for example electrically charged polymers such as DNA, and the study of
discretized curves subject to these types of forces has been the subject of several
investigations (see for example [24], [32]).

An alternative, purely geometrical, way to prohibit self-intersections of a curve
can also be considered. Supposing that the curve is the centreline of a solid tube
of uniform diameter, the physical volume occupied by the tube material keeps the
curve from self-intersecting at a global level, and also restricts how tightly the curve
canbendat a local level. Suchamodel certainly seemspertinent for themacroscopic
wire example illustrated in Fig. 1c, where the hard surface of thewire touches itself.
For the bacterium shown in Fig. 1a it is possible to imagine that both the local and
global effects of self-avoidance are active at different places. In this viewpoint the
obstruction to self-intersection is purely geometrical; the finite volume of the tube
imposes a constraint on the configuration of the centreline curve. This condition
is typically referred to as an excluded volume, hardcore or steric constraint in the
polymer physics literature; the estimation of its effects on the statistical properties
of polymer chains is a classic problem that has been studied within the context of
piece-wise linear chain models [8]. Various forms of a geometric excluded volume
constraint have also been used specifically in the mechanical modelling of DNA,
for example [4], [6], [29]. The geometrical notion of self-avoidance also lies at the
heart of the study of ideal shapes of knotted curves as discussed for example in [2],
[16] and [21].

In this article we present a new mathematical characterization of the geometric
excluded volume constraint, and study the set of admissible curves that it defines.
Moreover, we prove the existence of minimizers within our admissible set for
a range of curve energies pertinent to modelling physical systems such as those
illustrated inFig. 1. Suchexistence results are of independentmathematical interest,
but in addition they indicate that a particularmathematical formulation of a physical
model is well-posed, and they also contribute to the efficient design of associated
numerical algorithms by providinga priori information on the regularity of the
solutions that are being sought.

While the geometric excluded volume constraint is physically appealing and
intuitively clear, it is surprisingly difficult to formulate in an analytic way that is
sufficiently tractable for existence studies. We believe the concept from differential
geometry of normal injectivity radius (see, for example, [7, p. 271]) to be the only
prior, precise definition of the self-avoidance condition for curves that have not
been discretized in some way. Both the global and local properties of the excluded
volume constraint are captured in the idea of the normal injectivity radius, which
can be outlined as follows. At each point along a sufficiently smooth curveγ one
constructs a circle in the normal plane to the curve, centred on the curve and of
constant radius along the curve. For a sufficiently small radius, the tubular envelope
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of these circles will be smooth. The normal injectivity radius, here denotedInj[γ],
is then the smallest radius at which the envelope develops a singularity. The first
singularity may be local, when the radius of the circle equals the local radius of
curvature of the curve, or non-local, when two circles centred on non-adjacent
points touch.

For a physical tube of uniform radiusθ > 0, the excluded volume constraint
on its centrelineγ can then be expressed as the lower boundInj[γ] ≥ θ. That is,
the normal injectivity radius of the centreline must be at least as large as the radius
of the tube, and equality is achieved when the tube is in self-contact, or is locally
bent as severely as allowed. For example, in Fig. 1c, the geometrical self-avoidance
condition for a tube of uniform small radius seems to be an excellent physical
approximation for modelling self-contact of the wire. In the configuration shown,
the centreline satisfiesInj[γ] = θ because the tube actually achieves self-contact at
a number of distinct points. If the wire were to be mildly deformed so as to avoid
self-contact, then the centreline would satisfyInj[γ] > θ, but then the configuration
would presumably no longer minimize the elastic energy of bending and twisting
of the wire.

For our objective of deriving existence results, the difficulty with the classic
definition of normal injectivity radius is that it is implicit, i.e. only given through
a geometrical construction, and it has no apparent, simple analytic representation.
We therefore extend to a class of curvesγ sufficiently large to obtain existence
results, the observation of [12] that for sufficiently smooth curvesγ the normal
injectivity radiusInj[γ] can be given an alternative characterization in terms of a
quantity calledglobal radius of curvature. Our most general definition of global
radius of curvature is deferred until Section 2, but the central ideas can be explained
within the context of curvesγ that are twice differentiable, and which have only
transversal crossings (i.e.wherever the curve intersects itself the two tangent vectors
are distinct). For such curves we define

∆[γ] := inf
x,y,z∈γ

x�=y �=z �=x

r(x, y, z) (1)

wherer(x, y, z) denotes the radius of the unique circle through the three distinct
pointsx, y andz. Then it is straightforward to argue, as in [12], that the infimum in
(1) corresponds to one of three cases: (i) In the limit, all three points in aminimizing
sequence coalesce at a pointζ at which the radius of curvature is minimal along
the curve, the limiting circle is the osculating circle atζ, and∆[γ] is the radius
of curvature atζ. (ii) In the limit, two points coalesce to a pointζ1 with the third
converging to a different pointζ2, and the circle is tangent to the curve at bothζ1
andζ2, with both tangents orthogonal to the chordζ1 − ζ2. In other words,∆[γ]
is half of the distance between a pair of points(ζ1, ζ2) of closest approach. This
possibility of a pair of points of closest approach includes the case in which the
curveγ has a transversal self-intersection, for then there is a sequence of circles
whose radius approaches zero, i.e.∆[γ] = 0. (iii) Or, for open curves, there are
various other possibilities involving an end-point. Given these remarks it is then
apparent that, neglecting any end-point effects,∆[γ] = Inj[γ]. In particular, cases
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(i) and (ii) are just the two possible ways, local and global, in which the normal
injectivity radius can be achieved.

In fact for each pointx ∈ γ we may define theglobal radius of curvature
function

ρG(x) = inf
y,z∈γ

x�=y �=z �=x

r(x, y, z). (2)

Then the contact set can be interpreted as pointsx at which the global radius of
curvature achieves itsminimal value, i.e. the infimumdefined in (1). For example, in
Fig. 1d, (a numerical discretization of) a tube of uniform radius and prescribed knot
type has been made as short as possible, that is, the knot has been made very tight.
Such a configuration is called anideal shapeof the knot [16]; a mathematically
precise, definingproperty is that thearclengthof thecentrelineγ isminimal amongst
curves of the prescribed knot type when subject to the excluded volume constraint
∆[γ] ≥ θ. In Fig. 1d the tube is (up to computational tolerance) everywhere in
self-contact, so that the global radius of curvature is constant, which satisfies a
necessary condition for ideality derived in [12]. (The numerics indicate that the
usuallocal radius of curvature on this ideal shape is far from being constant.)

One of the main objectives of the present article is to extend appropriately the
definitions (1) and (2) to curvesγ that are nota priori smooth, and thereby to
obtain an analytic characterization of normal injectivity radius in a manner that
is largely independent of curve regularity. This objective is achieved in Section 2.
More precisely, working in the space of closed curvesγ with a parameterization in
W 1,q (q ≥ 1) we find that the constraint

∆[γ] ≥ θ > 0 (3)

actually implies the existence of an arclength parameterization inW 2,∞ (or equiv-
alentlyC1,1) for γ, and that the set of curves satisfying (3) is closed under weak
convergence inW 1,q (q > 1). Consequently, by standard direct methods we obtain
existence of constrained minimizers for a variety of physically pertinent energies,
including those arising in the usual elastic rod theories, and the integral of squared
curvature on curves of prescribed arclength. Moreover, for closed curves in the
set (3), knot types (along with a prescribed link in the case of framed curves) are
also preserved under weak convergence, which implies existence of constrained
minimizers for each type.

The presentation is structured as follows. In Section 2 we define global radius
of curvature precisely, and develop properties of the constraint set (3) as discussed
above. In Section 3 we introduce the concept of a framed curve and establish an
abstract existence theorem for minimizers of a general class of energy functions
defined on framed curves lying in weakly closed sets. This result can be applied to
many models involving elastic strings and rods because we show that link classes
and typical boundary conditions for framed curves are weakly closed. In Sections
4 and 5 we specialize the general result to some particular models and boundary
conditions. In Section 4 we consider the closed configurations of a wide class of
elastic rods, that, for example, provide a model of the system illustrated in Fig. 1c.
Specifically, we establish the existence of constrained minimizers of the elastic
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energy within each prescribed knot and link class. In Section 5 we consider the
ideal knot problem underlying Fig. 1d, and establish the existence ofC1,1 curves
minimizing arclength within each knot class subject to the constraint (3). Proofs of
all of our results are deferred, without further comment, until Section 6.

2. Global curvature and weak closure

Here we introduce for a rather general space curveγ the global radius of curvature
functionsρG and∆, and the tubular neighbourhoodBθ of radiusθ > 0. We
study various implications of the constraint∆[γ] ≥ θ and show that it provides
a geometrically exact model for the excluded volume constraint onγ imposed by
Bθ when considered as a material tube. To avoid discussion of many special cases
associated with end-points, we consider only closed curves. However, many of the
results carry over to the open case. As some of the arguments justifying our claims
are quite lengthy, we present here a detailed development and explanation of our
conclusions, but all proofs are deferred to Section 6.

2.1. Preliminaries

Throughout our developments we consider the setG of continuous closed curves
γ : Ī → R

3 that possess a Lipschitz continuous arclength parameterizationΓγ :
SL → R

3. HereI = (a, b) is an interval,L ≥ 0 denotes the length ofγ andSL is
the circle with perimeterL; in particular,SL ∼= R/(L · Z). To simplify notation,
we mostly omit the subscriptγ and agree thatΓ , Γk, Γ̃ correspond toγ, γk, γ̃ and
so on. In our analysis we will also consider the Sobolev spacesW 1,q(I,R3) with
q ≥ 1, and we note that closed curves in these spaces are also inG. In particular,
every curveγ ∈ W 1,q(I,R3) has bounded variation and one can find a Lipschitz
continuous arclength parameterization (see [11, vol.II, p. 255]).

A curveγ ∈ G will be calledsimpleif it has no self-intersections, that is, if
its arclength parameterizationΓ : SL → R

3 is injective. Otherwise, the curveγ
will be callednon-simple. In this case there exist pairss, t ∈ SL (s �= t) for which
Γ (s) = Γ (t). Any such pair will be called adouble pointof γ.

We use〈·, ·〉 to denote the standard Euclidean inner product inR
3, and| · | to

denote the (intrinsic) distance between two points inR
3 or SL depending on the

context. To denote the angle between two non-zero vectorsu andv in R
3 we use

<)(u, v) ∈ [0, π]. The distance between a pointx ∈ R
3 and a subsetΣ ⊂ R

3 will
be denoted bydist(x,Σ) and the diameter ofΣ will be denoted bydiam(Σ). For
anyr > 0 we define open neighbourhoods ofx andΣ by

Br(x) = {y ∈ R
3 | |y − x| < r} and Br(Σ) = {y ∈ R

3 | dist(y,Σ) < r}.
WhenΣ is the image of a curveγ ∈ G, or equivalently its corresponding

arclength parameterizationΓ : SL → R
3, we callBr(Σ) = Br(Γ (SL)) the

tubular neighbourhoodof γ with radiusr > 0. We say thatBr(Γ (SL)) isnon-self-
intersectingor regular if the closest-point projection mapΠΓ : Br(Γ (SL)) →
Γ (SL) is single-valued and continuous. That is to say, for anyx ∈ Br(Γ (SL))
there is exactly ones(x) ∈ SL such thatΠΓ (x) := Γ (s(x)) satisfies

dist(x, Γ (SL)) = |Γ (s(x))− x|,



Global curvature and self-contact of nonlinearly elastic curves and rods 35

andΠΓ (x) is a continuous function ofx ∈ Br(Γ (SL)). For further justification of
this notion of non-self-intersecting see the discussion following Lemmas 3 and 7.

2.2. Global radius of curvature functions

Motivated by, but also modifying, the analysis presented in [12], we define the
global radius of curvature functionsρG and∆ for space curvesγ as follows.

Definition 1. Consider a curveγ ∈ G with arclength parameterizationΓ (s), s ∈
SL. Then the global radius of curvature ofγ at the pointΓ (s) is given by

ρG[γ](s) :=

{
inf{R(Γ (s), Γ (σ), Γ (τ)) | σ, τ ∈ SL\{s}, σ �= τ }, if L > 0,
0, if L = 0,

(4)

and we denote its infimum by

∆[γ] := inf
s∈SL

ρG[γ](s). (5)

HereR(x, y, z) ≥ 0 is the radius of thesmallestcircle containingx, y andz. When
x, y andz are non-collinear (and thus distinct) there is a unique circle passing
through them and

R(x, y, z) =
|x− y|

|2 sin[<)(x− z, y − z)]| . (6)

Whenx, y andz are collinear and distinct there is no circle passing through all
three points and we defineR(x, y, z) to be infinite, but if two points coincide, say
x = z or y = z, then there are many circles through the three points and we take
R(x, y, z) to be the smallest possible radius namely the distance|x−y|/2.With this
choice the functionR(x, y, z) is not continuous at coincident arguments. Notice
nevertheless that, by definition,R(x, y, z) is symmetric in its arguments.

