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Résumé

Les mécanismes complexes qui participent au fonctionnement de la cellule sont de mieux
en mieux compris depuis une centaine d’années et le rôle central de l’ADN est maintenant
établi. La séquence de paires de bases qui caractérise la structure d’un fragment d’ADN
ne code pas seulement l’information génétique mais induit aussi localement des propriétés
physiques particulières, comme des régions remarquablement courbées ou rigides. On
pense par exemple que ces variations dans la constitution de la molécule sont impliquées
dans la reconnaissance ADN-protéine et dans le positionnement des nucléosomes. Mod-
éliser comment les propriétés mécaniques de l’ADN dépendent de la séquence constitue
donc un progès important dans la compréhension de plusieurs phénomènes biologiques.
Cependant, les processus physiques de la cellule interviennent à des échelles très dif-
férentes, de quelques paires de bases à plusieurs milliers, et cela rend difficile d’établir
un modèle approprié. La modélisation multi-échelle de la mécanique de l’ADN et de
sa dépendence en séquence semble donc être une approche intéressante. C’est dans ce
contexte que les modèles de bases rigides et de paires de bases rigides ont été proposés.
Dans ces modèles gros grains chaque base, ou chaque paire de bases, est décrite par
la configuration d’un corps solide, ce qui mène à une représentation de chaîne ou de
bichaîne de la molécule d’ADN. Pour chaque séquence une distribution dans l’espace des
configurations a été paramétrée, soit à partir de donnés expérimentales soit à partir de
trajectoires venant de simulations tout atomes de la dynamique moléculaire.

Les questions importantes que l’on peut étudier avec ces modèles sont par exemple
l’influence de la séquence sur la probabilité de contact de deux sites distants le long de
la molécule, ou l’espérance de la configuration relative entre ces deux sites. Dans cette
thèse, nous proposons d’aborder ces situations physiques du point de vue de la mod-
élisation discrète et continue séparement, puis de discuter en quel sens elles constituent
finalement un seul point de vue multi-échelle. Dans la première partie, nous discutons des
propriétés méchaniques des chaînes et des bichaînes faites de corps solides hétérogènes,
ainsi que de leur analogue continus qui sont les tiges et les bitiges, dans le cadre de
la statique classique et dans celui de la physique statistique d’équilibre. Les conditions
d’équilibres, les principes variationels et les distributions sur l’espace des configurations
sont étudiés pour les chaînes et les tiges seules, puis étendus aux bichaînes et aux bit-
iges. Nous présentons ensuite des règles de Cauchy-Born déterministe et stochastique
permettant d’unifier les représentations discrètes et continues. Dans la seconde partie,
nous présentons des applications de la théorie mécanique multi-échelle proposée pour des
modèles de chaînes et de tiges qui dépendent de la séquence d’ADN. Nous discutons les
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approximations obtenues en utilisant le modèle de bitige pour calculer les configurations
de probabilité maximum qui satisfont des conditions de bord données. De manière sim-
ilaire, nous présentons ensuite le calcul de la matrice de corrélation d’orientations et du
vecteur de persistance de Flory pour les chaînes, mais en utilisant le modèle de tige con-
tinue, et une méthode d’homogénéisation est proposée. Ces résultats sont pensés comme
constituant un important progrès dans la modélisation multi-échelle de la mécanique de
l’ADN.
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Abstract

The complex mechanisms involved in cellular processes have been increasingly under-
stood this past century and the central role of the DNA molecule has been recognised.
The base pair sequence along a DNA fragment is observed not only to encode the ge-
nomic information, but also to induce locally very specific physical properties, such as
significantly bent or stiff regions. These variations in the molecule constitution are for in-
stance believed to be involved in DNA-protein recognition and in nucleosome positioning.
Modelling sequence dependent DNA mechanical properties is consequently an important
step towards understanding many biological functions. However, in a cell, vastly differ-
ent length scales are involved, ranging from a few base pairs to several thousands, which
makes the definition of one appropriate model difficult. A promising strategy seems to
be given by multi-scale modelling of sequence dependent DNA mechanics. In this frame-
work, sequence dependent rigid base and rigid base pair models have been proposed.
In these coarse grain models either each base pair or each base is described as a rigid
body configuration, which leads to either a chain or a bichain representation of the DNA
molecule. A sequence dependent configurational distribution is then parametrized, ei-
ther from experimental data or directly from atomistic molecular dynamic simulations,
to provide an efficient and realistic description at the scale of hundreds of base pairs.

