Generalized Load-Displacement Relations for Helical Structures

Pauline Rüegg-Reymond

EPFL SB LCVMM

February 4, 2013

Load-Displacement Problem for Helical Structures

Helical Configurations of an Unshearable, Inextensible, Uniform Rod

▶ Each helical configuration of an unshearable, inextensible, uniform rod corresponds to a constant value of a strain $u \in \mathbb{R}^3$.

Helical Configurations of an Unshearable, Inextensible, Uniform Rod

- ▶ Each helical configuration of an unshearable, inextensible, uniform rod corresponds to a constant value of a strain $u \in \mathbb{R}^3$.
- Energy: $E(\mathbf{u}) = (\mathbf{u} \hat{\mathbf{u}})^T \mathbf{K} (\mathbf{u} \hat{\mathbf{u}})$ • Stiffness matrix $\mathbf{K} = \begin{bmatrix} K_1 & 0 & K_{13} \\ 0 & K_2 & K_{23} \\ K_{13} & K_{23} & K_3 \end{bmatrix}$.
- \blacktriangleright Reference state \hat{u}

Helical Equilibria Equilibria

The helical equilibria of a rod lie on the surface \mathcal{H} given by

$$0 = Xu_1u_2 + Yu_1u_3 + Zu_2u_3 - Vu_1 - Wu_2$$

Axial Translation, Rotation, Force and Moment in Terms of \boldsymbol{u}

- Axial translation: $R(\mathbf{u}) = \frac{u_3}{\|\mathbf{u}\|}$
- Axial rotation: $\theta(\mathbf{u}) = \|\mathbf{u}\|$
- Axial moment: $M(\mathbf{u}) = \frac{\mathbf{u}^T \mathbf{K} (\mathbf{u} \hat{\mathbf{u}})}{\|\mathbf{u}\|}$
- Axial force: $N(\mathbf{u}) = \mu(\mathbf{u}) \|\mathbf{u}\|$

Level Curves and Level Surfaces

$f \in \{R, \theta, M, N\}$

- f_{α} : level surface
- $\mathcal{H} \cap f_{\alpha}$: level curve

Level Curves and Level Surfaces

 $f\in\{R,\theta,M,N\}$

- f_{α} : level surface
- $\mathcal{H} \cap f_{\alpha}$: level curve
- Self-intersections = saddle points
- Isolated points = extrema

Equation of the Surface Of Helical Equilibria

 ${\mathcal H}$ is given by

$$H(\mathbf{u}) = Xu_1u_2 + Yu_1u_3 + Zu_2u_3 - Vu_1 - Wu_2.$$

VZ - WY	X	Y		V	W	\mathcal{H}
$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$			1-sheeted hyperboloid
$\neq 0$	$\neq 0$	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	$\neq 0$	0	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	0	0	$\neq 0$			Hyperbolic paraboloid
0	$\neq 0$	$\neq 0$	$\neq 0$			Elliptic cone
0	$\neq 0$	$\neq 0$	0		0	Intersecting planes
0	$\neq 0$	0	$\neq 0$	0		Intersecting planes
0	$\neq 0$	0	0	$\neq 0$	$\neq 0$	Hyperbolic cylinder
0	$\neq 0$	0	0	$\neq 0$	0	Intersecting planes
0	$\neq 0$	0	0	0	$\neq 0$	Intersecting planes
0	$\neq 0$	0	0	0	0	Intersecting planes
0	0	$\neq 0$	$\neq 0$			Intersecting planes
0	0	$\neq 0$	0		0	Intersecting planes
0	0	0	$\neq 0$	0		Intersecting planes
0	0	0	0	$\neq 0$		Plane

VZ - WY	X	Y	Z	V	W	\mathcal{H}
$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$			1-sheeted hyperboloid
$\neq 0$	$\neq 0$	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	$\neq 0$	0	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	0	0	$\neq 0$			Hyperbolic paraboloid
0	$\neq 0$	$\neq 0$	$\neq 0$			Elliptic cone
0	$\neq 0$	$\neq 0$	0		0	Intersecting planes
0	$\neq 0$	0	$\neq 0$	0		Intersecting planes
0	$\neq 0$	0	0	$\neq 0$	$\neq 0$	Hyperbolic cylinder
0	$\neq 0$	0	0	$\neq 0$	0	Intersecting planes
0	$\neq 0$	0	0	0	$\neq 0$	Intersecting planes
0	$\neq 0$	0	0	0	0	Intersecting planes
0	0	$\neq 0$	$\neq 0$			Intersecting planes
0	0	$\neq 0$	0		0	Intersecting planes
0	0	0	$\neq 0$	0		Intersecting planes
0	0	0	0	$\neq 0$		Plane