Thedifferencebetween theglobal radius of curvature functionρG[γ] introduced
in [12] and the one presented above is as follows. In [12], the functionR(x, y, z)
is considered directly only for distinct pointsx, y andz in the image ofγ, and
the various coalescent cases are considered as limits as the points move along
the image ofγ. Then in the case of smooth curves that are either simple or have
only transversal crossings,R(x, y, z) is well-defined and continuous in any of the
limits x → y etc., because the direction of approach along the curve singles out
a unique limiting value ofR(x, y, z). However, the case of parameterized curves
with double-covered regions is problematic. For example, in the definition of [12], a
single-covered and a double-covered circle of radius one each have a global radius
of curvature one everywhere. In contrast, in Definition 1 above, the infimum is
over distinct arclength parameterss, σ andτ in SL andy(σ) = z(τ) is an allowed
competitor providedσ �= τ . Then a double-covered circle of radius one has a global
radius of curvature zero everywhere (while a single-covered circle still has global
radius of curvature one everywhere). In particular, with Definition 1 we have the
following
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Lemma 1. If γ has a double point at the pairs, t ∈ SL (s �= t), thenρG[γ](s) =
ρG[γ](t) = 0. If ∆[γ] > 0, thenγ is simple.

When a closed curveγ is both smooth and simple, the functionsρG[γ] and
∆[γ] are known to be related to the standard local radius of curvatureρ[γ], and to
the thickness or normal injectivity radiusInj[γ] of γ as defined, for example, in
[2] and [7, p. 271]. In particular, one has0 ≤ ρG[γ](s) ≤ ρ[γ](s) for all s ∈ SL
(L > 0) and∆[γ] = Inj[γ], [12]. In this case∆[γ] > 0 is the radius of the thickest
smooth tube that can be centred onγ as discussed in Section 1. In the following
developments we generalize this result to the case whereγ may be non-smooth.

2.3. Regularity results

Here we examine various implications of the condition∆[γ] ≥ θ > 0 whereθ is a
given constant. Our first result is:

Lemma 2. 1 Let γ ∈ G and∆[γ] ≥ θ > 0 for some constantθ. Then the corre-
sponding arclength parameterizationΓ has a Lipschitz continuous tangentΓ ′ with
Lipschitz constantθ−1, i.e.,Γ ∈ C1,1(SL,R3) and

|Γ ′(s1)− Γ ′(s2)| ≤ θ−1|s1 − s2| ∀s1, s2 ∈ SL. (7)

Thus a positive lower bound on∆[γ] imposes a certain amount of regularity on
the curveγ. In particular, while an arbitrary curveγ ∈ G may not even admit a
continuous unit tangent field, those curves satisfying∆[γ] ≥ θ > 0 are guaranteed
to admit a Lipschitz continuous unit tangent field. The existence of this field will
play a central role in many of the following arguments.

Our second result establishes the fact that if a curveγ ∈ G satisfies∆[γ] ≥
θ > 0, thenγ is restricted on how tightly it can bend locally, and on how close it
can come to self-intersection globally.

Lemma 3. Considerγ ∈ G such that∆[γ] > 0 and letΓ ∈ C1,1(SL,R3) de-
note its corresponding arclength parameterization. For a given constantθ > 0 let
Dθ(z, z′) denote the open planar disk of radiusθ centred atz ∈ R

3 perpendicular
to z′ ∈ R

3\{0} and for anys0 ∈ SL let
C(s0, θ) = ∂Dθ(Γ (s0), Γ ′(s0)) and M(s0, θ) =

⋃
z∈C(s0,θ)

Bθ(z).

Then

(i) Γ (SL) ∩M(s0, θ) = ∅ for all s0 ∈ SL iff ∆[γ] ≥ θ,
(ii) diam(Γ (SL)) ≥ 2θ if ∆[γ] ≥ θ,
(iii) Bθ(Γ (SL)) is regular iff∆[γ] ≥ θ,
(iv) ΠΓ has the propertyΠ−1

Γ (Γ (s0)) ∩ Bθ(Γ (SL)) = Dθ(Γ (s0), Γ ′(s0)) if
Bθ(Γ (SL)) is regular.

1 We are grateful to T. Ilmanen who first suggested to us that a result of this nature should
be available.
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Item (i) of the above result implies that if∆[γ] ≥ θ, then an open ball of radiusθ
placed tangent at any pointΓ (s0)may be rotated around the tangent vectorΓ ′(s0)
without intersecting the curve. On the other hand, if∆[γ] < θ, then there is a point
on the curve about which a similar rotation of such a ball could not be effected.
Thus∆[γ] is the radius of the largest ball that can be rotated tangentially about
every point of a curveγ without intersecting it. The proof of item (i) actually shows
that a stronger, local version of this result holds; namely,Γ (SL) ∩M(s0, ρ0) = ∅
if ρ0 := ρG[γ](s0) > 0. The above interpretations also suggest that the inequality
∆[γ] ≥ θ imposes a lower bound on the overall size ofγ, which is the essence of
item (ii).

Items (iii) and (iv) imply that the regularity of the tubular neighbourhood
Bθ(Γ (SL)) is equivalent to the condition∆[γ] ≥ θ, and thatBθ(Γ (SL)) is the en-
velope of disjoint disksDθ(Γ (s0), Γ ′(s0)). Since each pointx ∈ Bθ(Γ (SL)) is in
a unique diskDθ(Γ (s0), Γ ′(s0)) normal to the curve, we deduce thatBθ(Γ (SL))
has the structure of a uniform tube of radiusθ centred onγ. Moreover, according
to item (iii), any tubular neighbourhood of radius larger than∆[γ] would fail to
have this structure. Thus the condition∆[γ] ≥ θ provides a geometrically exact
model for the excluded volume constraint onγ imposed by the tubular neighbour-
hoodBθ(Γ (SL)) when considered as a material tube. This idea will be developed
further in Section 3.

2.4. Weak closedness results

Here we study various implications of the condition∆[γ] ≥ θ > 0 for closed
curvesγ in the Sobolev spacesW 1,q(I,R3), q ∈ (1,∞). Notice that, because such
curves are also inG, a positive lower bound on∆[γ] retains its interpretation as an
excluded volume constraint.

Our first result states that, as a subset ofW 1,q(I,R3), the set of closed curves
satisfying∆[γ] ≥ θ > 0 is weakly closed.

Lemma 4. Let {γn} ⊂ W 1,q(I,R3), q ∈ (1,∞), be a sequence of closed curves
such thatγn ⇀ γ ∈W 1,q(I,R3) and

∆[γn] ≥ θ, ∀n ∈ N (8)

for some constantθ > 0. Thenγ is a closed curve and

∆[γ] ≥ θ. (9)

This result will be particularly useful when studying energy functionals defined on
closed curves inW 1,q(I,R3). In particular, it suggests that standard direct methods
may be used to establish the existence of constrained minimizers.

In our applicationswewill consider energy functionals defined on closed curves
in a fixed isotopy class or knot type in the following sense.

Definition 2. Two continuous closed curvesK1,K2 ⊂ R
3 are isotopic, denoted as

K1 � K2, if there are open neighbourhoodsN1 ofK1,N2 ofK2, and a continuous
mappingΦ : N1 × [0, 1]→ R

3 such thatΦ(N1, τ) is homeomorphic toN1 for all
τ ∈ [0, 1], Φ(x, 0) = x for all x ∈ N1, Φ(N1, 1) = N2, andΦ(K1, 1) = K2.
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Roughly speaking, two curves are in the same isotopy class if one can be con-
tinuously deformed onto the other. The next result states that, as a subset of
W 1,q(I,R3), the set of closed curves in any fixed isotopy class satisfying∆[γ] ≥
θ > 0 is weakly closed.

Lemma 5. Let the sequence{γn} ⊂W 1,q(I,R3) ∩ G, q ∈ (1,∞), satisfy

(i) γn(Ī) � γ1(Ī), ∀n ∈ N,

(ii) ∆[γn] ≥ θ > 0, ∀n ∈ N,

(iii) γn ⇀ γ ∈W 1,q(I,R3) as n→∞.
Thenγ(Ī) � γ1(Ī).

Thus, the excluded volume constraint∆[γn] ≥ θ > 0 prevents a change in knot
type along weakly convergent sequences. The construction of the isotopy mapΦ
betweenγ andγn for n sufficiently large is based on the fact that the corresponding
projectiononto the imageofγn restricted toγ is bijective.This result is important for
the study of energy functionals defined on closed, knotted curves inW 1,q(I,R3).
In particular, it may be used to establish the existence of constrained minimizers
among curves of a fixed knot type.

3. Framed curves and general existence result

Here we introduce the notion of a framed curve(γ,D), whereD is a field of
orthonormal frames along a space curveγ, as a geometric model for physical
objects such as those illustrated in Fig. 1. Then we discuss interpretations of the
excluded volume constraint∆[γ] ≥ θ > 0 and establish a general existence result
concerning the minima of energy functionals defined on framed curves subject
to this constraint. In Sections 4 and 5 we apply our result to models of elastic
rods and strings, which can be interpreted as framed curves with particular energy
functionals. Again proofs are deferred to Section 6.

3.1. Preliminaries

By a framed curve(γ,D)wemean a curveγ : Ī → R
3 equipped with a frame field

D : Ī → SO(3), whereD(s) = (d1(s)|d2(s)|d3(s)) consists of three orthonormal
column-vectorsdi(s) (i = 1, 2, 3) for eachs ∈ Ī = [a, b]. We view the functionD
as a frame field defined alongγ. Thus, the right-handed orthonormal frameD(s) is
attached to the pointγ(s). By aclosed framed curvewemean a framed curve(γ,D)
such thatγ is closed andd3(a) = d3(b). For our analysis we find it convenient
to work with the Sobolev spacesW 1,q(I,R3) andW 1,p(I,R3×3) with q, p ≥ 1,
whereγ ∈W 1,q andD ∈W 1,p. As before, closed curves inW 1,q are also inG.

A framed curve(γ,D) ∈ W 1,q × W 1,p may be uniquely determined from
shape and placement variablesw = (u, v, γ0, D0) ∈ Xp,q

0 with u = (u1, u2, u3)
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andv = (v1, v2, v3) via the equations

d′
k(s) =

[ 3∑
i=1

ui(s)di(s)
]
∧ dk(s) for a.e.s ∈ I, k = 1, 2, 3,

γ′(s) =
3∑

k=1

vk(s)dk(s) for a.e.s ∈ I,

γ(a) = γ0, D(a) = D0,

(10)

whereXp,q
0 := Lp(I,R3) × Lq(I,R3) × R

3 × SO(3), which is a proper subset
of the corresponding Banach spaceXp,q := Lp(I,R3)×Lq(I,R3)×R

3×R
3×3.

The functionsui andvi may be identified as the components, in the moving frame
{di}, of the Darboux vector for the frame fieldD(s) and the tangent vector for the
curveγ(s). Notice thatu andv describe the shape of a framed curve whereasγ0
andD0 describe its spatial placement. The following result will be fundamental to
our developments.

Lemma 6. To each framed curve(γ,D) ∈ W 1,q ×W 1,p, p, q ≥ 1, we can as-
sociate a uniquew = w(γ,D) ∈ Xp,q

0 determined by (10). Conversely, to each
w ∈ Xp,q

0 we can associate a unique framed curve(γ,D) = (γ[w], D[w]) ∈
W 1,q ×W 1,p such that (10) holds.

3.2. Interpreting the excluded volume constraint

There are generally two distinct tubes that can be associated with a closed framed
curve (γ,D) and a constantθ > 0. One tube is defined by the neighbourhood
Bθ(Γ (SL)) as considered in Section 2. Another tube is defined byp(Ωθ), where
p : Ωθ → R

3 is the map

p(σ, ξ1, ξ2) = γ(σ) + ξ1d1(σ) + ξ2d2(σ) (11)

andΩθ is the straight cylinder given by

Ωθ := { (σ, ξ1, ξ2) ∈ R
3 | σ ∈ [a, b), ξ21 + ξ22 < θ

2}.

The excluded volume constraint∆[γ] ≥ θ prevents the tubeBθ(Γ (SL)) from
self-intersecting. However, as amodel for a physical object, it is the points ofp(Ωθ)
that are naturally identifiedwithmaterial points, and theexcludedvolumeconstraint
should guarantee the global injectivity of the mappingp : Ωθ → R

3. Along these
lines we have the following

Lemma 7. Consider a closed framed curve(γ,D) ∈W 1,q ×W 1,p, p, q ≥ 1, and
letw = (u, v, γ0, D0) ∈ Xp,q

0 be its shape and placement variables determined by
(10). Suppose that∆[γ] > 0 andv = (0, 0, v3) with v3 > 0. Thenp : Ωθ → R

3 is
globally injective iff∆[γ] ≥ θ > 0.
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The conditionv = (0, 0, v3) with v3 > 0 implies that the frame fieldD is
adapted toγ in the sense thatd3(s) is (positively) parallel toγ′(s). In this case,
p(Ωθ)may be identified withBθ(Γ (SL)) and the result follows from the regularity
of Bθ(Γ (SL)) as discussed in Section 2. Thus, whenv = (0, 0, v3) with v3 > 0,
the condition∆[γ] ≥ θ > 0 provides an exact excluded volume constraint for the
material tubep(Ωθ). Whenv is not of this form, the condition∆[γ] ≥ θ > 0 is
not an exact excluded volume constraint forp(Ωθ). Notice thatp(Ωθ) itself is not
a uniform tube of radiusθ if v1 or v2 is non-zero.