Important questions that can be studied in these models are for instance the influence
of the sequence on the probability of contact of two sites, which are distant along the
molecule length, or on the expectation of the relative configuration of these two sites. In
this thesis, we propose to approach these physical situations both from the discrete and
the continuum modelling point of view, and then to discuss in which sense they actually
constitute only one multi-scale point of view. In the first part, we discuss mechanical
properties of heterogeneous rigid body chains and bichains, as well as continuum rods
and birods, in both classical statics and in equilibrium statistical physics. Equilibrium
conditions, variational principles and configurational distributions are studied for single
chains and rods, and then extended to bichains and birods. We have introduced in
particular an original coordinate free Hamiltonian formulation in arc-length of the birod
equilibrium conditions, and the notion of the persistence matrix for the configurational
moment for chains and rods. We then present deterministic and stochastic exponential
Cauchy-Born rules allowing a bridge between the scales of the discrete and continuum
representations. In the second part, we present applications of the proposed multi-
scale mechanical theory for chains and rods to sequence dependent DNA modelling. We
discuss the approximation using the birod model of most probable bichain configurations
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satisfying prescribed end conditions. Similarly, we then present a computation of the
sequence dependent frame correlation matrix and the Flory persistence vector for chains
using a continuum rod model. In addition, a homogenisation method is proposed. These
results are believed to constitute a substantial improvement in the multi-scale modelling
of DNA mechanics.

Keywords chain, bichain, rod, birod, equilibrium configuration, configurational distribu-
tion, persistence matrix, sequence dependent, DNA mechanics, exponential Cauchy-Born
rule.
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Introduction

Cells have been identified as the elementary blocks of life and significant developments
about their complex mechanism have been made. Among the variety of characteristic
molecules that they contain, deoxyribonucleic acid, or simply DNA, has been observed to
play a central role in the functions of regulation and replication, for instance. Informally,
DNA has a double stranded structure and each strand is made of bases connected by
sugar-phosphate backbones. Each base is of four1 possible compositions, namely adenine
(A), thymine (T), guanine (G) and cytosine (C). A standard complementary pairing is
made between A and T and between G and C with respectively two and three hydrogen
bonds. A base pair is then the couple made of two complementary bases. Each strand
possesses a natural reading direction, called the 5′ → 3′ direction, and the DNA double
helix is such that marching along one strand in this direction is marching along the
complementary strand in the opposite direction. In other words, DNA has an anti-
symmetric structure. The sequence is then the base constitution of the fragment, read
following the 5′ → 3′ direction along one of the two strands. The total DNA in a cell is
called the genome. Its length varies from 103 base pairs for some bacterias to 1012 base
pairs for some plants. The human genome is of the order of 109 base pairs. Since the
typical distance between two consecutive base pairs is about 3− 4 Å, the characteristic
length scales of DNA physics go from a few nanometers to several decades of centimetre.
An increasing number of full genomes have been sequenced in the past twenty years. Even
if not all possible sequences appear in Nature, their variety is gigantic and, consequently,
DNA molecules are an archetype of the class of heterogeneous polymers. A more precise
and more complete discussion on the role of DNA in cells can be found for instance in
[Calladine et al., 2004, Phillips et al., 2009].

A fundamental question in the modelling of DNA physics concerns the relation be-
tween the sequence and the mechanical properties of a given fragment. The numerous
existing sequences together with the laborious character of experiment makes it difficult
to arrive at simple and brief conclusions. The sequence dependence of DNA mechan-
ics is nevertheless recognised in many circumstances. For instance, particular fragments
have been noted to contain regions that are significantly and intrinsically bent [Marini
et al., 1982, Kabsch et al., 1982, Kitchin et al., 1986, Levene et al., 1986, Bednar et al.,
1995, Vologodskaia and Vologodskii, 2002] and local DNA stiffness has been observed

1The exact number of possible bases is still a topic of research. While the standard DNA bases
are made of only four chemical structures, the existence of various base modifications, methylation for
instance, is known to be biologically significant.
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to vary between difference sequences [Théveny et al., 1988, Olson et al., 1998, Virstedt
et al., 2004]. Special regions in the genome are thought to be important in biological pro-
cesses involved in the cells, see for instance [Hagerman, 1990], and to be related, more
particularly, to DNA-protein recognition, see for instance [Matthews, 1988, Koudelka
et al., 2006], and to nucleosome positioning in eukaryotic cells, as discussed for instance
in [Thåström et al., 1999, Virstedt et al., 2004, Segal and Widom, 2009]. However, most
of the existing models cannot accurately encompass the sequence dependent physical
behavior of DNA molecules.