VZ - WY	X	Y	Z	V	W	\mathcal{H}
$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$			1-sheeted hyperboloid
$\neq 0$	$\neq 0$	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	$\neq 0$	0	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	0	0	$\neq 0$			Hyperbolic paraboloid
0	$\neq 0$	$\neq 0$	$\neq 0$			Elliptic cone
0	$\neq 0$	$\neq 0$	0		0	Intersecting planes
0	$\neq 0$	0	$\neq 0$	0		Intersecting planes
0	$\neq 0$	0	0	$\neq 0$	$\neq 0$	Hyperbolic cylinder
0	$\neq 0$	0	0	$\neq 0$	0	Intersecting planes
0	$\neq 0$	0	0	0	$\neq 0$	Intersecting planes
0	$\neq 0$	0	0	0	0	Intersecting planes
0	0	$\neq 0$	$\neq 0$			Intersecting planes
0	0	$\neq 0$	0		0	Intersecting planes
0	0	0	$\neq 0$	0		Intersecting planes
0	0	0	0	$\neq 0$		Plane

VZ - WY	X	Y	Z	V	W	\mathcal{H}
$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$			1-sheeted hyperboloid
$\neq 0$	$\neq 0$	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	$\neq 0$	0	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	0	0	$\neq 0$			Hyperbolic paraboloid
0	$\neq 0$	$\neq 0$	$\neq 0$			Elliptic cone
0	$\neq 0$	$\neq 0$	0		0	Intersecting planes
0	$\neq 0$	0	$\neq 0$	0		Intersecting planes
0	$\neq 0$	0	0	$\neq 0$	$\neq 0$	Hyperbolic cylinder
0	$\neq 0$	0	0	$\neq 0$	0	Intersecting planes
0	$\neq 0$	0	0	0	$\neq 0$	Intersecting planes
0	$\neq 0$	0	0	0	0	Intersecting planes
0	0	$\neq 0$	$\neq 0$			Intersecting planes
0	0	$\neq 0$	0		0	Intersecting planes
0	0	0	$\neq 0$	0		Intersecting planes
0	0	0	0	$\neq 0$		Plane

VZ - WY	X	Y	Z	V	W	\mathcal{H}
$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$			1-sheeted hyperboloid
$\neq 0$	$\neq 0$	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	$\neq 0$	0	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	0	0	$\neq 0$			Hyperbolic paraboloid
0	$\neq 0$	$\neq 0$	$\neq 0$			Elliptic cone
0	$\neq 0$	$\neq 0$	0		0	Intersecting planes
0	$\neq 0$	0	$\neq 0$	0		Intersecting planes
0	$\neq 0$	0	0	$\neq 0$	$\neq 0$	Hyperbolic cylinder
0	$\neq 0$	0	0	$\neq 0$	0	Intersecting planes
0	$\neq 0$	0	0	0	$\neq 0$	Intersecting planes
0	$\neq 0$	0	0	0	0	Intersecting planes
0	0	$\neq 0$	$\neq 0$			Intersecting planes
0	0	$\neq 0$	0		0	Intersecting planes
0	0	0	$\neq 0$	0		Intersecting planes
0	0	0	0	$\neq 0$		Plane

VZ - WY	X	Y	Z	V	W	\mathcal{H}
$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$			1-sheeted hyperboloid
$\neq 0$	$\neq 0$	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	$\neq 0$	0	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	0	0	$\neq 0$			Hyperbolic paraboloid
0	$\neq 0$	$\neq 0$	$\neq 0$			Elliptic cone
0	$\neq 0$	$\neq 0$	0		0	Intersecting planes
0	$\neq 0$	0	$\neq 0$	0		Intersecting planes
0	$\neq 0$	0	0	$\neq 0$	$\neq 0$	Hyperbolic cylinder
0	$\neq 0$	0	0	$\neq 0$	0	Intersecting planes
0	$\neq 0$	0	0	0	$\neq 0$	Intersecting planes
0	$\neq 0$	0	0	0	0	Intersecting planes
0	0	$\neq 0$	$\neq 0$			Intersecting planes
0	0	$\neq 0$	0		0	Intersecting planes
0	0	0	$\neq 0$	0		Intersecting planes
0	0	0	0	$\neq 0$		Plane