3.3. Energy functionals and existence of minimizers

For framed curves(γ,D) = (γ[w], D[w]) with w ∈ Xp,q
0 we consider energy

functionals of the form

E(γ[w], D[w]) = E(w) :=
∫
I

W (u(s), v(s), s) ds (12)

whereW : R
3×R

3×I → R∪{∞} is a specified function. The basic question we
shall address is the existence of framed curves(γ,D) that minimizeE(w) subject
to the excluded volume constraint∆[γ] ≥ θ > 0 and other more typical side
conditions, such as boundary conditions etc. In particular, we consider the problem
of findingw∗ ∈ C ⊂ Xp,q

0 that satisfy

E(w∗) = inf
w∈C

E(w) (13)

whereC is a specified subset ofXp,q
0 . Our main result is contained in the following

Theorem 1. Let1 < p, q <∞ and suppose that

(W1) W (·, ·, s) is continuous and convex for a.e.s ∈ I,
(W2) W (u, v, ·) is Lebesgue-measurable onI for all (u, v) ∈ R

3 × R
3,

(W3) there are constantsc1, c2 ≥ 0 and a functiong ∈ L1(I), such that

W (u, v, s) ≥ c1|u|p + c2|v|q + g(s)
for all (u, v) ∈ R

3 × R
3 and for a.e.s ∈ I.

Furthermore, assume that the setC ⊂ Xp,q
0 is nonempty and weakly closed in

Xp,q and that there is some constantc ≥ 0 such that|γ0| ≤ c for all (u, v, γ0, D0)
∈ C. Then there is a minimizerw∗ ∈ C of (13) if one of the following conditions
holds:

(i) c1, c2 > 0,

(ii) c1 > 0, and there is somêv ∈ R
3 such thatv ≡ v̂ for all w = (u, v, γ0, D0) ∈

C,

(iii) c2 > 0 and there is somêu ∈ R
3 such thatu ≡ û for all w = (u, v, γ0, D0) ∈

C.
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Assumptions (W1)-(W3) are standard for direct methods in the calculus of
variations, and are met by a wide class of functionsW that arise in applications.
Thus, theabove result reduces theexistenceproblem toproving theweakclosedness
inXp,q of the subsetC ⊂ Xp,q

0 ⊂ Xp,q. HereC represents those framedcurves that
satisfy the constraint∆[γ] ≥ θ > 0alongwith any other prescribed side conditions.
We remark that this general existence result remains valid when a potential energy
with at most linear growth is added to the energy functionalE(w).

3.4. Typical side conditions and weak closedness

Here we examine the weak closedness of typical side conditions that enter into the
subsetC of Theorem 1. Our main result in this direction is:

Lemma 8. Let 1 < p, q < ∞ and consider a sequence{wn} ⊂ Xp,q
0 that con-

verges weakly tow ∈ Xp,q ,i.e.,wn ⇀ w in Xp,q. Thenw ∈ Xp,q
0 and

Dn → D in C0(Ī ,R3×3), γn → γ in C0(Ī ,R3), (14)

Dn ⇀ D in W 1,p(I,R3×3), γn ⇀ γ in W 1,q(I,R3), (15)

whereγn := γ[wn], γ := γ[w],Dn := D[wn],D := D[w].

Thus, if a sequence of shape and placement variableswn convergesweakly inXp,q,
then the corresponding sequence of framed curves(γn, Dn) converges uniformly
in C0 × C0, and also weakly inW 1,q ×W 1,p.

We can now provide two prototypes of weakly closed sets that will be useful in
our applications.

Lemma 9. LetK(s) ⊂ R
3 × R

3 be a closed convex set for a.e.s ∈ I and let
F : C0(Ī ,R3)× C0(Ī ,R3×3)→ R be a continuous mapping. Then the sets

(i) C1 := { (u, v, γ0, D0) ∈ Xp,q | (u(s), v(s)) ∈ K(s) for a.e.s ∈ I }
(ii) C2 := {w ∈ Xp,q

0 |F (γ[w], D[w]) = 0 }
are weakly closed inXp,q (p, q > 1).

The setsC1 andC2 are typical in applications involving elastic rods and strings
as will be considered in Sections 4 and 5. Sets of the typeC1 may be considered
within the context of rods to ensure that contiguous cross-sections do not locally
intersect each other and that orientation is locally preserved under deformation (see
[1,Ch.VIII.6]). Sets of typeC2 maybe considered to prescribe pointwise conditions
on both rods and strings, e.g., boundary conditions forγ andD. For example, we
will consider framed curves whereγ is closed and the framesD(a) andD(b) differ
by a prescribed rotation. Notice that the above result remains valid if the equality in
the definition ofC2 is replaced by an inequality. Sets of this type arise in problems
with rigid obstacles, where the material tubep(Ωθ) is constrained to lie in a closed
region ofR3, and in problems with unilateral boundary conditions. Such obstacle
problems for Cosserat rods are studied in [25],[26].

Fixing the endpoint conditions for the frameD, for example specifyingD(a)
= D(b) = D0, does not entirely determine the total amount of twist or link. In fact,
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any framed curve(γ,D) whose frameD turns an integer multiple of2π about the
curveγ satisfies the above boundary condition. In order to identify link classes of
framed curves we make the following

Definition 3. Two continuous mappingsD1, D2 : [a, b] → SO(3) withD1(a) =
D2(a) andD1(b) = D2(b) are called homotopic, denotedD1 ∼ D2, if there is a
continuous mappingΨ : [a, b]× [0, 1]→ SO(3), such that

Ψ(·, 0) = D1(·) and Ψ(·, 1) = D2(·) on [a, b],
Ψ(a, ·) = D1(a) and Ψ(b, ·) = D1(b) on [0, 1].

Roughly speaking, two frame fieldsD1 andD2 are homotopic if for a given curve
γ, the framed curves(γ,D1) and(γ,D2) generate ribbons with the same link. The
next result states that the set of frame fields in any fixed homotopy class define
weakly closed subsets.

Lemma 10. Let{wn} ⊂ Xp,q
0 withwn ⇀ w in Xp,q (p, q > 1) and assume that

Dn := D[wn] ∼ D[w1], ∀n ∈ N. (16)

Thenw ∈ Xp,q
0 andD := D[w] ∼ D[w1].

Thus, for rods and ribbons one can expect to find elastic energy minimizers in each
link class. The construction of the homotopy map betweenD andD1 is based on
the fact that elements close to the identity inSO(3) can be represented by rotation
vectors.

4. Applications to elastic rods

4.1. Rod theory

In this section we outline the special Cosserat theory which describes the behaviour
of elastic rods that can undergo large deformations in space by suffering flexure, tor-
sion, extension and shear. For amore comprehensive presentation see, for example,
Antman [1, Ch. VIII].

4.1.1. Kinematics We suppose that each configuration of an elastic rod can be
modelled by a framed curve(γ,D) ∈W 1,1×W 1,1 together with a mapp : Ωθ →
R

3 as defined in Section 3. In particular, we identify the material rod with the tube
p(Ωθ). Under this identification the curveγ(σ) describes the rod centreline and
the frame fieldD(σ) describes the orientation of the rod cross-sections. The cross-
section attached to a pointγ(σ) on the centreline is spanned by{d1(σ), d2(σ)}
and is parameterized by(ξ1, ξ2). Thus, the particular form ofΩθ given in Section
3 models a rod with circular cross-sections of radiusθ. Notice that cross-sections
are not necessarily always orthogonal to the centrelineγ (which means that the rod
can be sheared), and thatσ is not necessarily the arclength parameter forγ (which
means that the rod can be stretched or compressed).

By Lemma 6, a framed curve(γ,D) ∈W 1,1×W 1,1 can be uniquely identified
with a set of shape and placement variables(u, v, γ0, D0) ∈ X1,1

0 . Energy function-
als for rods can naturally be expressed in terms of the functionsu = (u1, u2, u3)
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andv = (v1, v2, v3), which are typically referred to asstrainswithin the context
of rod theory. Recall thatui andvi are the components, in the moving frame{di},
of the Darboux vector for the frame fieldD(s) and the tangent vector for the curve
γ(s).

We denote a relaxed, or stress-free,reference configurationby (γ̂, D̂) or
(û, v̂, γ0, D0), where the functions(û, v̂) are prescribedmaterial parameters. There
is little loss of generality in assuming, by convention, thatσ is actually the arclength
parameter for this reference centrelineγ̂, and moreover that cross-sections in this
reference configuration are orthogonal toγ̂, so thatv̂ := (0, 0, 1). Nevertheless
notice that̂γ need not be a straight line, becauseû need not be zero.

It is reasonable to demand that the mapp : Ωθ → R
3 describing a material

rod be globally injective. Indeed, this is the essence of the self-contact or excluded
volume constraint studied in this article. Necessary and sufficient conditions for
global injectivity are given in Lemma 7 for a particular class of deformations. It is
also reasonable to demand that the mapp preserve orientation in the sense that

det
[
∂p(σ, ξ1, ξ2)
∂(σ, ξ1, ξ2)

]
> 0 for a.e. (σ, ξ1, ξ2) ∈ Ωθ, (17)

which actually guarantees thatp is locally (but not globally) injective. Because
of the specific form of our domainΩθ, we deduce that (17) is equivalent to the
following set of conditions on the strains:

v3 > 0 and v3 ≥ θ
√
u2

1 + u
2
2 a.e. on I (18)

(see Antman [1, Ch. VIII.6] for related conditions pertaining to more general do-
mains). Below we discuss how these local conditions are related to the conditions
in Lemma 7. Notice that (18) is often replaced by the single necessary condition

v3 > 0 a.e. on I. (19)

4.1.2. ConstitutivemodelsWe consider elastic rods whosematerial response can
be described by astored energy densityfunctionW , depending on(u, v, σ), that
is convex in(u, v) and which satisfies certain growth conditions as discussed in
Section 3. Thetotal elastic energyof the rod is given by

E(u, v) :=
∫
I

W (u(σ), v(σ), σ) dσ.

An explicit dependence onσ in the energy densityW occurs naturally in the case
of inhomogeneous elastic rods, wherematerial propertiesmay vary from one cross-
section to another.

The special case whereW is a (shifted) quadratic in(u, v) plays an important
role in various applications:

W (u, v, σ) =
〈
A(σ)

(
u− û
v − v̂

)
,

(
u− û
v − v̂

) 〉
, (20)
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whereA : I → R
6×6 is a Lebesgue measurable function such thatA(σ) is sym-

metric, positive definite for a.e.σ ∈ I, and(û(σ), v̂(σ)) are the reference strains
defined above.

The particular case ofunshearablerods is defined by the material constraint
v := (v̂1, v̂2, v3) := (0, 0, v3), i.e. the first two components ofv are required to
always take their reference values. Thus the stored energy densityW no longer
depends uponv1 andv2. Notice that the constraintv := (0, 0, v3) together with
(10) impliesγ′ = v3d3, and thatγ′′ generally does not exist even in the weak
sense forv3 ∈ L1. However, when the conditions in (18) are satisfied, we find
that the corresponding arclength parameterizationΓ possesses the weak derivative
Γ ′′ = (u2d1 − u1d2)/v3, which implies that the curvatureκ of γ is given by

κ = |Γ ′′| =
√
u2

1 + u
2
2

v3
(21)

(see Section 6.3 for details). Hence, for unshearable rods, the conditions in (18)
may be written as

v3 > 0 and ρ ≥ θ a.e. on I (22)

whereρ = 1/κ is the local radius of curvature ofγ. Moreover, we find that
Γ ∈ W 2,∞ since the second inequality in (22) implies thatκ ≤ θ−1. Notice
the relation between the conditions in (22), which are equivalent to preservation of
orientation and guarantee local injectivity, and the conditions in Lemma 7, which
guarantee global injectivity. Preservation of orientation requires that the local ra-
dius of curvature be bounded below by the cross-sectional radiusθ, whereas global
injectivity requires the stronger condition that the global radius of curvature be
bounded below byθ.

Unshearable,inextensiblerods are a further specialization. They are defined by
the material constraintv := v̂ := (0, 0, 1), which by (10) yields

γ′=d3 and κ = |γ′′| =
√
u2

1 + u
2
2.

Thus, bothγ andΓ are arclength parameterizations in this case. The first identity
above implies thatγ ∈W 2,1(I,R3). Furthermore, when the conditions in (18) are
satisfied, the second identity above implies thatγ ∈W 2,∞(I,R3).

4.2. Existence of minimizers

Here we establish the existence of rod configurations that minimize a prescribed
elastic energy subject to a self-contact or excluded volume constraint. We consider
three distinct classes of rodmodels: unshearable, inextensiblemodels, generalmod-
els in which shear and extension are allowed, and unshearable, extensible models.
Motivated by Lemmas 3 and 7, we employ a lower bound on the global radius
of curvature as a model for the excluded volume constraint. This approach is in
contrast to those pursued in [10], [22], [31], where various integral energies are
introduced as repulsive potentials, and in [13], [30].
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4.2.1. Unshearable, inextensible modelsA configuration(γ[w], D[w]) of an un-
shearable, inextensible rod is uniquely described by an elementw = (u, v, γ0, D0)
∈ Xp,q

0 where the functionv is constrained to take the value(0, 0, 1). Thus, this
class of rods is described by the set

Xp
0 := {w = (u, v, γ0, D0) ∈ Xp,q

0 | v = (0, 0, 1), γ0 = 0, D0 = Id}

where,without lossof generality,wefixγ0 andD0 toeliminate rigid translationsand
rotations. Notice that the choice ofq is immaterial since the functionv ≡ (0, 0, 1)
is inLq for anyq ∈ (1,∞).