Available realistic sequence dependent DNA mechanical models can be divided into
two classes: atomistic models and coarse grain models. Atomistic DNA models aim for
a very fine description of the molecule, namely at the level of atoms, see for instance
[Lavery and Hartmann, 1994, Lankaš et al., 2000, Lankaš et al., 2003, Lavery et al.,
2009, Lavery et al., 2014, Pasi et al., 2014]. The main issues with this approach are
first that these models needs a very large set of parameters which are difficult to get
since they have to come mainly from ab initio principle, such as quantum chemistry,
and second that they require intensive computer resources which prevent, nowadays,
the study of phenomena involving more than a few decades of base pairs for a few
microseconds. Even if the predictions of these models are definitely improving, their
accuracy is still questionable. In contrast, coarse grain DNA model describe the molecule
as a set of units which contain several atoms, and, keeping the objective of modelling
the sequence dependence mechanics of DNA, the two cases of interest here are rigid base
and rigid base pair coarse graining degree, see for instance [Olson et al., 1993, Marky
and Olson, 1994, Olson, 1996, Olson et al., 1998, Gonzalez and Maddocks, 2001, Olson
et al., 2001, Lankaš et al., 2003, Lankaš et al., 2009, Gonzalez et al., 2013]. Even if these
models contain less informations than atomistic models, they are expected to describe in
an efficient and appropriate way the sequence dependent features of DNA molecules at
the scale of several bases.

Conversely, continuum and homogeneous models have became popular to describe
DNA mechanical properties at larger scale. Long macromolecules have been modelled,
using homogeneous Gaussian chains according to the effective theory of Kuhn segments,
see for instance [Kuhn, 1934, Flory, 1969]. For shorter fragments, however, this approach
fails because the detailed physical constitution of the chain can no longer be ignored, as
pointed out in [Bresler and Frenkel, 1943] for instance. Inspired from the work by M.
Smoluchowski on stochastic trajectories and originally applied to polymers in [Porod,
1948, Krakty and Porod, 1949], the idea of Kratky-Porod persistence length allows the
characterisation of some statistical properties of DNA at intermediate scales, say from
103 to 105 base pairs. This quantity is shown to be related to some bending stiffness
parameter in the so-called Wormlike chain model which describes DNA as an uniform
and intrinsically straight material which only responds to bending deformations, other
degrees of freedom like shear, stretch or twist being ignored. Even if this model is
quite idealised, it has led to remarkably good results to model average DNA properties.
Substantial improvements have been made into the Helical Wormlike chain model which
additionally allows twist deformations and a helical ground state, see for instance [Bugl,
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1969, Yamakawa, 1976, Benham, 1977, Benham, 1979, Yamakawa, 1997]. Despite the
propositions of increasingly realistic and sophisticated continuum rod models [Marko and
Siggia, 1994, Shi et al., 1996, Manning et al., 1996, Marko, 1997, Becker and Everaers,
2007, Becker, 2007], there exist only a few examples discussing how sequence dependence
can explicitly be included in the rod constitutive parameters [Manning et al., 1996,
Becker, 2007].

Atomic Model Birod Model Rod ModelRigid Base Model

Coarse Graining Interpolation

Discretization

Averaging

Atoms
Embedding

Two Rod
Embedding

Figure 1: Sketch of multi-scale modelling of DNA molecule.

The development of a mechanical model that has the ability to include the inherent
discrete nature of the nucleotide sequence in a DNA fragment and its continuum charac-
ter at the scale of biological processes in a cell appears, consequently, as a significant step
in the description of DNA molecules. Modelling sequence dependence of physical prop-
erties is a challenging objective. First, because most of the classical results in polymer
mechanics do not apply to heterogenous chains, which implies that new mathematical
results have to be stated; and second, because many biological phenomena of interest re-
quire hundreds of base pairs to be described and need therefore the ability of predicting
large scale behavior as a function of the sequence. These objectives constitute the core
of this thesis, and we present here the current state of our progress. More precisely, in
part I, we propose a multi-scale mechanical study by considering, on one side, a discrete
heterogeneous chain theory and, on the other side, its analogue for continuum rods and,
then, a method to bridge these two theories. Then, in part II, these results are illustrated
by the computation of sequence dependent most probable configurations respecting end
conditions and by the study of the sequence dependent values of the frame correlation ma-
trix and of the Flory persistence vector. A sketch of our multi-scale modelling approach
is drawn in figure 1.

Part I, even if it is largely inspired by applications in the context of DNA, can ac-
tually be taken as a pure discussion on the mechanical modelling of chains and rods
and consequently may be of interest in the context of other microscopic or macroscopic
filamentary material. The first chapter is preliminary and comprises the basic, but nec-
essary, mathematical definitions to state in a convenient way the results belonging to this
thesis. It should only be read if more technical detail than presented in the following
chapters is desired.
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The second chapter is devoted to the properties of chains in both classical statics
and statistical mechanics. A rigid body chain configuration g = (g1, ..., gN ) is made
of an ordered sequence of N rigid body configurations gn = (Rn, rn) ∈ SE(3) where
the rotation matrix Rn ∈ SO(3) denotes the orientation of the nth rigid body and
the vector rn ∈ R3 its position. Similarly, a double rigid body chain configuration
(g+, g−) = (g+