VZ - WY	X	Y	Z	V	W	\mathcal{H}
$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$			1-sheeted hyperboloid
$\neq 0$	$\neq 0$	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	$\neq 0$	0	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	$\neq 0$			Hyperbolic paraboloid
$\neq 0$	0	$\neq 0$	0			Hyperbolic paraboloid
$\neq 0$	0	0	$\neq 0$			Hyperbolic paraboloid
0	$\neq 0$	$\neq 0$	$\neq 0$			Elliptic cone
0	$\neq 0$	$\neq 0$	0		0	Intersecting planes
0	$\neq 0$	0	$\neq 0$	0		Intersecting planes
0	$\neq 0$	0	0	$\neq 0$	$\neq 0$	Hyperbolic cylinder
0	$\neq 0$	0	0	$\neq 0$	0	Intersecting planes
0	$\neq 0$	0	0	0	$\neq 0$	Intersecting planes
0	$\neq 0$	0	0	0	0	Intersecting planes
0	0	$\neq 0$	$\neq 0$			Intersecting planes
0	0	$\neq 0$	0		0	Intersecting planes
0	0	0	$\neq 0$	0		Intersecting planes
0	0	0	0	$\neq 0$		Plane

Illustration of the Shapes \mathcal{H} Can Have

Some statements About these Surfaces Intersecting planes are always perpendicular.

Some statements About these Surfaces Intersecting planes are always perpendicular.

Some statements About these Surfaces For a circular cone, the opening angle is $> \frac{\pi}{2}$.

Axial Translation or Rise

$$R(\mathbf{u}) = \frac{u_3}{\|\mathbf{u}\|}$$
$$\mathcal{R}_{\alpha} := \{\mathbf{u} : R(\mathbf{u}) = \pm \alpha\} \cup \mathbf{0}$$

Straight Lines Contained in the Level Sets of ${\cal R}$

 $|\alpha_0| < 1$: height such that $\mathcal{H} \cap \mathcal{R}_{\alpha_0}$ contains a straight line.

Parametrization of the Level Curve $\mathcal{H} \cap \mathcal{R}_{\alpha}$

- Every level curve $\mathcal{H} \cap \mathcal{R}_{\alpha}$ can be parametrized by $\gamma_{\alpha}(\phi)$ with $\phi \in [0, 2\pi[$.
- γ_{α_0} is not well defined on the straight line contained in $\mathcal{H} \cap \mathcal{R}_{\alpha_0}$.
- ► γ_{α_0} has a limit on the straight line contained in $\mathcal{H} \cap \mathcal{R}_{\alpha_0}$ if $X \neq 0$ and $V^3 Z + W^3 Y \neq 0$.

Level Curve $\mathcal{H} \cap \mathcal{R}_{\alpha_0}$

 $\mathcal{H} \cap \mathcal{R}_{\alpha_0}$ is the only level curve that can have a non zero self-intersection.

Axial Rotation or Angle

$$heta\left(\mathsf{u}\right) = \|\mathsf{u}\|$$

 $heta_{lpha} = \{\mathsf{u}: \theta\left(\mathsf{u}\right) = 0\}$

Level Sets for Small Heights: Comparison with a Plane

For α small enough, $\mathcal{H} \cap \theta_{\alpha}$ is a simple closed curve.

Level Sets for Large Heights: Comparison with a Cone

For α large enough, θ has the same behavior as on a cone.

Cone Having its Apex at **0**

 $\mathcal{H} \cap \theta_{\alpha}$ is composed of two simple closed curves: one on each nappe. Comparison Between a Cone Having its Apex at ${\bf 0}$ and a Hyperboloid

For α large enough, $\mathcal{H} \cap \theta_{\alpha}$ is composed of two distinct closed curves: one on each nappe.

Circular Cone

 θ has a local minimum and a saddle point.

Comparison Between a Cone Having its Apex not at **0** and a Hyperboloid

Special case: θ has a local minimum on the nappe that doesn't contain **0**.

Generalized Load-Displacement Relations for Helical Structures Axial Rotation

Hyperbolic Cylinder

Hyperbolic cylinder: θ has a local minimum on the nappe that doesn't contain **0**.

Generalized Load-Displacement Relations for Helical Structures Axial Rotation

Intersecting Planes

Intersecting planes: every point of the intersection line is a self-intersection of $\mathcal{H} \cap \theta_{\alpha}$ for some α .

Comparison Between Intersecting Planes and Hyperboloid

 ${\mathcal H}$ nearly denegerated to intersecting planes.