The stored energy densityW for unshearable, inextensible rods reduces to the
formW (u, σ). We assume thatW (·, σ) is continuous and convex for a.e.σ ∈ I,
thatW (u, ·) is Lebesgue measurable onI for all u, and that

W (u, σ) ≥ c1|u|p + g(σ) for all u∈R
3, for a.e.σ∈I, (23)

wherep ∈ (1,∞), c1 > 0, andg ∈ L1(I).
Thebasic problemweconsider is theexistenceofminimizers for the total elastic

energy functional

E(w) = E(u) =
∫
I

W (u(σ), σ) dσ → Min! , w ∈ Xp
0 (24)

subject to the following side conditions on(γ[w], D[w]):

γ[w](b) = γ0, D[w](b) = D1, (25)

∆[γ[w]] ≥ θ, (26)

γ[w](Ī) � k, (27)

D[w] ∼ Q. (28)

HereD1 ∈ SO(3) is a given framewhich coincides withD0 in its last column,θ >
0 is a constant that represents the cross-sectional radius of the rod,k is a continuous
closed curve inR3 that represents a given knot class, andQ : Ī → SO(3) with
Q(a) = D0, Q(b) = D1 is a continuous map that represents a given link class
(cf. Def. 2 and 3). The conditions in (25), together with the assumption onD1,
ensure thatd3[w](b) = d3[w](a), and thatd1[w](b) andd1[w](a) differ by a given
angle. Moreover, these conditions ensure thatγ[w] is closed in theC1-sense since
γ′[w](σ) = d3[w](σ) by the constraint onv.

Thus, we seek energy minimizers for non-self-intersecting, unshearable and
inextensible rods of a prescribed knot and link type where the framesD[w](a) and
D[w](b) differ by a prescribed rotation. Our main result in this direction is:

Theorem 2. Let 1 < p < ∞ and assume that (23) holds. Suppose that there
is an element̃w ∈Xp

0 satisfying (25)-(28). Then the minimization problem (24)-
(28) has a solutionw ∈ Xp

0 , whose corresponding framed curve(γ[w], D[w]) ∈
W 2,p(I,R3)×W 1,p(I,R3×3) has a centreline with an arclength parameterization
Γ ∈ C1,1.
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This result establishes the existence of energyminimizers subject to a geometrically
exact excluded volume constraint. The exactness of (26) as a model for excluded
volume follows from Lemma 7 and the condition onv. An important assumption
in the theorem is the existence of a configuration that satisfies all the imposed side
conditions; in particular, the conditions in (26) and (27). For givenθ andk, these
conditions can be satisfied by rods of sufficiently large length. According to the
remarks following Theorem 1, the above existence result remains valid when a
potential energy with at most linear growth is added to the total elastic energy.
Thus, for example, body forces that do not depend on the deformed shape of the
rod, such as a uniform gravitational field, can also be included. (See [25] for related
problems in which gravitational forces are considered.)

The classic energy involving the integral of the squared curvature (see e.g.
[19],[20],[30]), or in our notation

E =
∫
γ

κ2 ds,

canalsobeconsidered.Thisenergycanbeviewedasasimplemodel of anunframed,
elastic, closed curve. (Note that for such unframed curves a prescribed link type has
no obvious meaning.) The weak closure results of Lemma 4 and Lemma 5 allow
us to conclude the existence of a minimizer of each prescribed knot type when
our excluded volume constraint is enforced and the length of the curve is fixed.
More precisely, we can consider curvesγ ∈W 2,2(I,R3) subject to the constraints
|γ′(s)| = 1 on Ī, γ(b) = γ(a) = 0, γ′(a) = γ′(b) = e, ∆[γ] ≥ θ > 0, and
γ(Ī) � k, wheree is a given unit vector, andk represents a given knot type. Since
the constraints are closed under weak convergence, and since (up to a constant
factor) the integral of the squared curvature dominates theW 2,2 norm‖γ‖ on the
admissible set, standard direct methods can be applied.

4.2.2. General modelsA configuration(γ[w], D[w]) of a general shearable and
extensible rod is uniquely described by an elementw = (u, v, γ0, D0) ∈ Xp,q

0 . We
fix γ0 andD0 to eliminate rigid translations and rotations as before andwe consider
the class of rods described by the set

X̃p,q
0 := {w = (u, v, γ0, D0) ∈ Xp,q

0 | γ0 = 0, D0 = Id}, p, q ∈ (1,∞).

We assume that the stored energy densityW satisfies conditions (W1)-(W3) of
Section 3 withc1, c2 > 0.

The basic problem is the existence of minimizers for the total elastic energy
functional

E(w) :=
∫
I

W (u(σ), v(σ), σ) dσ −→ Min! , w ∈ X̃p,q
0 (29)

subject to the following side conditions on(γ[w], D[w]):

γ[w](b) = γ0 , D[w](b) = D1, (30)

∆[γ[w]] ≥ θ, (31)

γ[w](Ī) � k, (32)

D[w] ∼ Q (33)
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whereD1, θ, k, andQ are as defined in the previous problem. In the case of a
general rod model the second equation in (30) ensures thatd3[w](a) = d3[w](b),
but it does not imply that the tangents of the curveγ[w] are equal at the end points.

Our main result concerning the above problem is:

Theorem 3. Let 1 < p, q < ∞, let (W1)–(W3) be satisfied, and assume that
there is some admissiblẽw ∈ X̃p,q

0 respecting (30)–(33). Then the minimization
problem (29)–(33) has a solutionw ∈ X̃p,q

0 , whose corresponding framed curve
(γ[w], D[w]) ∈W 1,q(I,R3)×W 1,p(I,R3×3) has a centreline with an arclength
parameterizationΓ ∈ C1,1.

This result establishes the existence of energy minimizers for general rod models
subject to the constraint (31). However, in this general case, condition (31) ismerely
an approximatemodel for excluded volumeas discussed inSection 3. As before, the
existence result remains valid when a potential energy with at most linear growth
is added to the total elastic energy.

4.2.3. Unshearable, extensible modelsTheorem 3 also applies in the case of an
unshearable, extensible rod defined byv = (0, 0, v3) (seeSection 4.1) provided that
we appropriately modify the hypothesis (W3). Specifically, the growth condition in
(W3) should be satisfied for all(u, v3) ∈ R

3×R instead of(u, v) ∈ R
3×R

3. This
case can be interpreted as an intermediate one between the general case considered
immediately above, and the unshearable, inextensible one considered earlier.

For the unshearable, extensible case the condition in (31) is an exact model for
excluded volume provided thatv3 > 0 (by Lemma 7). However,v3 > 0 is not a
weakly closed condition in the spirit of Lemma 9, and configurations that satisfy
(31) may not necessarily satisfyv3 > 0. In fact, since the global radius of curvature
cannot exceed the local radius of curvature, we deduce from (21) that (31) implies
only the weaker inequality

v3 ≥ θ
√
u2

1 + u
2
2 a.e. on I (34)

in this case of unshearable rods. Thusv3 = 0 is possible for some subset of
I, but only on straight parts of the rod in accordance with (34). Consequently,
an unshearable rod may fail to be globally injective on such parts. On the other
hand, mechanically realistic energy densities should blow up on regions of large
compression, i.e.,

W (u, v, s)→∞ as v3 − θ
√
u2

1 + u
2
2 → 0 (35)

(cf. Antman [1, Ch. VII.5, VIII]). In the case that this condition holds, we find that
v3 = 0 is possible only on a subset ofI with measure zero. Thus (31) together
with (35) would ensure the global injectivity of an unshearable, extensible rod since
arcs connecting two points on the centreline curve with different parameters have
positive length. Notice that energy densities with property (35) satisfy conditions
(W1)–(W3) and are covered by our existence theory.
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5. Application to ideal knots

Hereweestablish the existence of curves of a prescribed knot type thatminimize the
arclength functional subject to a lower bound on the global radius of curvature. By
Lemma3, this lowerboundprovidesageometricallyexactmodel for theself-contact
or excluded volume constraint imposed on the curve by a tubular neighbourhood
of fixed radius. The basic problem we consider is that of minimizing the functional

L(γ) =
∫
I

|γ′(σ)| dσ → Min!, γ ∈W 1,q, q ∈ (1,∞), (36)

subject to the conditions

γ(b) = γ(a), ∆[γ] ≥ θ and γ(Ī) � γ̃(Ī). (37)

Hereθ > 0 is a constant and̃γ ∈W 1,q is a continuous closed curve that represents
the prescribed knot type and satisfies∆[γ̃] ≥ θ.

A solutionγ of the above problem is called anideal knotin the sense of [2], [16]
and [21]. In other words, an ideal knot is a non-self-intersecting tube of fixed radius
θ > 0 and prescribed knot type with a centreline curveγ of minimal length. Here
we establish an existence result for ideal knots which shows that their centreline
curves are always continuously differentiable. In fact, these curves have arclength
parameterizations of classC1,1, which means that their unit tangent vector fields
are Lipschitz continuous.

To employ the general existence result in Section 3, we merely identify a curve
γ ∈ W 1,q with a framed curve(γ,D) ∈ W 1,q ×W 1,p whereD(s) ≡ D̃. Here
D̃ ∈ SO(3) is an arbitrary fixed frame which plays no role in our developments.
Without loss of generality, we fix the initial pointγ(a) = γ0 to eliminate rigid
translations. Thus, for the ideal knot problem we consider framed curves described
by the set

Xq
0 := {w = (u, v, γ0, D0) ∈ Xp,q

0 | u = (0, 0, 0), γ0 = 0, D0 = D̃},
and we seek minimizers of the functional

E(w) :=
∫
I

|v(σ)| dσ → Min!, w = (u, v, γ0, D0) ∈ Xq
0

subject to the conditions

γ[w](b) = γ0, ∆[γ[w]] ≥ θ and γ[w](Ī) � γ̃(Ī). (38)

In the above form it seems that the ideal knot problem can be treated by The-
orem 1 and our investigations about weakly closed sets. However, the energy to
be minimized here has merely linear growth and does not satisfy (W3) forq > 1.
Nevertheless by showing that the minimization of

∫
I
|v|qdσ (q > 1) also provides

a curve of minimal length, we are able to circumvent this difficulty and obtain the
following

Theorem 4. For q ∈ (1,∞) the minimization problem defined by (36) and (37)
has a solutionγ∗. This curve has an arclength parameterizationΓ∗ ∈ C1,1.
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This result establishes the existence of ideal knots and shows that their centreline
curves have arclength parameterizations of classC1,1. Similar existence results
have been obtained by Kusner and co-workers [17] using ideas related to global
radius of curvature. In addition, Cantarella et al. [3] have proved that an ideal or
tight configuration of an unknotted 3-component link is achieved by centrelines
made up from arcs of circles joined with straight line segments, i.e. a centreline
that isC1,1 and also piecewise smooth, but notC2 overall. Similarly, numerical
data presented in [12] suggest that ideal configurations of some true (but composite)
knots are also notC2. Thus there is some evidence supporting the conjecture that
the regularity established in our existence result above may be quite sharp.

6. Proofs

In this section we provide proofs for the results described in Sections 2 to 5. We
use the same notation as in the corresponding sections.

6.1. Proofs for Section 2

Proof of Lemma 1. For the first implication we assumeL > 0 and that the pair
s, t ∈ SL (s �= t) defines a double point ofγ (there can be no double points if
L = 0). Then, by definition ofρG[γ] andR(x, y, z), we have

ρG[γ](s) = inf{ R(Γ (s), Γ (σ), Γ (τ)) | σ, τ ∈ SL\{s}, σ �= τ }
≤ inf{ R(Γ (s), Γ (t), Γ (τ)) | τ ∈ SL\{s, t} }
= inf{ |Γ (s)− Γ (τ)|/2 | τ ∈ SL\{s, t} }
= 0

and similarly forρG[γ](t). Thus, ifγ is non-simple, then necessarily∆[γ] = 0,
and the second implication follows.��

Proof of Lemma 2. 1. Consider a connected subarcA1 := Γ ([σ0, σ1]) with fixed
endpointsP0 := Γ (σ0) andP1 := Γ (σ1), and suppose thatdiamA1 < 2θ and
|P1−P0| < θ/2, which is possible by choosing|σ1−σ0| sufficiently small. Letl1
be the lens-shaped intersection of all open balls of radiusθ containingP0 andP1
on their boundaries, i.e.,

l1 :=
⋂

z∈C(P0,P1)

Bθ(z),

whereC(P0, P1) := {z ∈ R
3 | |z − P0| = |z − P1| = θ}. We claim that

A1 ⊂ l1. (39)

To see this, suppose for contradiction thatA1 �⊂ l1 and consider the set

Ξ :=
⋃

z∈C(P0,P1)

Bθ(z). (40)
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Then, using the facts thatγ is simple (by Lemma1),diamA1 < 2θ and|P1−P0| <
θ/2, we deduce that there must be a pointP̄ ∈ (A1 ∩ Ξ)\l1. Moreover, we find
that

R(P0, P1, P̄ ) =
|P1 − P0|
2 sinα

< θ, where α := <)(P0 − P̄ , P1 − P̄ ). (41)

Since this contradicts the lower bound∆[γ] ≥ θ wemust haveA1 ⊂ l1 as claimed.
Notice that there is indeed a point̄P ∈ (A1 ∩ Ξ)\l1. Otherwise, we would

havediamA1 ≥ 2θ, because any curve inR3\Ξ connectingP0 andP1 must have
diameter at least as large as the great circle on∂Bθ(z) connectingP0 andP1 outside
of l1 for any of the ballsBθ(z) that generateΞ. Moreover, since|P1−P0| < θ/2,
the portion of such a great circle has diameter2θ.