1 , g
−
1 , ..., g

+
N , g

−
N ) is made of two rigid body chain configurations denoted

respectively by g+ and g−. The equilibrium equations are discussed and a variational
principle presented for both chains and double chains. Motivated by the rigid base
model for DNA molecules in [Gonzalez et al., 2013], the bichain model is introduced.
It describes a double chain by a macrostructure configuration g, which is a chain con-
figuration designed to characterise the average deformation of the double chain, and a
microstructure configuration P, which encodes the local difference between the original
double chain configuration and the macrostructure configuration. Based on the analy-
sis of double chains, equilibrium conditions as well as a variational principle are stated
for a bichain configuration (g,P). In particular, we show how the problem of comput-
ing equilibrium bichain configurations where the end configurations are prescribed can
be described using a Lagrange multiplier technique, and, moreover, that the multipliers
exactly correspond to the external couple and force needed to respect the desired Dirich-
let conditions. The second half of this chapter concerns the study of statistical physics
properties of chains and bichains. Following the arguments proposed in [Walter et al.,
2010], a rigid body chain in a heat bath, and respectively a bichain, is assumed to be
governed by a stationary configurational distribution dρ(g), and respectively, dρ(g,P),
of the Boltzmann form. In the case of a single chain with a local deformation energy,
general analytical results on the first moment of the relative rigid body displacement
〈gm,n〉 =

〈
g−1
m gn

〉
are then developed, where 〈 . 〉 denotes the expectation with respect

to the appropriate configurational distribution. In particular, the notion of expected
chain configuration is introduced which allows, for chains in a semi-flexible regime, the
derivation of an explicit recurrence relation 〈gm,n+1〉 = 〈gm,n〉 〈an〉 based on a first order
expansion in local covariance matrices. These analytical developments demonstrate the
equal importance of the expected chain configuration ḡm,n and of the local covariance
matrices in the behavior of the first moment 〈gm,n〉 and can be seen as a generalisation,
in a mathematical sense, of the work in [Trifonov et al., 1988, Schellman and Harvey,
1995]. They also motivate the definition of the persistence matrix 〈Dm,n〉 obtained by
the factorization 〈gm,n〉 = 〈Dm,n〉 ḡm,n. The persistence matrix is shown to characterise
the memory lost in the entries of the configurational first moment 〈gm,n〉 and allows a
derivation of a closed form expression in a short length expansion.

The third chapter is designed as the continuum analogue of the second, and presents
properties of rods in classical statics and equilibrium statistical mechanics. A contin-
uum rod configuration g = g(s) is a continuous curve in SE(3) for s ∈]0, L[ where L
denotes a reference length and g(s) = (R(s), r(s)) ∈ SE(3) is the continuum version of
the rigid body configuration of the rod cross-section. A double rod configuration is of
the form (g+, g−) = (g+(s), g−(s)) where the two rod configuration are denoted respec-
tively by g+ and g−. Following the work in [Moakher and Maddocks, 2005], we then
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define the birod configuration, denoted (g(s),P(s)), which comprises a rod macrostruc-
ture g(s), representing the double rod configuration in average, and a microstructure
P(s), representing the difference between the actual double rod configuration and the
macrostructure, analogously to bichains. Equilibrium conditions and variational princi-
ples are presented for rods and birod respectively. In addition, a coordinate independent
Hamiltonian formulation of the equilibrium conditions is obtained. Similarly to chains,
we present a Lagrange multiplier formulation of the equilibrium birod conditions with
prescribed end configurations, and show that the set of multipliers corresponds to ex-
ternal couple and force end loadings. The statistical physics of rods and birods is then
studied. The configurational distribution for rods, respectively birods, in the context of
equilibrium statistical mechanics, are introduced as path integral densities and we discuss
how these infinite dimensional distributions can be interpreted as the appropriate limit
of a sequence of chains distributions for the discretised rod configurations. This develop-
ment is then extended to observables and their expectations and, similarly to chains, we
emphasize the special role of the configurational first moment which comprise, now in a
continuum version, the frame correlation matrix and the Flory persistence vector. An
explicit first order approximation is then obtained for the configurational first moment
for single rods which have a local internal energy and are assumed to be in a semi-flexible
regime. A similar formula is obtained in [Becker, 2007], but is there based on the analogy
with the Brownian dynamics of a rigid body. In analogy to the case of chains, the analyt-
ical expression show the equal importance of the expected rod configuration and of the
fluctuation matrix, and allow the introduction of a new quantity called the persistence
matrix. It is shown to encode the decay rates in the entries of the configurational first
moment and yields a closed form expression in a short length expansion.