Comparison Between Intersecting Planes and Hyperboloid

 ${\mathcal H}$ nearly denegerated to intersecting planes.

Conjecture on the Critical Points of θ

- θ has a global minimum at **0**.
- θ can have either 1 or 3 non zero critical points on \mathcal{H} .
- If θ has 1 non zero critical point, it is a saddle.
- If θ has 3 non zero critical points, the lowest is a local minimum and the middle and highest are saddles.

Conjecture on the Critical Points of θ

- θ has a global minimum at 0.
- θ can have either 1 or 3 non zero critical points on \mathcal{H} .
- If θ has 1 non zero critical point, it is a saddle.
- If θ has 3 non zero critical points, the lowest is a local minimum and the middle and highest are saddles.

The Displacement Coordinate System

R and θ form a local coordinate system on \mathcal{H} unless

- R or θ has a critical point at u.
- The coordinate line of R and θ are tangent at u.

The Displacement Coordinate System

R and θ form a local coordinate system on \mathcal{H} unless

- R or θ has a critical point at u.
- The coordinate line of R and θ are tangent at u.

Equation for the set of Points where (R, θ) is not a Coordinate System

$0 = (\nabla H \times \nabla R) \times (\nabla H \times \nabla \theta)$

Equation for the set of Points where (R, θ) is not a Coordinate System

$$0 = (\nabla H \times \nabla R) \times (\nabla H \times \nabla \theta)$$
$$= (\nabla H \cdot (\nabla R \times \nabla \theta)) \nabla H$$

Equation for the set of Points where (R, θ) is not a Coordinate System

$$0 = (\nabla H \times \nabla R) \times (\nabla H \times \nabla \theta)$$
$$= (\nabla H \cdot (\nabla R \times \nabla \theta)) \nabla H$$

$$0 = X \left(u_1^2 - u_2^2 \right) + Z u_1 u_3 - Y u_2 u_3 - W u_1 + V u_2$$

The set where (R, θ) is not a coordinate system

Axial Moment

$$M(\mathsf{u}) = \frac{\mathsf{u}^T \mathbf{K} (\mathsf{u} - \hat{\mathsf{u}})}{\|\mathsf{u}\|}$$
$$M_\alpha = \{\mathsf{u} : M(\mathsf{u}) = \alpha\} \cup \mathbf{0}$$

Generalized Load-Displacement Relations for Helical Structures $\[\]_{Axial Moment}$

0-Level Surface of M

0-level surface: ellipsoid M_0

- ▶ centered at $\frac{1}{2}\hat{u}$
- semi-principal axes = orthogonal eigenvectors of K
- ► length of semi-principal axis = $\frac{\|\hat{\mathbf{u}}\|_{\mathbf{K}}}{2\sqrt{\lambda_i}}$

Positive and Negative Level Surfaces

Positive height: the level surface is outside M_0 . Negative height: the level surface is inside M_0 .

Small Level Curves of M

For α small enough, the level curve $\mathcal{H} \cap M_{\alpha}$ is a simple closed curve.

Large Level Curves of M

For α large enough, the level curve $\mathcal{H} \cap M_{\alpha}$ is composed of two simple closed curves.

Level Sets of M on Intersecting Planes

- ▶ 0 and \hat{u} are on the same plane.
- ▶ One of the principal axes of *M*₀ is perpendicular to this plane.

Level Sets of M on Intersecting Planes

M may have one minimum on the intersection line.

Level Sets of M on Intersecting Planes

M may have two minima on the intersection line.

Conjecture on M

- *M* has a global minimum on \mathcal{H} , at height $\alpha = \|\mathbf{K}\hat{\mathbf{u}}\|$.
- ▶ It can have either 1, 3 or 5 other critical points.
- If M has 1 non zero critical point, it is a saddle.
- ▶ If *M* has 3 non zero critical points, the lowest one is a minimum and the two other are saddle points.
- ▶ If *M* has 5 non zero critical points, two of them are minima and the three other saddles. The lowest one is a minimum and the highest one a saddle.

${\cal M}$ with 1 Non Zero Critical Point

M may have two minima and three saddle points.

${\cal M}$ with 3 Non Zero Critical Points

M may have two minima and three saddle points.

${\cal M}$ With 5 Non Zero Critical Points

M may have two minima and three saddle points.