The result in (41) may be seen by considering the intersection ofΞ with the
plane containing the three non-collinear pointsP0,P1 andP̄ . This intersectionmay
be described by two overlapping planar disksDθ(z1) andDθ(z2) of radiusθ, where
∂Dθ(z1) ∩ ∂Dθ(z2) = {P0, P1}, and we may assume without loss of generality
that P̄ ∈ Dθ(z1)\Dθ(z2). From elementary geometry we recall that, for anyξ ∈
∂Dθ(z1)\{P0, P1}, wehaveθ = |P1−P0|/(2 sinβ)whereβ := <)(P0−ξ, P1−ξ).
To establish (41), we first suppose thatα ∈ (0, π/2). In this case we may choose
ξ ∈ ∂Dθ(z1)\Dθ(z2) such thatβ ∈ (0, α), i.e.,sinβ<sinα, which implies (41).
If we suppose thatα ∈ [π/2, π), then we may chooseξ ∈ ∂Dθ(z1)∩Dθ(z2) such
thatβ ∈ (α, π), i.e.,sinβ < sinα, which also implies (41).

2. Givenσ0, σ1 ∈ SL as above, we next consider a sequenceσn ↓ σ0 (n ≥ 1).
We introducePn := Γ (σn), An := Γ ([σ0, σn]) and the lens-shaped regionln
defined byP0, Pn andθ > 0 as before. Moreover, for eachn ≥ 1, we introduce
the tangent coneTn of ln in P0 as

Tn := {x ∈ R
3 | x = λ(q − P0), λ ≥ 0, q ∈ ln }.

Since|Pn − P0| < θ/2 anddiamAn < 2θ we may use the same argument as in
step 1 to conclude

An ⊂ ln, ∀n ∈ N. (42)

Furthermore, by straightforward geometrical arguments we also find

ln+1 ⊂ ln and Tn+1 ⊂ Tn, ∀n ∈ N. (43)

3. Letαn be the opening angle of the coneTn. Since0 < |Pn−P0| < θ/2 and

sin(αn/2) =
|Pn − P0|

2θ
(44)

we deduceαn ∈ (0, π/2). Moreover, since|Pn − P0| → 0 we deduceαn → 0 as
n→∞.

4. For eachn ≥ 1 we introduce a unit vector

tn := (Pn − P0)/|Pn − P0| ∈ S2,
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which is well-defined sinceσn ↓ σ0 and|Pn − P0| > 0. By definition of the cone
Tn we havetn ∈ Tn, and sinceTm ⊂ Tn (m ≥ n) and the opening angles satisfy
αn → 0, we deduce that{tn}n∈N ⊂ S2 is a Cauchy sequence. Therefore we find
a vector

tR(σ0) := lim
n→∞

Γ (σn)− Γ (σ0)
|Γ (σn)− Γ (σ0)| ∈ S

2.

Notice thattR(σ0) does not depend on the choice of sequenceσn ↓ σ0. In fact,
assuming that a different sequenceσ′

n ↓ σ0 leads to a different unit vectort′R(σ0) �=
tR(σ0), we arrive at a contradiction. In particular, the mixed sequence{σ′′

n} :=
{σ1, σ

′
1, σ2, σ

′
2, . . . } would lead to a Cauchy sequence of unit vectors with no

unique limit. Thus we must havet′R(σ0) = tR(σ0).
5. Given any pointσ0 ∈ SL and two sequencesσn ↓ σ0 andτk ↑ σ0 we have

two well-defined unit tangent vectors atΓ (σ0); namely,tR(σ0) defined as above
and

tL(σ0) := lim
k→∞

Γ (σ0)− Γ (τk)
|Γ (σ0)− Γ (τk)| ∈ S

2.

We claim thattR(σ0) = tL(σ0). To see this, assume for contradiction that
tR(σ0) �= tL(σ0). Consider the lens-shaped regions

lRn :=
⋂

z∈C(P0,Γ (σn))

Bθ(z) and lLk :=
⋂

z∈C(P0,Γ (τk))

Bθ(z)

and the unit vectors

tk := (Γ (τk)− Γ (σ0))/|Γ (τk)− Γ (σ0)|
tn := (Γ (σn)− Γ (σ0))/|Γ (σn)− Γ (σ0)|.

By the same arguments as in step 1 we deduce thatΓ ([τk, σ0]) ∩ lRn = ∅ and
Γ ([σ0, σn]) ∩ lLk = ∅ for all sufficiently largen, k ∈ N. Thus the angleϑ ∈ [0, π]
betweentR(σ0) and−tL(σ0) satisfies0 < ϑ < π. Moreover, since

lim
k,n→∞

<)(tk, tn) = ϑ

and
lim
k→∞

Γ (τk) = lim
n→∞Γ (σn) = Γ (σ0)

we deduce that

lim
k,n→∞

R(Γ (τk), Γ (σn), Γ (σ0)) = lim
k,n→∞

|Γ (τk)− Γ (σn)|
2 sin<)(tk, tn)

= 0,

which contradicts the lower bound∆[γ] ≥ θ > 0. Thus we must havetR(σ0)
= tL(σ0) as claimed.

6. If σ0 is a parameter whereΓ is differentiable, thenΓ ′(σ0) = tR(σ0) =
tL(σ0). This follows from the fact that, ifΓ is differentiable atσ0, then|Γ ′(σ0)|
= 1 and

Γ (σn)− Γ (σ0) = Γ ′(σ0)(σn − σ0) + o(|σn − σ0|)
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for any sequenceσn ↓ σ0. The result follows since

Γ (σn)− Γ (σ0)
|Γ (σn)− Γ (σ0)| =

Γ ′(σ0)(σn − σ0) + o(|σn − σ0|)
|σn − σ0| ·

[
1− o(|σn − σ0|)

|σn − σ0|
]

ando(|σn − σ0|)/|σn − σ0| → 0 as|σn − σ0| → 0.
7. If Γ is differentiable atσ1, σ2 ∈ SL, then

|Γ ′(σ1)− Γ ′(σ2)| ≤ |σ1 − σ2|/θ.

To establish this result, we consider first the case when|Γ (σ1) − Γ (σ2)| < θ/2.
In this case we haveΓ ′(σ1) ∈ T1, and by symmetryΓ ′(σ2) ∈ T1, whereT1 is the
tangent cone ofl1 in Γ (σ1) with opening angleα1 ∈ (0, π/2). Using the fact that

sin(α1/2) = |Γ (σ1)− Γ (σ2)|/2θ

together with the law of cosines we find

|Γ ′(σ1)− Γ ′(σ2)| ≤
√
2− 2 cosα1

= |Γ (σ1)− Γ (σ2)|/θ ≤ |σ1 − σ2|/θ,
(45)

as claimed. In the case when|Γ (σ1) − Γ (σ2)| ≥ θ/2 the result is still true. In
particular, the arc[σ1, σ2] ⊂ SL may be divided into subarcs[τi, τi+1] ⊂ SL
(i = 1, . . .m) such thatτi are points of differentiability (which is possible since
Γ is Lipschitz continuous and hence differentiable almost everywhere),σ1 = τ1,
σ2 = τm+1 and|Γ (τi)− Γ (τi+1)| < θ/2. Applying (45) to the subarcs[τi, τi+1]
and summing yields the required result.

8. We can now show thatΓ ∈ C1,1(SL,R3) and thatΓ ′ has Lipschitz constant
1/θ. To begin, we consider first the subsetS̃L ofSL whereΓ is differentiable. Since
S̃L is dense inSL and by (45) the mapΓ ′ : S̃L → R

3 is uniformly continuous,
we deduce that there is a unique uniformly continuous extensionV : SL → R

3. In
particular,V ∈ C0,1(SL,R3) with Lipschitz constant1/θ. To see that this implies
Γ ∈ C1,1(SL,R3), letσ0 ∈ SL be given and note that sinceΓ ∈ C0,1(SL,R3) is
absolutely continuous we have

Γ (σn)− Γ (σ0) =
∫ σn

σ0

Γ ′(τ) dτ =
∫ σn

σ0

V (τ) dτ

which implies
Γ (σn)− Γ (σ0)

σn − σ0
=

1
σn − σ0

∫ σn

σ0

V (τ) dτ

for anyσn �= σ0. SinceV ∈ C0,1(SL,R3) the limit σn → σ0 is well-defined, i.e.,
Γ ′(σ0) exists and

Γ ′(σ0) = V (σ0), ∀σ0 ∈ SL.
ThusΓ ′ ∈ C0,1(SL,R3) with Lipschitz constant1/θ. ��
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Proof of Lemma 3. 1. For any fixeds0 ∈ SL andθ > 0 let sn ↓ s0,Pn := Γ (sn),
P0 := Γ (s0) and

Cn := C(P0, Pn) := { z∈R
3 | |z − P0| = |z − Pn| = θ }.

Notice thatCn is the circle of radiusρn :=
√
θ2 − |Pn − P0|2/4 centred atyn :=

(Pn+P0)/2 and perpendicular to the unit vector(Pn−P0)/|Pn−P0|. We claim
that

distH(Cn, C(s0, θ))→ 0 as n→∞, (46)

where C(s0, θ) is the circle defined in the statement of the lemma and
distH(A,B) denotes the Hausdorff distance [9, p. 183] between two subsetsA,B
of R

3. To establish this result, we note first thatρn → θ andyn → P0. Moreover,
since∆[γ] > 0, we have by Lemma 2 that(Pn − P0)/|Pn − P0| → Γ ′(s0). Thus
Cn converges to a circle of radiusθ with centreP0 in the plane perpendicular to
Γ ′(s0). Since these properties completely characterizeC(s0, θ) the result follows.

2. The first claim in item (i) is that if∆[γ] ≥ θ > 0, thenΓ (SL)∩M(s0, θ) = ∅
for all s0 ∈ SL. To establish this, we consider the sets

Ξn :=
⋃

z∈Cn

Bθ(z)

as in the proof of Lemma 2. We assume for contradiction that there is a pointP̄ ∈
Γ (SL) ∩M(s0, θ), which impliesdist(P̄ , C(s0, θ)) < θ. Forn ∈ N sufficiently
large, we deduce from (46) thatdist(P̄ , Cn) < θ, which impliesP̄ ∈ Ξn, and
moreover we have|P̄ − P0| > |Pn − P0|. These observations lead to the result
P̄ ∈ Ξn\ln, where

ln :=
⋂

z∈Cn

Bθ(z).

By exactly the same arguments as in the proof of Lemma 2, we arrive at a statement
of the form (41) withP1 replaced byPn. Since this contradicts the lower bound
∆[γ] ≥ θ the first claim in item (i) must be true.

3. The second claim in item (i) is that ifΓ (SL)∩M(s0, θ) = ∅ for all s0 ∈ SL,
then∆[γ] ≥ θ. To establish this result, we assume for contradiction that0 <
∆[γ] < θ and we consider minimizing sequencessn, σn, τn ∈ SL (sn, σn, τn
mutually distinct for eachn) that achieve∆[γ], i.e.,

∆[γ] = lim
n→∞R(Γ (sn), Γ (σn), Γ (τn)).

HereRn := R(Γ (sn), Γ (σn), Γ (τn)) is the radius of the unique circleHn defined
by the three distinct pointsΓ (sn), Γ (σn) andΓ (τn). (Recall thatΓ is simple by
Lemma1andhasaLipschitz continuous tangent field by Lemma2since∆[γ] > 0.)
SinceSL is compactwemayassume thatsn → s̄,σn → σ̄ andτn → τ̄ , andwithout
loss of generality, we have only three kinds of minimizing sequences: (a)s̄, σ̄, τ̄
distinct, (b)s̄ �= σ̄ = τ̄ or (c) s̄ = σ̄ = τ̄ . We claim that sequences of type (a) need
not be considered, and those of type (b) and (c) lead to the required contradiction.
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To see that sequences of type (a) may be excluded from consideration, we
suppose that∆[γ] is achieved by distinct parameterss̄, σ̄ andτ̄ , which correspond
to three distinct points onΓ . LetH̄ denote the unique circle defined by these points
and Φ̄ the unique sphere that contains̄H as a great circle. Unless the curveΓ
is tangent toΦ̄ at one of these points, we obtain an immediate contradiction, for
otherwise we may shrink̄Φ and find three other distinct points that define a circle
of radius smaller than∆[γ]. Assuming the tangency is atΓ (σ̄), the circle through
Γ (s̄) and tangent toΓ atΓ (σ̄) is onΦ̄, and hence has radius less than or equal to
the great circle radius. Since this circle may be obtained as the limit of a sequence
of type (b), we conclude that∆[γ] can never exclusively be achieved by a sequence
of type (a).

If ∆[γ] < θ is achieved by a sequence of type (b), then there is a circle
of radiusδ = ∆[γ] that is tangent toΓ at Γ (σ̄) and containsΓ (s̄) �= Γ (σ̄).
ThusΓ (s̄) ∈ M(σ̄, δ)\{Γ (σ̄)} ⊂ M(σ̄, θ), which contradicts the hypothesis that
Γ (SL) ∩M(s0, θ) = ∅ for all s0 ∈ SL.