The fourth chapter discusses how to bridge the scales between chains and rods and
the sense in which continuum models can be understood as providing approximations of
rigid body chain mechanical properties. We first introduce local interpolation rules for
chains and bichains, and discuss separately the notion of deterministic and stochastic
exponential Cauchy-Born rules. The term exponential Cauchy-Born rule was introduced
originally in [Arroyo and Belytschko, 2004] in the context of continuum modelling of
carbon nanotubes from all atom configurations. The notion of consistent discrete and
continuum energies and stationary configurations for chains and rods are presented, and
we briefly expose why, under specific hypotheses, continuum equilibrium configurations
can provide approximations of discrete equilibrium configurations. We then introduce
the definitions of consistent discrete and continuum observables and configurational dis-
tributions for chains and rods and conclude that in general deterministic exponential
Cauchy-Born rules do not provide stochastic exponential Cauchy-Born rules. An explicit
deterministic Cauchy-Born rule is proposed for quadratic bichains models which has been
designed to apply to the rigid base model in [Gonzalez et al., 2013]. This rule is obtained
by matching the first and second order terms in an expansion of the bichain energy which
provides consistency only at leading orders. Similarly, we then discuss the construction
of an explicit stochastic Cauchy-Born rule. However, this rule is only for single chains
and single rods, and in the case that they admit normal configurational distributions and
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are in a semi-flexible regime. It is deduced by matching the first and second moments of
the chain internal coordinates.

Part II is dedicated to the application of chain and rod theories to the multi-scale
modelling of sequence dependent DNA mechanics. More precisely, we discuss the compu-
tation of the most probable bichain configuration and of the configurational first moment
using both a discrete and a continuum approach.

The fifth chapter introduces sequence dependent rigid base pair and rigid base mod-
els. They respectively describe as a rigid body configuration either each individual base
pair or each individual base in a DNA fragment, which leads to either rigid body chain
or rigid body bichain configurations. We propose a sequence dependent continuum rod
model, using the stochastic exponential Cauchy-Born rule for chains defined in the previ-
ous chapter, and a sequence dependent continuum birod model, using the deterministic
exponential Cauchy-Born rule for bichains. In both cases, the associated constitutive
coefficients are observed to be discontinuous at each base pair and to have a manifestly
heterogeneous character at the scale of hundreds of base pairs. We conclude however
that the deterministic exponential Cauchy-Born rule applied to the rigid base model is
satisfactory since for instance the continuum birod and the original bichain energy agree
to less than 0.5% for randomly sampled bichain configurations.

The sixth chapter discusses the computation of most probable configurations respect-
ing end conditions in the sequence dependent rigid base model and in the sequence de-
pendent birod model. Such configurations are believed to be an interesting first step in
the characterisation of the sequence dependent statistical physics properties of a DNA
fragment. However, since the second variation still requires further investigation, we
restrict the discussion to stationary configurations. In order to demonstrate that the
sequence dependent continuum birod model provides accurate approximations of the
stationary bichain configurations, we first present numerical solutions of the continuum
equilibrium conditions, and then use them in an optimisation method to compute the so-
lution of the discrete equilibrium conditions. We present the Hamiltonian formulation of
the birod equilibrium conditions and the sequence dependent coefficients obtained using
the deterministic exponential Cauchy-Born rule for bichains. A study of the equilibrium
configurations for under and over twisted end conditions, corresponding respectively to
applied torque of −300pNÅ and +300pNÅ, for the first 240 base pairs of three different
sequences denoted by λ , CF and TL is presented. The first sequence comes from the
genome of a virus called Lambda phage, which infects the E. Coli bacterium, the second
is a fragment of the Crithidia fasciculata genome, which is a mosquito parasite, and
has the particularity to contain a large intrinsic bend [Kitchin et al., 1986], and the last
one has been artificially designed to have a pronounced intrinsic super-helical structure
which is left-handed. Figure 2 presents the equilibrium birod configurations obtained
for these three different sequences, but for the same under twisted load conditions. The
colour map along the backbone strands illustrates the distribution of the norm of the
local couple around each base pairs. The different mechanical response corresponding to
the different sequences is significant. We then compare these solutions with their corre-
sponding bichain numerical solutions, and even if these results are only at a preliminary
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stage, we believe them to be quite satisfactory.

(a) λ (b) CF (c) TL

Figure 2: Under twisted birod configurations for three different sequences, but for the same
applied twist loading.