Generalized Load-Displacement Relations for Helical Structures $\hfill \begin{tabular}{ll} Axial Force \end{tabular}$

Axial Force ${\cal N}$

$$N(\mathbf{u}) = \mu(\mathbf{u}) \|\mathbf{u}\|$$

$$\mu\left(\mathsf{u}\right) = \frac{P^{3}\left(\mathsf{u}\right)}{u_{1}u_{2}}$$

- ▶ We understand well the displacement coordinate system.
- ▶ The load coordinate system needs further research.

Rod Model

A physical rod is mathematically modeled by

- A space curve $\mathbf{r}(s)$: its centerline.
- ▶ An orthonormal right-handed frame {d₁(s), d₂(s), d₃(s)}. It represents the orientation of the material cross-section at r(s).

Rod Model

A physical rod is mathematically modeled by

- A space curve $\mathbf{r}(s)$: its centerline.
- ▶ An orthonormal right-handed frame {d₁(s), d₂(s), d₃(s)}. It represents the orientation of the material cross-section at r(s).

$$\mathbf{R}(s) = \begin{bmatrix} | & | & | \\ \mathbf{d}_1(s) & \mathbf{d}_2(s) & \mathbf{d}_3(s) \\ | & | & | \end{bmatrix}$$

Rod Model

A physical rod is mathematically modeled by

- A space curve $\mathbf{r}(s)$: its centerline.
- ▶ An orthonormal right-handed frame {d₁(s), d₂(s), d₃(s)}. It represents the orientation of the material cross-section at r(s).

$$\mathbf{R}(s) = \begin{bmatrix} | & | & | \\ \mathbf{d}_1(s) & \mathbf{d}_2(s) & \mathbf{d}_3(s) \\ | & | & | \end{bmatrix}$$
$$\mathbf{d}_3(s) = \mathbf{r}'(s).$$

Strains

•
$$\mathbf{u}(s) = \mathbf{R}(s)^T \mathbf{u}$$
 where $\mathbf{d}'_i(s) = \mathbf{u} \times \mathbf{d}_i(s)$ for $i = 1, 2, 3$.

$$\triangleright \mathbf{v}(s) = \mathbf{R}(s)^T \mathbf{r}'(s).$$

Go back

Strains

•
$$\mathbf{u}(s) = \mathbf{R}(s)^T \mathbf{u}$$
 where $\mathbf{d}'_i(s) = \mathbf{u} \times \mathbf{d}_i(s)$ for $i = 1, 2, 3$.

►
$$\mathbf{v}(s) = \mathbf{R}(s)^T \mathbf{r}'(s).$$

Unshearable inextensible rod: $\mathbf{v} \equiv \begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

Go back

Angles between the Asymptotes of a Hyperboloid

Example Where θ has 1 Non Zero Critical Point

- 1. Construct the ellipsoid \mathcal{E}^1_{α}
 - ▶ centered at $\frac{1}{2}\hat{u}$
 - semi-principal axes = orthogonal
 - eigenvectors of ${\bf K}$
 - ► length of semi-principal axis = $\frac{\alpha}{2\lambda_i}$

- 1. Construct the ellipsoid \mathcal{E}^{1}_{α} For all directions $\mathbf{d}(\psi, \phi)$:
- 2. Take the point $\mathbf{c}_{\alpha}(\psi, \phi)$ $\mathbf{c}_{\alpha}(\psi, \phi) = \frac{1}{2} (\hat{\mathbf{u}} + \alpha \mathbf{K}^{-1} \mathbf{d}(\psi, \phi))$

- 1. Construct the ellipsoid \mathcal{E}^{1}_{α} For all directions $\mathbf{d}(\psi, \phi)$:
- 2. Take the point $\mathbf{c}_{\alpha}(\psi, \phi)$
- 3. Construct the ellipsoid $\mathcal{E}^2_{\alpha}(\psi, \phi)$
 - centered at $\mathbf{c}_{\alpha}(\psi, \phi)$
 - \blacktriangleright passing through 0
 - semi-principal axes = orthogonal

eigenvectors of ${\bf K}$

• length of semi-principal axis = $\frac{\|\mathbf{c}_{\alpha}(\psi, \phi)\|_{\mathbf{K}}}{\lambda_{i}}$

- 2. Take the point $\mathbf{c}_{\alpha}(\psi, \phi)$
- 3. Construct the ellipsoid $\mathcal{E}^2_{\alpha}(\psi, \phi)$
- 4. Choose the point of $\mathcal{E}^2_{\alpha}(\psi,\phi)$ in direction $\sqrt{\mathbf{K}}^{-1}\mathbf{d}(\psi,\phi)$