If ∆[γ] < θ is achieved by a sequence of type (c), we also arrive at a contra-
diction. To see this, letpn denote the centre of the circleHn and without loss of
generality assumesn < σn < τn. Thus

|Γ (sn)− pn| = |Γ (σn)− pn| = |Γ (τn)− pn| = Rn

andRn → δ < θ whereδ = ∆[γ]. By applying the Mean Value Theorem to
the differentiable functionf(s) = |Γ (s) − pn|2, s ∈ [sn, σn], we deduce that
there existss−,n ∈ (sn, σn) such thatΓ (s−,n)− pn is perpendicular toΓ ′(s−,n).
Similarly, there existss+,n ∈ (σn, τn) such thatΓ (s+,n) − pn is perpendicular
to Γ ′(s+,n). Following the same arguments as in the proof of Lemma 2 we must
haveΓ (s−,n) ∈ l−,n andΓ (s+,n) ∈ l+,n for n sufficiently large. Herel−,n is the
lens-shaped region defined byΓ (sn),Γ (σn) andδ > 0, andl+,n defined byΓ (σn),
Γ (τn)andδ > 0, as inLemma2.Sincediam(l±,n)→ 0andRn → δ < θ it follows
thatδ±,n := |Γ (s±,n)− pn| < θ for n sufficiently large, and we may assume that
δ−,n ≤ δ+,n. This impliesΓ (s−,n) ∈ M(s+,n, δ+,n)\{Γ (s+,n)} ⊂ M(s+,n, θ),
which contradicts the hypothesis thatΓ (SL)∩M(s0, θ) = ∅ for all s0 ∈ SL. Thus
we must have∆[γ] ≥ θ as claimed.

4. To establish the claim in item (ii) we assume∆[γ] ≥ θ and we consider any
two pointsP1 = Γ (s1) andP2 = Γ (s2) (s1, s2 ∈ SL) that realize the diameter,
i.e.,d := diamΓ (SL) = |P1 − P2|. Then the functionf1(τ) := |P1 − Γ (τ)| has
a local maximum ats2, andf2(τ) := |P2 − Γ (τ)| ats1. SinceΓ ∈ C1,1(SL,R3)
we deduce that the tangent vectorsΓ ′(s1) andΓ ′(s2)must be perpendicular to the
chordΓ (s1) − Γ (s2). Assumingd < 2θ we arrive at a contradiction to item (i),
since thenΓ (s1) ∈M(s2, θ). Thus we must haved ≥ 2θ as claimed.

5. The first claim in item (iii) is that if∆[γ] ≥ θ > 0, then the tubular neigh-
bourhoodBθ(Γ (SL)) is regular as defined in Section 2.1. To show that the closest-
point projection mapΠΓ is well-defined forx ∈ Bθ(Γ (SL)), we note that if
dist(x, Γ (SL)) = 0, thenx = ΠΓ (x) is well-defined sinceγ is simple by Lemma
1. If 0 < dist(x, Γ (SL)) < θ, then there is at least one points ∈ SL such that
|x − Γ (s)| = dist(x, Γ (SL)) sinceΓ (SL) is a compact set. For any suchs the
differentiable functionf(t) := |x − Γ (t)|2 has the propertyf(t) ≥ f(s) := δ2
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for all t ∈ SL whereδ < θ. Thus0 = f ′(s) = 2〈x− Γ (s), Γ ′(s)〉. If there were
another pointσ ∈ SL with f(σ) = f(s) (s �= σ) then

Γ (σ) ∈ ∂Bδ(x)\{Γ (s)} ⊂ Bθ(y) ⊂M(s, θ)

wherey := Γ (s) + θ(x − Γ (s))/|x − Γ (s)|, which contradicts item (i). Hence
ΠΓ : Bθ(Γ (SL)) → Γ (SL) given byΠΓ (x) := Γ (s(x)) for x ∈ Bθ(Γ (SL)) is
well-defined. Assuming for contradiction thatΠΓ is not continuous, we could find
a sequencexn → x ∈ Bθ(Γ (SL)) and a constantc>0with |ΠΓ (xn)−ΠΓ (x)| ≥
c. SinceΓ (SL) is compact, we may assume thatΠΓ (xn) → p ∈ Γ (SL) with
|p−ΠΓ (x)| ≥ c. Using the continuity of the distance functiondist(·, Γ (SL)) and
the uniqueness ofs(x) we obtain

dist(x, Γ (SL)) = |x−ΠΓ (x)| < |x− p| = lim
n→∞ |xn −ΠΓ (xn)|

= lim
n→∞dist(xn, Γ (SL)) = dist(x, Γ (SL)),

which isacontradiction.ThusΠΓ is alsocontinuousand the regularityofBθ(Γ (SL))
is established.

6.Thesecondclaim in item (iii) is that ifBθ(Γ (SL)) is regular, then∆[γ] ≥ θ >
0. To establish this claim, we assumeBθ(Γ (SL)) is regular which, by definition,
implies thatγ is simple. We assume for contradiction that∆[γ] < θ, which implies
there is a points0 ∈ SL such thatρG[γ](s0) < θ. Then, by Definition 1, there exist
distinct pointss1, s2 ∈ SL different froms0 such that0 < ρG[γ](s0) ≤ δ < θ
whereδ = R(Γ (s0), Γ (s1), Γ (s2)). Moreover, sinceγ is simple, the pointsΓ (s0),
Γ (s1) andΓ (s2) are distinct. These points define a unique circleC of radius
δ, and we denote the centre ofC by p. Without loss of generality we assume
0 = s0 < s1 < s2 < L and we consider the disjoint, open subarcs ofSL defined
byD0 = (s0, s1), E1 = (s1, s2) andE2 = (s2, s0).

Since |p − Γ (si)| = δ (i = 0, 1, 2) we havedist(p, Γ (SL)) ≤ δ < θ
which impliesp ∈ Bθ(Γ (SL)). Moreover, we must have the strict inequality
dist(p, Γ (SL)) < δ since by hypothesis there is a uniques(p) ∈ SL such that
dist(p, Γ (SL)) = |p− Γ (s(p))|. Thuss(p) �= si (i = 0, 1, 2) and we may assume
s(p) ∈ D0.

We next consider the subarcD1 = E1 ∪ {s2} ∪ E2 so thatSL = D0 ∪D1 ∪
{s0, s1}, and we consider the line segment betweenp andΓ (s2), i.e.,

x(α) = (1− α)p+ αΓ (s2), α ∈ [0, 1].

This segment has the properties thatx(0) = p, x(1) = Γ (s2),

|x(α)− Γ (s2)| < |x(α)− Γ (si)|, 0 < α ≤ 1 (i = 0, 1)

andx(α) ∈ Bθ(Γ (SL)) for 0 ≤ α ≤ 1. To obtain the required contradiction,
notice that

dist(x(α), Γ (SL)) ≤ |x(α)− Γ (s2)|
< |x(α)− Γ (si)| 0 < α ≤ 1 (i = 0, 1),
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which impliesΠΓ (x(α)) �= Γ (si) for0 < α ≤ 1 (i = 0, 1).However,ΠΓ (x(0)) =
Γ (s(p)) ∈ Γ (D0) andΠΓ (x(1)) = Γ (s2) ∈ Γ (D1). Thus the image of the line
segmentx(α) under the mapΠΓ is disconnected. Since this contradicts the hy-
pothesis thatBθ(Γ (SL)) is regular we must have∆[γ] ≥ θ as claimed.

7. To establish the claim in item (iv) we assume thatBθ(Γ (SL)) is regular.
Then for eachx ∈ Bθ(Γ (SL)) there is a uniques = s(x) ∈ SL such that|x −
Γ (s)| < θ and 〈x− Γ (s), Γ ′(s)〉 = 0. Notice that for each pointx in a given
normal diskDθ(s0) := Dθ(Γ (s0), Γ ′(s0)) the points0 has these properties, which
implies s(x) = s0 for all x ∈ Dθ(s0). ThusΠΓ (Dθ(s0)) = Γ (s0). Assuming
for contradiction that there is a pointy ∈ Bθ(Γ (SL))\Dθ(s0) such thatΠΓ (y) =
Γ (s0), wemust have〈y − Γ (s0), Γ ′(s0)〉 = 0, which impliesy ∈ Dµ(s0)\Dθ(s0)
for someµ ≥ θ. However, for such a point we would havedist(y, Γ (SL)) ≥ θ,
which is a contradiction. The claim follows.��

Proof of Lemma 4. 1. The Sobolev embeddingW 1,q(I,R3) ↪→ C0,1−1/q(I,R3)
implies uniform convergence

γn → γ in C0(I,R3). (47)

Thus the limit curveγ is closed.BecauseofLemma3and (47)wehavediam(Γ (SL))
≥ 2θ, henceL > 0 andγ is not a single point.

2. The limit curveγ is simple. If this were not the case, we could finds1, s3 ∈
SL (s1 �= s3) such thatΓ (s1) = Γ (s3), where we may assume without loss of
generality that0 = s1 < s3 < L. LetD denote the open subarc ofSL defined by
(s1, s3) of length |s3 − s1| and letE denote the complementary open subarc of
lengthL − |s3 − s1|. Since the curves defined by restrictingΓ toD andE each
have positive length and hence positive diameter, we can find a points2 ∈ D and
a points4 ∈ E such thatΓ (s2) �= Γ (s4), with each of these points distinct from
Γ (s1). These two points may be found by considering the intersections ofΓ (D)
andΓ (E) with two spheres of different diameter centred atΓ (s1).

Assume without loss of generality that0 = s1 < s2 < s3 < s4 < L, let
δ := min{ |Γ (s1) − Γ (s2)|, |Γ (s1) − Γ (s4)|, θ} and leta = t1 < t2 < t3 <
t4 < b be parameters such thatγ(ti) = Γ (si) (i = 1, . . . , 4). Moreover, let
σi ∈ SLn be the arclength parameters forti on γn, i.e., Γn(σi) = γn(ti) and
0 = σ1 < σ2 < σ3 < σ4 < Ln. Since each curveγn satisfies the hypotheses
of Lemma 3 we notice first thatΠΓn is continuous onBθ(Γn(SLn)). Moreover,
from (47) we deduce that there exists anN such that|γn(ti)− γ(ti)| < δ/8 for all
n ≥ N (i = 1, . . . , 4).

We next consider the line segment

x(α) = αΓn(σ1) + (1− α)Γn(σ3), α ∈ [0, 1].

This segment has the property thatdist(x(α), Γn(SLn
)) ≤ δ/4, which implies

x(α) ∈ Bθ(Γn(SLn
)), for all α ∈ [0, 1] and alln ≥ N . Thus we clearly have the

strict inequality

|x(α)−ΠΓn(x(α))| < 3δ/8, ∀α ∈ [0, 1], ∀n ≥ N.
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Since for eachn ≥ N we haveΠΓn
(x(0)) = Γn(σ3) andΠΓn

(x(1)) = Γn(σ1),
but

|Γn(σi)− x(α)| ≥ δ/2, ∀α ∈ [0, 1], (i = 2, 4),

we conclude that the image of the line segmentx(α) under the continuous map
ΠΓn

cannot be connected. Since this contradicts the continuity ofΠΓn
the curveγ

must be simple as claimed.
3. The limit curveγ satisfies the lower bound∆[γ] ≥ θ. To establish this claim,

we assume for contradiction that there is a points0 ∈ SL such thatρG[γ](s0) <
θ. Then, by Definition 1 and the fact thatγ is simple, there exist distinct points
s1, s2 ∈ SL different froms0 such that

R(Γ (s0), Γ (s1), Γ (s2)) =
|Γ (s2)− Γ (s0)|

2 sinα
< θ (48)

whereα := <)(Γ (s0)−Γ (s1), Γ (s2)−Γ (s1)) ∈ (0, π). By (47), we can find three
distinct pointsΓn(σi) that converge toΓ (si) (i = 0, 1, 2). For sufficiently largen
we thus have

R(Γn(σ0), Γn(σ1), Γn(σ2)) =
|Γn(σ2)− Γn(σ0)|

2 sinαn
< θ

whereαn := <)(Γn(σ0)− Γn(σ1), Γn(σ2)− Γn(σ1)) ∈ (0, π). Since this contra-
dicts the hypothesis∆[γn] ≥ θ we must have∆[γ] ≥ θ as claimed. ��

Proof of Lemma 5. By equation (47) we may considern∈N so large that‖γn −
γ‖C0 < θ/2, in particularγ(I) ⊂ Bθ(Γn(SLn

)). It suffices to show that the
projectionΠ

Γn|Γ : Γ → Γn is a bijective mapping forn sufficiently large. In fact,

then we can argue as follows: Forz := Γn(σ) andz′ := Γ ′
n(σ) there is exactly one

point p(z) ∈ Γ (SL) such thatz=ΠΓn(p(z)), i.e.,p(z) = (Π
Γn|Γ )

−1(z). Hence
we can look at the planar open disksDθ/2(z, z′) andDθ/2(p(z), z′) of radiusθ/2
centred atz ∈ Γn(SLn) andp(z) ∈ Γ (SL) respectively, perpendicular toz′ and
define the open neighbourhoods

Nn :=
⋃

z∈Γn(SLn )

Dθ/2(z, z′) and

Ñn :=
⋃

z∈Γn(SLn )

Dθ/2(p(z), z′).

ByLemma3we readily see thatNn is just the openθ/2-neighbourhoodofΓn(SLn
)

and by (49) belowÑn is an open neighbourhood ofΓ (SL) at least for largen∈N.
In fact, we can use the same argument as the one at the end of the proof showing
that the setJn considered there is open forn sufficiently large.

The desired isotopyγ(I) � γn(I) � γ1(I) for n sufficiently large is fur-
nished by the following mappingΦ : Ñn × [0, 1]→ R

3 defined as

Φ(x, τ) := x+ τ
[
ΠΓn(x)− (Π

Γn|Γ )
−1(ΠΓn(x))

]
for x∈Ñn, τ∈[0, 1].
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In fact,Φ is continuous withΦ(x, 0) = x for all x ∈ Ñn, Φ(Ñn, 1) =Nn, since
Φ(., 1) is just the translation of the planar diskDθ/2(p(z), z′) ontoDθ/2(z, z′) for
eachz∈Γn(SLn

). Moreover, for allp∈Γ (SL)
Φ(p, 1) = p+ΠΓn

(p)− (Π
Γn|Γ )

−1(ΠΓn
(p)) = p+ΠΓn

(p)− p = ΠΓn
(p),

henceΦ(Γ (SL), 1) ⊂ Γn(SLn) We even get equality, sinceΠ
Γn|Γ is surjective.