The last chapter discusses the features of the configurational first moment, or equiva-
lently of the frame correlation matrix and of the Flory persistence vector, for the sequence
dependent rigid base pair model. These chain observables are important since they can
characterise the possible constitutive anisotropy and possible non-trivial intrinsic geom-
etry of a given DNA molecule. We discuss the limitation of the existing models, and in
particular of the isotropic Wormlike chain, to describe sequence dependent features. The
quality of the discrete and continuum approximation formulas for the configurational
first moment of heterogeneous chains and rods, presented in the second and third chap-
ter, are assessed in a numerical comparison with the values obtained by Monte Carlo
simulations. However, since these expressions are only valid for local models, we use the
sequence dependent rigid base pair and sequence dependent rod model for the discussion.
We first concentrate on the chain formulation and the results of the explicit recurrence
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relation are compared with a Monte Carlo simulations for the sequences λ , CF and
TL . In each case the differences are hardly perceptible, even after 500 base pairs, and
the explicit formulas are consequently thought be very satisfactory. The factorization
into the expected chain and the persistence matrix is then illustrated. Remarkably it
shows that the fast variation in the configurational first moment reflects the expected
chain configuration whereas the slow convergence of the entries is due to the persistence
matrix. This factorization can be seen, in a mathematical sense, as a generalisation of
the studies in [Trifonov et al., 1988, Schellman and Harvey, 1995] of the effect of localised
intrinsic bends on chain statistics, and of the notion of static and dynamic persistence
length. We also present the results of the closed form solution given by the short length
expansion, that are observed to be valid until a distance of about 135 base pairs. We
then apply the exponential stochastic Cauchy-Born rule to discuss the continuum ap-
proximations of the configurational first moment of chains. The numerical solutions of
the proposed ODE are compared with the results of Monte Carlo simulations obtained
for the sequence λ and, as for the discrete approximation, the difference between the
values is hardly perceptible. The exponential stochastic Cauchy-Born rule for chains
is thus thought to be very satisfactory and to constitute a significant step forwards in
the multi-scale modelling of DNA statistical physics properties. However, the strong
heterogeneous character of this formulation forces a very dense numerical discretization
to solve the ODE and the continuum model appears computationally more expensive
than the original base pair model, which is of course not what is desired in the introduc-
tion of a continuum model. To overcome this fundamental issue, we finally propose the
application of a homogenisation technique for ODE systems which possess two distinct
characteristic scales. However, since the coefficients do not exhibit any of the classical
hypotheses, such as periodicity or ergodicity, we only obtain a local averaging principle.
Even if the optimal size of the window used to average should be further investigated,
the choice of about 30Å delivers smooth and slowly varying coefficients which are used
to solve the associated homogenised system. Its solution is then compared to the re-
sults obtained from the Monte Carlo simulation for the sequence λ and we observe that
not only is the difference hardly perceptible, but also the number of numerical steps is
now strictly less than the number of base pairs in the original chain. The homogenised
sequence dependent ODE constitutes then a large scale description with slowly varying
coefficient and is, consequently, less computationally expensive than the original discrete
recurrence relation.
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On the Statistical Physics
of Chains and Rods
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1. Preliminaries

We introduce in this first chapter some basic notations and preliminaries on matrix
groups before starting the actual discussion. In particular, we present formally the special
Euclidean group SE(3), which describes the set of all possible rigid body displacement in
space, and some specific algebraic properties related to infinitesimal variations. Finally,
we discuss some notable parametrization of this group in the context of DNA modelling.
Since the key expressions are either restated in the main text or explicitly referred to
this chapter, we strongly invite the reader to go directly to chapter 2 and only to return
to this part if more technical detail is desired.

1.1 Basics on Matrix Groups

Throughout this thesis we use Rm×n to denote the set of m × n matrices with real
coefficients, where m and n are integers. The product of two matrices A ∈ Rk×m and
B ∈ Rm×n will simply be denoted by AB ∈ Rk×n. The inner product of two matrices
A,B ∈ Rm×n is denoted A : B ∈ R and is defined as

A : B =

n∑
i=1

n∑
j=1

AijBij = Tr
(
ATB

)
(1.1.1)

where Aij and Bij denote the entries of the matrix A and B respectively, AT the trans-
posed matrix of A and Tr the usual trace of a matrix. In particular, for any matrices
A ∈ Rk×m, B ∈ Rk×n and C ∈ Rn×m one has the following property

A : BC = BTA : C = ACT : B. (1.1.2)

This inner product induces the matrix norm | . | defined as

|A| = (A : A)
1
2 (1.1.3)

for any matrix A ∈ Rk×m, which is called the Fröbenius norm. In many circumstances,
we will also make use of the spectral matrix norm, denoted by | . |Sp and defined as

|A|Sp = max
{
|λ|

1
2 |λ ∈ Sp(ATA)

}
(1.1.4)
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where Sp(ATA) denotes the set of eigenvalues of the matrix ATA. In particular the
spectral norm has the property that

|AB|Sp ≤ |A|Sp |B|Sp (1.1.5)

for any matrices A ∈ Rk×m, B ∈ Rk×n. The matrix commutator of A,B ∈ Rn×n is
denoted by [A,B] ∈ Rn×n and is defined as

[A,B] = AB −BA. (1.1.6)

The space of differentiable curves on Rm×n is denoted by C1(]0, L[,Rm×n). This space
can be defined as A(s) ∈ C1(]0, L[,Rm×n) if and only if all the components of the matrix
A(s) are differentiable for all s ∈]0, L[.