The continuous inverseΦ−1(., τ) of Φ(., τ) is given by

Φ−1(ξ, τ) := ξ − τ[ΠΓn
(ξ)− (Π

Γn|Γ )
−1(ΠΓn

(ξ))
]
for ξ∈Nn, τ∈[0, 1],

since forξ∈Dθ/2(z, z′) one has by Lemma 3

ΠΓn
(ξ) = ΠΓn

(ξ − τ[ΠΓn
(ξ)− (Π

Γn|Γ )
−1(ΠΓn

(ξ))
]
) = z,

which impliesΦ(Φ−1(ξ, τ), τ) = ξ. This way we obtainγ(I) � γn(I) for n
sufficiently large and by assumption (i) alsoγ(I) � γ1(I).

It remains to show thatΠ
Γn|Γ is bijective forn sufficiently large.We first claim

that fors∈SL
lim
n→∞ |〈Γ

′(s), Γ ′
n(σn)〉| = 1, (49)

whereσn∈SLn is the unique parameter such thatΠΓn(Γ (s))=Γn(σn). Assuming
(49) is not true we can find someδ>0 such that for alln0∈N there isn≥n0 such
that

|〈Γ ′(s), Γ ′
n(σn(s))〉| ≤ 1− δ. (50)

Taking subsequences if necessary we can assume that

|Γn(σn(s))− Γ (s)| = dist(Γ (s), Γn) ≤ ‖γ − γn‖C0(I,R3) ≤ 1/n. (51)

LetCn := C(σn(s), θ)be theplanar circle of radiusθ > 0 centredatΓn(σn(s))
perpendicular toΓ ′

n(σn(s)) as introduced in Lemma 3 (i). For someε ∈ (0, θ) to
be specified later we look at the set

Mn :=M(σn(s), θ − ε) :=
⋃

z∈Cn

Bθ−ε(z),

and observe that

Mn ∩Bε(Γn) = ∅, (52)

sinceM(σn(s), θ)∩Γn(SLn
) = ∅ by Lemma 3 (i) applied toγn∈G. Furthermore

the corresponding setM :=M(s, θ) for Γ atΓ (s) satisfies

M ∩ Γ (SL) = ∅. (53)

But (50) implies thatΓ ′
n(σn(s))→ v∈S2 for n→∞ with

|〈Γ ′(s), v〉| ≤ 1− δ (54)
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Fig. 2.Two-dimensional illustration of the set∂Br(Γ (s)) − M ⊂ Mv.

for some further subsequence. Together with (51) this implies

distH(Cn, Cv) −→ 0 for n→∞, (55)

whereCv is the planar circle of radiusθ centred atΓ (s) perpendicular tov and
where distH(., .) is the Hausdorff distance as in the previous proof.

An elementary geometric argument shows that forα := arccos(1 − δ) ∈
(0, π/2], r := θ sin(α/2), ε := θ(1− cos(α/2)) and the set

Mv :=
⋃
z∈Cv

Bθ−ε(z)

the relation(∂Br(Γ (s))−M) ⊂ Mv, holds, i.e.,dist(y, Cv) < θ − ε for all
y ∈ ∂Br(Γ (s))−M. Now from (55) we infer

dist(y, Cn) < θ − ε for all y ∈ ∂Br(Γ (s))−M for n sufficiently large. (56)

Sinceγ has no double points (see Lemma 4 and 1) and is a closed continuous curve
withdiam(γ(Ī))≥2θ (Lemma3 (ii)), it must intersect∂Br−M by (53), say inΓ (s̃)
for somẽs∈SL. This leads to a contradiction, since (51) impliesΓ (s̃)∈Bε(Γn) for
n sufficiently large, but on the other hand by (56)Γ (s̃)∈Mn, i.e.Γ (s̃) �∈ Bε(Γn)
by (52). Hence (49) is proved.

Now we can show thatΠ
Γn|Γ is injective for sufficiently largen. Otherwise

there exist infinitely many distinct integersm∈N and pairs of distinct parameters
s1m �= s2m in SL such that

ΠΓm
(Γ (s1m)) = Γm(σm(s1m)) = Γm(σm(s2m)) = ΠΓm

(Γ (s2m)).
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Consequently, ifm is chosen large enough,

|Γ (s1m)− Γ (s2m)| ≤ |Γ (s1m)−ΠΓm
(Γ (s1m))|+ |ΠΓm

(Γ (s2m))− Γ (s2m)|
≤ 2‖γ − γm‖ ≤ 2/m. (57)

In addition, we have by the proof of Lemma 3 (iii)

Γ (s1m)− Γ (s2m) ⊥ Γ ′
m(σm(s1m)). (58)

A simple geometric observation using (49),(57), (58) now shows thatΓ (s2m)∈
M(s1m, θ) form sufficiently large, contradicting Lemma 3 (i), which is applicable
to Γ by Lemma 4.

Finally we are going to prove thatΠ
Γn|Γ is surjective. We consider the set

Jn := {σ ∈ SLn |Γn(σ) ∈ ΠΓn(Γ (SL))} and claim thatJn = SLn for n large
enough. Since bothΓ (SL) and Γn(SLn) are compact, there is at least one pair of
points(x, xn)∈Γ (SL)× Γn(SLn) such thatxn=ΠΓn(x), henceJn �= ∅.
Jn is also closed, because for a convergent sequenceσi → σ, σi ∈ Jn we

have a sequencesi∈SL with Γn(σi)=ΠΓn(Γ (si)). For a subsequence one has
si → s∈SL, hence by continuity we arrive atΓn(σ)=ΠΓn(Γ (s)), i.e.σ∈Jn. In
order to show thatJn is open, we observe by Lemma 3 (iv) that we can rewriteJn
as

Jn = {σ∈SLn
|Γn(σ)=ΠΓn

(Γ ∩Dθ(Γn(σ), Γ ′
n(σ))) },

whereDθ(Γn(σ), Γ ′
n(σ)) denotes the planar disk of radiusθ perpendicular to

Γ ′
n(σ) centred atΓn(σ). Now (49) implies that, forn sufficiently large,Γ inter-

sectsDθ(Γn(σ), Γ ′
n(σ)) transversely. Consequently, we haveDθ(Γn(σ), Γ ′

n(σ))∩
Γ (SL) �= ∅ for all σ ∈ SLn

with |σ − σ| sufficiently small andn sufficiently
large, sinceΓ ′

n is Lipschitz continuous. HenceJn is open, which finishes the proof
thatJn=SLn , i.e. Π

Γn|Γ is surjective forn sufficiently large. ��

6.2. Proofs for Section 3

Proof of Lemma 6. To each framed curved(γ,D) ∈W 1,q ×W 1,p we can asso-
ciate a uniquew = w(γ,D) ∈ Xp,q

0 given by (10) as follows. The first equation
in (10) is obtained by differentiating the maps !→ D(s)D(s0)−1 at s = s0 and
observing that the tangent space to the manifoldSO(3) ⊂ R

3×3 at the identity
is the set of skew matrices [14, II, Ch.17]. The second equation in (10) is just the
representation ofγ′(s) in the frameD(s). Solving these two equations foru andv
leads to the result

ui =
1
2

3∑
j,k=1

εijk
〈
d′
j , dk

〉
and vi = 〈γ′, di〉 (i = 1, 2, 3).

Hereεijk = 〈ei, ej ∧ ek〉 is the permutation symbol whereei is the standard basis
forR3. Conversely, givenw = (u, v, γ0, D0) ∈ Xp,q

0 , the initial value problem (10)
for the frame field has a unique absolutely continuous solutionD = (d1|d2|d3) ∈
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W 1,p(I,R3×3), see e.g., [15, p. 193] or [33, vol.II, p. 1043]. In addition, sinceD(s)
is continuous and

d

ds
〈dk, dl〉 = 〈

[ 3∑
i=1

uidi
] ∧ dk, dl〉+ 〈dk, [ 3∑

i=1

uidi
] ∧ dl〉 = 0 a.e. inI,

we deduce thatD(s) ∈ SO(3) for eachs ∈ I. Notice that standard existence
results guarantee only a local solution forD(s). However, since orthonormality
implies boundedness, local solutions can be continued to all of[a, b]. OnceD(s)
is known, the initial value problem forγ may be solved by quadrature, namely

γ(s) = γ0 +
3∑

k=1

∫ s

a

vk(τ)dk(τ) dτ. ��

Proof of Lemma 7. 1. Notice first thatγ ∈ G and∆[γ] > 0, henceγ possesses
an arclength parameterizationΓ ∈ C1,1(SL,R3) by Lemma 2. Moreover, since
|γ′| = |v3| > 0, there is a bijection betweent ∈ [a, b) ands ∈ [0, L). Notice also
that, for each fixedt ∈ [a, b), the mapp(t, ·, ·) is injective and that the image of
p(t, ·, ·) is the open diskDθ(Γ (s(t)), Γ ′(s(t))) as considered in Lemma 3.

2. Our first claim is that if∆[γ] ≥ θ, thenp : Ωθ → R
3 is globally injective.

To see this, assume for contradiction thatp does not have this property. Then there
existst1, t2 ∈ [a, b) (t1 �= t2), with corresponding arclength parameterss1 �= s2,
such thatDθ(Γ (s1), Γ ′(s1))∩Dθ(Γ (s2), Γ ′(s2)) �= ∅. We denote byx any point
in this intersection. Since∆[γ] ≥ θwemayapply Lemma3 (iii) to conclude that the
projectionΠΓ : Bθ(Γ (SL)) → Γ (SL) is single-valued, and apply Lemma 3 (iv)
to conclude thatΠΓ (x) = Γ (s1) andΠΓ (x) = Γ (s2), which is a contradiction.
Thusp : Ωθ → R

3 must be globally injective.
3. Our second claim is that ifp : Ωθ → R

3 is globally injective, then∆[γ] ≥ θ.
To see this, assume for contradiction that0 < ∆[γ] < θ andconsider anyη such that
∆[γ] < η < θ. ThenbyLemma3 (i) there is aparameters∗ ∈ SL such thatΓ (SL)∩
M(s∗, η) �= ∅. This implies there is a pointz∗ ∈ C(s∗, η) = ∂Dη(Γ (s∗), Γ ′(s∗))
such thatdist(z∗, Γ (SL)) < η. By compactness, there is a pointΓ (s̄) such that
dist(z∗, Γ (SL)) = |z∗ − Γ (s̄)|, and s̄ �= s∗ since|z∗ − Γ (s̄)| < η. Moreover,
〈z∗ − Γ (s̄), Γ ′(s̄)〉 = 0. Sinceη < θ we havez∗ ∈ Dθ(Γ (s̄), Γ ′(s̄)) and also
z∗ ∈ Dθ(Γ (s∗), Γ ′(s∗)), which contradicts the global injectivity ofp : Ωθ → R

3.
Thus∆[γ] ≥ θ as claimed. ��

Proof of Theorem 1. SinceC �= ∅ we may assume there is somew̃ ∈ C with
E(w̃) <∞; otherwise, anyw ∈ C will satisfy (13) with infinite energy. Thus, any
minimizing sequence{wn}n∈N = {(un, vn, γ0,n, D0,n)}n∈N ⊂ C stays bounded
in Xp,q since

lim
n→∞E(wn) = inf

w∈C
E(w) ≤ E(w̃) <∞.

To see this, notice that condition (W3) guarantees in all three cases (i)-(iii) that
‖un‖Lp and‖vn‖Lq are uniformly bounded for alln ∈ N. Moreover,SO(3) is
compact inR3×3 and, by assumption,|γ0,n| ≤ c for all n ∈ N.
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Since{wn} is bounded and the spaceXp,q (p, q > 1) is reflexive, there is
a weakly convergent subsequencewnk

⇀ w∗ ∈ Xp,q. In particular, we have
(unk

, vnk
)⇀ (u∗, v∗) ∈ Lp(I,R3)×Lq(I,R3)and(γ0,nk

, D0,nk
)→ (γ0,∗, D0,∗)

∈ R
3 × SO(3) ask →∞. Moreover,w∗ ∈ C becauseC is weakly closed. Since

conditions (W1)-(W3) imply thatE is weakly lower-semicontinuous onXp,q (see,
e.g., [5, Thm. 3.4, p. 74]), we deduceE(w∗) = infw∈C E(w). ThusE attains a
global minimum at the pointw∗ ∈ C. ��

Proof of Lemma 8. 1. Given1 < p, q < ∞ and{wn} ⊂ Xp,q
0 we are assuming

wn ⇀ w inXp,q wherewn = (un, vn, γ0,n, D0,n) andw = (u, v, γ0, D0). Notice
first that, sinceD0,n ∈ SO(3) ⊂ R

3×3 andD0,n → D0 we haveD ∈ SO(3).
This implies thatw ∈ Xp,q

0 as claimed.
2. In (14) we claim that weak convergence of the shape and placement variables

wn implies convergence inC0 of the framed curves(γn, Dn). To establish this
result, we note first thatun ⇀ u in Lp(I,R3) implies there is a constantc>0 such
that ||un||Lp ≤ c < ∞ for all n ∈ N. Let d1,n denote the first column ofDn, d1
the first column ofD, and consider anyt1 ∈ (a, b) such that|t1 − a| ≤ (3c)−p∗

where1/p∗ + 1/p = 1. Then, by continuity, there is aσn ∈ [a, t1] such that

|d1,n(σn)− d1(σn)| = max
τ∈[a,t1]

|d1,n(τ)− d1(τ)|, (59)

and by compactness we can find a subsequence (keeping the indexn for conve-
nience)σn → σ ∈ [a, t1]. From (59) and an integrated version of (10) we obtain

||d1,n − d1||C0([a,t1],R3) = |d1,n(σn)− d1(σn)|

=

∣∣∣∣∣d01,n +
∫ σn

a

[
3∑

i=2

ui,n(τ)di,n(τ)

]
∧ d1,n(τ) dτ

−d01 −
∫ σn

a

[
3∑

i=2

ui(τ)di(τ)

]
∧ d1(τ) dτ

∣∣∣∣∣
whered01,n denotes the first column ofD0,n and so on. Expanding the vector
products, rearranging terms and applying the triangle inequality leads to

||d1,n − d1||C0([a,t1],R3) ≤ |d01,n − d01|

+
∣∣∣∣∫ σn

a

{[u3,n(τ)− u3(τ)]d2(τ) + [u2(τ)− u2,n(τ)]d3(τ)} dτ
∣∣∣∣

+
∣∣∣∣∫ σn

a

{u3,n(τ)[d2,n(τ)− d2(τ)] + u2,n(τ)[d3(τ)− d3,n(τ)]} dτ
∣∣∣∣ .
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Sinceun is bounded inLp this implies

||d1,n − d1||C0([a,t1],R3) ≤ |d01,n − d01|

+

∣∣∣∣∣
∫ b

a

{[u3,n(τ)− u3(τ)]d2(τ) + [u2(τ)− u2,n(τ)]d3(τ)} χ[a,σn](τ) dτ

∣∣∣∣∣
+ |σn − a|1/p∗ ||un||Lp

3∑
i=2

||di,n − di||C0([a,t1],R3),

and by choice oft1 andσn we obtain

||d1,n − d1||C0([a,t1],R3) ≤ |d01,n − d01|

+

∣∣∣∣∣
∫ b

a

{[u3,n(τ)− u3(τ)]d2(τ) + [u2(τ)− u2,n(τ)]d3(τ)} χ[a,σn](τ) dτ

∣∣∣∣∣
+

1
3

3∑
i=2

||di,n − di||C0([a,t1],R3)

(60)

whereχ[a,σn] is the characteristic function for the interval[a, σn]. By Lebesgue’s
theorem of dominated convergence we have

d2χ[a,σn] → d2χ[a,σ] and d3χ[a,σn] → d3χ[a,σ] in Lp
∗
(I,R3).

Using this result, together with the facts thatun ⇀ u in Lp andd01,n → d01, we
deduce from (60) that for anyε > 0 there is anN such that

||d1,n − d1||C0([a,t1],R3) ≤ 1
3

3∑
i=2

||di,n − di||C0([a,t1],R3) + ε/9, ∀n ≥ N.

Taking further subsequences, we can deduce analogous inequalities for||di,n −
di||C0([a,t1],R3) (i = 2, 3), which after summation gives

3∑
i=1

||di,n − di||C0([a,t1],R3) ≤ 2
3

3∑
i=1

||di,n − di||C0([a,t1],R3) + ε/3

and consequently

3∑
i=1

||di,n − di||C0([a,t1],R3) ≤ ε, ∀n ≥ N. (61)

This implies convergence on the subinterval[a, t1]. However, we can then consider
any t2 > t1 such that|t2 − t1| ≤ (3c)−p∗

, and usingdi,n(t1) instead ofd0i,n and
so on, we can obtain an estimate analogous to (61) on[t1, t2]. Hence, after finitely
many steps, we cover the intervalI = [a, b] and obtainDn → D in C0(I,R3×3)
for some subsequence.
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Continuingwith the subsequence of(γn, Dn) found above, we can find for each
n a parametersn ∈ [a, b] such that

|γn(sn)− γ(sn)| = max
τ∈[a,b]

|γn(τ)− γ(τ)|. (62)

By compactness, we can extract a further subsequence (again indicated byn) such
thatsn → s ∈ [a, b]. From (62) and an integrated version of (10) we obtain

||γn − γ||C0(I,R3) = |γn(sn)− γ(sn)|

=

∣∣∣∣∣γ0,n +
∫ sn

a

3∑
k=1

vk,n(τ)dk,n(τ) dτ − γ0 −
∫ sn

a

3∑
k=1

vk(τ)dk(τ) dτ

∣∣∣∣∣ .
Rearranging terms, applying the triangle inequality and employing the character-
istic function for[a, sn] leads to

||γn − γ||C0(I,R3) ≤ |γ0,n − γ0|

+
3∑

k=1

∣∣∣∣∣
∫ b

a

vk,n(τ)[dk,n(τ)− dk(τ)]χ[a,sn] dτ

∣∣∣∣∣
+

3∑
k=1

∣∣∣∣∣
∫ b

a

[vk,n(τ)− vk(τ)]dk(τ)χ[a,sn] dτ

∣∣∣∣∣ ,
and since the subsequenceDn converges inC0 we obtain

||γn − γ||C0(I,R3) ≤ |γ0,n − γ0|+ ||Dn −D||C0(I,R3×3) ||vn||L1(I,R3)

+
3∑

k=1

∣∣∣∣∣
∫ b

a

[vk,n(τ)− vk(τ)]dk(τ)χ[a,sn] dτ

∣∣∣∣∣ . (63)

For eachk = 1, 2, 3 we have as before that

dkχ[a,sn] → dkχ[a,s] in Lq
∗
(I,R3)

where1/q∗+1/q = 1. Thus, we conclude that the right-hand side of (63) converges
to zero asn → ∞. Henceγn → γ in C0(I,R3) for some subsequence. Since the
previous arguments apply to any subsequence of{wn}n∈N ⊂ Xp,q

0 , and the same
limits D andγ are obtained, the whole sequence must satisfy (14) as claimed.

3. In (15) we claim that weak convergence of the shape and placement variables
wn implies weak convergence inW 1,q ×W 1,p of the framed curves(γn, Dn). To
see this, wemultiply (10) by an arbitrary elementg ∈ Lq∗

(I,R3) (1/q∗+1/q = 1)
and integrate to obtain∫

I

〈γ′
n(τ), g(τ)〉 dτ =

∫
I

3∑
k=1

vk,n(τ)〈dk,n(τ), g(τ)〉 dτ. (64)
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Since by (14) we have〈dk,n, g〉 → 〈dk, g〉 in Lq∗
(I,R), and by assumption we

havevk,n ⇀ vk in Lq(I,R) for k = 1, 2, 3, we obtain∫
I

〈γ′
n(τ), g(τ)〉 dτ →

∫
I

〈γ′(τ), g(τ)〉 dτ, ∀g ∈ Lq∗
(I,R3).

This impliesγ′
n ⇀ γ′ in Lq(I,R3). Moreover, by (14), we also haveγn → γ in

Lq(I,R3). This readily implies thatγn ⇀ γ inW 1,q as claimed. By applying the
same reasoning toDn the result (15) is established.��

Proof of Lemma 9. To establish the result forC1, we note first that a sequence
{wn}n∈N ⊂ C1 that converges stronglywn → w in Xp,q contains a subsequence
{wnk

}k∈N ⊂ C1 such thatwnk
(s)→ w(s) for a.e.s ∈ I. SinceK(s) is closed for

a.e.s ∈ I, we havew(s) ∈ K(s) for a.e.s ∈ I, which impliesw ∈ C1. ThusC1
is strongly closed. Furthermore,C1 is convex sinceK(s) is convex for a.e.s ∈ I.
ThusC1 is also weakly closed [23, Thm 3.12] as claimed. The result forC2 follows
directly from Lemma 8. ��

Proof of Lemma 10. The elementsQ ∈ SO(3) can be represented by a vector
ξ(Q) ∈ R

3 where the direction ofξ(Q) describes the rotation axis and the length
of ξ(Q) gives the rotation angle in[−π, π]. In a neighbourhood of the identity
in SO(3), the mappingQ !→ ξ(Q) ∈ R

3 is uniquely defined and continuous as
well as the inversionξ !→ Q(ξ) ∈ SO(3). In particular, we haveQ(ξ(Q)) = Q,
ξ(Id) = 0 ∈ R

3 andQ(0) = Id ∈ SO(3). By Lemma 8, we havew ∈ Xp,q
0

andDn → D in C0, which impliesD(a) = Dn(a) andD(b) = Dn(b) for all
n ∈ N sinceDn ∼ D1. Furthermore, the continuity ofA !→ A−1 in GL(3)
(Cramer’s Rule) implies thatD(s)Dn(s)−1 is continuous ins and uniformly close
to the identity for alln ∈ N sufficiently large. With this in mind, we consider the
homotopy map

Ψ(s, τ) := Q(τξ(D(s)Dn(s)−1))Dn(s), s ∈ [a, b], τ ∈ [0, 1].

Notice thatΨ(s, 0) = Dn(s) andΨ(s, 1) = D(s) for all s ∈ [a, b], and that
Ψ : [a, b]× [0, 1]→ SO(3) is continuous. Moreover, it is straightforward to show
thatΨ(a, τ) = Dn(a) andΨ(b, τ) = Dn(b) for all τ ∈ [0, 1]. Hence,D ∼ Dn for
all n sufficiently large. SinceDn ∼ D1 for all n ∈ N we conclude thatD ∼ D1 as
claimed. ��

6.3. Proofs for Section 4

Proof of Equation (21). Sinceγ′=v3d3 for the unshearable extensible case, the
arclength ofγ is given by

[a, b] " t !→ s(t) :=
∫ t

a

v3(τ) dτ ∈ [0, L].
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This map is strictly monotone by (18), hence invertible. Denoting the inverse func-
tion byτ : [0, L]→ [a, b], we form the compositionΓ := γ ◦ τ : [0, L]→ R

3 and
compute the derivatives

Γ ′(s) = γ′(τ(s))
d

ds
τ(s) = v3(τ(s))d3(τ(s))

1
v3(τ(s))

= d3(τ(s))

Γ ′′(s) = d′
3(τ(s))

d

ds
τ(s) = d′

3(τ(s))
1

v3(τ(s))
.

From (10) we deduced′
3 = −u1d2 + u2d1, which proves the formulas forΓ ′′ and

the curvatureκ given in (21). ��

ProofofTheorem2. LetC be thesubsetof elementsw ∈ Xp
0 ⊂ Xp,q,q ∈ (1,∞),

that satisfy conditions (25)-(28), which by assumption is non-empty. We claim that
C is weakly closed. To see this, notice that Lemma 9 (ii) applies to condition (25),
Lemma 8 and Lemma 4 apply to condition (26), Lemma 5 applies to condition (27)
and Lemma 10 applies to condition (28), which establishes the claim. The exis-
tence result now follows from Theorem 1 (ii), which is applicable since conditions
(W1)-(W3) are satisfied withc2 = 0 andγ0 = 0. The regularity statement follows
from Lemma 2 by (26) and fromγ′[w] = d3[w] ∈W 1,p(I,R3). ��

Proof of Theorem 3. The result follows fromTheorem1 (i) and arguments similar
to those used in the proof of Theorem 2.��

6.4. Proof of Theorem 4

Let C be the subset of elementsw ∈ Xq
0 ⊂ Xp,q that satisfy the conditions in

(38). Notice thatC is non-empty by assumption (w̃ = w[γ̃] is in this set), and by
Lemmas 9 (ii), 4 and 5, it is also weakly closed. Moreover, for any1 < q < ∞,
notice that the modified energy

Eq(w) :=
∫ b

a

|v(σ)|q dσ

has a minimizerw∗ ∈ C. This follows from Theorem 1 (iii).
We claim thatw∗ also minimizes the desired energyE(w). To see this, con-

sider anyw1 ∈ C, let γ1 = γ[w1] be the corresponding curve with arclength
parameterizationΓ1 and define an auxiliary curve

γ2(τ) := Γ1(L1(τ − a)/(b− a)), τ ∈ [a, b],

whereL1 :=
∫ b

a
|γ′

1(σ)| dσ = E(w1). Notice thatL1 <∞ sinceγ′
1 ∈ Lq,

∣∣ d
dτ
γ2(τ)

∣∣ ≡ L1

b− a =
E(w1)
b− a
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and thatw2 = w[γ2] is also inC. Using the definitions ofE andEq, together with
Hölder’s inequality, we have

[E(w∗)]q :=

[∫ b

a

|γ′
∗(τ)| dτ

]q

≤ (b− a)q−1
∫ b

a

|γ′
∗(τ)|q dτ =: (b− a)q−1Eq(w∗).

Moreover, sincew∗ is a minimizer ofEq and|γ′
2| = E(w1)/(b − a) is constant,

we obtain

[E(w∗)]q ≤ (b− a)q−1Eq(w∗) ≤ (b− a)q−1Eq(w2) = [E(w1)]
q
.

Since this inequality holds for arbitraryw1 ∈ C we conclude thatw∗ ∈ C is
a minimizer ofE as claimed. The regularity statement thatΓ∗ ∈ C1,1(SL∗ ,R

3)
follows from Lemma 2. ��
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8. M. Doi and S.F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford

(1986).
9. H. Federer, Geometric Measure Theory, Grundlehren der math. Wissenschaften153,

Springer, Berlin Heidelberg New York (1969).
10. M.H. Freedman, Zheng-Xu He, and Zhenghan Wang, On the Möbius Energy of Knots
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