The Special Orthogonal group in R3×3, denoted by SO(3), can be defined as

SO(3) =
{
R ∈ R3×3 |RTR = I and detR = 1

}
. (1.1.7)

This group represents, for instance, the set of all possible rotations in the Euclidean
space. The tangent space to this group at the identity, which consists in all infinitesimal
variations within the group around the identity matrix, is denoted by so(3) and can be
shown to be

so(3) =
{

[b×] ∈ R3×3 | b ∈ R3
}

(1.1.8)

which is the vector space of all skew-symmetric matrices in R3×3 and where the operator
[ .×] : R3 → R3×3 is defined by

[b×] =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 for all triples b = (b1, b2, b3) ∈ R3. (1.1.9)

The operator [ .×] is called the skew operator and this notation is meant to emphasize
the property

[b1×] b2 = b1 × b2 for all b1, b2 ∈ R3 (1.1.10)

where × denotes the usual vector product on R3. Observe that we have the following
identity

[[b1×] , [b2×]] = [(b1 × b2)×] (1.1.11)

for all b1, b2 ∈ R3 where the commutator [ . , . ] is defined in (1.1.6). The space so(3)
is called the Lie algebra of the group SO(3). The operator [ .×] has a unique adjoint
operator, denoted by Vect ( . ) : R3×3 → R3, with respect to the inner product of matrices
defined in (1.1.1). Precisely, one has that

B : [b×] = Vect (B) · b (1.1.12)
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for any matrix B ∈ R3×3 and for all triples b ∈ R3 and where · denotes the usual inner
product for vectors in R3, which leads to the definition

Vect (B) =

B32 −B23

B13 −B31

B21 −B12

 . (1.1.13)

According to the definition (1.1.8), if R(t) ∈ SO(3) denotes a differentiable curve on
the rotation group, there always exists some triples φR(t) ∈ R3 and φR(t) ∈ R3, called
Darboux vector, such that

d

dt
R(t) =

[
φR(t)×

]
R(t) = R(t)

[
φR(t)×

]
(1.1.14)

and moreover, using the property (1.1.10), these vectors are related by

R(t)φR(t) = φR(t). (1.1.15)

Another important Lie group, which will be at the heart of this thesis, is the Special
Euclidean group in R4×4, denoted by SE(3). It can be defined by

SE(3) =

{
g ∈ R4×4 | g =

(
R r
0 1

)
where R ∈ SO(3) and r ∈ R3

}
. (1.1.16)

This group describes, for instance, the set of all possible rigid body configurations in
Euclidean space. The matrix R and the vector r are called respectively the rotational
and translational part of the element g. The product of two elements g1, g2 ∈ SE(3) is
given by the regular matrix product, i.e. by

g1g2 =

(
R1R2 R1r2 + r1

0 1

)
(1.1.17)

and the inverse g−1 is

g−1 =

(
RT −RTr
0 1

)
. (1.1.18)

Equivalently, we will also use the shortened notation

g = (R, r) ∈ SE(3) (1.1.19)

and one will have then formally

g1g2 = (R1R2,R1r2 + r1) and g−1 = (RT ,−RTr) (1.1.20)

according to (1.1.17) and (1.1.18). The tangent space to the special Euclidean group
SE(3) at the identity, or its Lie algebra, can be shown to be

se(3) =
{
T φ ∈ R4×4 |φ = (φR , φr) with φR ∈ R3 and φr ∈ R3

}
(1.1.21)

29



Chapter 1. Preliminaries

where the operator T : R6 → R4×4 is

T φ =

([
φR×

]
φr

0 0

)
(1.1.22)

and [ .×] is defined in (1.1.9). The operator T is called the tangent map. The tangent
map has a unique adjoint operator T ∗ : R4×4 → R6 defined by

T b : B = T ∗B · b (1.1.23)

for all vectors b ∈ R6 and all matrices B ∈ R4×4. According to (1.1.13) one has explicitly

T ∗
(
B1 b2
b3 B4

)
=

(
Vect (B1)

b2

)
(1.1.24)

where B1 ∈ R3×3, b2 ∈ R3×1, b3 ∈ R1×3 and B4 ∈ R. In analogy to (1.1.11) one has

[T φ1, T φ2] = T
(

φR1 × φ
R
2

φR1 × φ
r
2 + φR1 × φ

r
2

)
(1.1.25)

with φ1 = (φR1 , φ
r
1 ) and φ2 = (φR2 , φ

r
2 ), and where the commutator [ . , . ] is defined in

(1.1.6).
Consequently, using (1.1.20) and (1.1.21), any differentiable curve g(t) ∈ SE(3) in the

special Euclidean group SE(3) has the property that there exists φ(t) = (φR(t),φr(t)) ∈
R6 and φ(t) = (φR(t), φr(t)) ∈ R6 such that

d

dt
g(t) = T φ(t)g(t) =

([
φR(t)×

]
R(t),φR(t)× r(t) + φr(t)

)
(1.1.26a)

and

d

dt
g(t) = g(t)T φ(t) =

(
R(t)

[
φR(t)×

]
,R(t)φr(t)

)
(1.1.26b)

where we have used the short notation defined in (1.1.19). For a differentiable curve
g(t), the vector field φ(t) which satisfies (1.1.26a) for all t is called the left infinitesimal
generator, and the analogous φ(t) in (1.1.26b) is called the right infinitesimal generator.
The relation between the components of φ(t) = (φR(t),φr(t)) and φ(t) = (φR(t), φr(t))
is then

T φ(t) = g(t)T φ(t)g(t)−1 (1.1.27)

which can be written explicitly as the linear relation

φ(t) = Adg(t)φ(t) with Adg(t) =

(
R(t) 0

[r(t)×]R(t) R(t)

)
(1.1.28)

for any g(t) = (R(t), r(t)) ∈ SE(3). This matrix represents the operator of adjoint
representation Ad. We observe that (1.1.28) constitutes a slight abuse of notation with
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respect to the literature since the general use of this operator is on the Lie algebra and
not on one of its representations in coordinates. This operator will be shown to be an
important ingredient in many results of this thesis. Note in particular using (1.1.27) one
has the following relation

Adg1g2 = Adg1Adg2 (1.1.29)

for any g1, g2 ∈ SE(3), which implies that

Ad−1
g = Adg−1 =

(
RT 0

−RT [r×] RT

)
. (1.1.30)

Another important context where the operator Ad appears is the following. Assume
that g(t) ∈ SE(3) is a differentiable curve which satisfies d

dtg(t) = g(t)T φ(t), as defined
in (1.1.26), and that it factorizes as

g(t) = g1(t)g2(t) (1.1.31a)

with

d

dt
g1(t) = g1(t)T φ1(t) and

d

dt
g2(t) = g2(t)T φ2(t) (1.1.31b)

for φ1(t), φ2(t) ∈ R6. One then has the relation

φ(t) = Ad−1
g2(t)φ1(t) + φ2(t) (1.1.32)

where the matrix Ad−1
g2(t) is explicitly defined in (1.1.30). Observe that for a differentiable

curve g(t) which satisfies d
dtg(t) = g(t)T φ(t) the operator Adg(t) satisfies the ODE

d

dt
Adg(t) = Adg(t)adφ(t) (1.1.33)

where we have used the definition

adφ(t) =

([
φR(t)×

]
0

[φr(t)×]
[
φR(t)×

]) where φ(t) = (φR(t), φr(t)) (1.1.34)

for all t.

1.2 Calculus on Matrix Groups

The basic definitions on the special orthogonal group SO(3) and on the special Euclidean
group SE(3) have been given in section 1.1. In this section we want to present the
fundamental expressions of the calculus of variations on the group SE(3). Any property
then applies also to SO(3) through the natural embedding SO(3) ⊂ SE(3).
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Let F : SE(3) → R be a differentiable function on the special Euclidean group and
let g = (R, r) ∈ SE(3) be a given rigid body displacement. One can think, for instance,
that F (g) describes the potential energy between two rigid bodies in Euclidean space as
a function of their relative rigid body displacement g. A rigid body perturbation of the
configuration g is denoted by δg and is defined as

δg =
d

dt |t=0

g(t) = (T φ)g (1.2.1)

for a given φ ∈ R6 according to (1.1.26) and where g(t) stands for a smooth curve in SE(3)
with g(0) = g. Equivalently, in terms of the rotational part R and the translational part
r one has

δR =
[
φR×

]
R (1.2.2a)

and

δr = φR × r + φr (1.2.2b)

using (1.1.26a). A rigid body perturbation of the form δg = gT φ can be used as well,
and its explicit expression is given in (1.1.26b). More generally the first variation of the
function F (g) can be computed, using (1.1.23) and (1.2.1), as

δF (g)δg =
d

dt |t=0

F (g(t)) = T ∗
(
∂gF (g)gT

)
· φ (1.2.3)

for any rigid body perturbation δg. In terms of the variations δR and δr in (1.2.2), one
finds

δF (g)δg =
[
Vect

(
∂RF (g)RT

)
+ r × ∂rF (g)

]
· φR + ∂rF (g) · φr (1.2.4)

using the explicit definition of T ∗ in (1.1.24).
If a rigid body configuration g0 ∈ SE(3) satisfies

δF (g0)δg = 0 for any δg (1.2.5)

it is said to be a stationary configuration of the function F .
The second order perturbation of the configuration g, denoted δ2g, follows from the

definition of the first variation (1.2.1) to be

δ2g = (T φ1)(T φ2)g (1.2.6)

for φ1,φ2 ∈ R6. One obtains then that, at the second order, neighbouring matrices of a
given configuration ḡ can be expressed as

g =

[
Id4 + T φ+

1

2
(T φ)2

]
ḡ + O

(
|φ|2

)
. (1.2.7)
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Suppose now that F : C1(]0, L[, SE(3)) → R denotes a map defined on the space of
differentiable curves on SE(3) and that it is defined as

F [g] =

∫ L

0
L(g(s), ξ(s); s)ds (1.2.8)

where ξ(s) denotes the right generator vector of the curve g(s) as defined in (1.1.26b),
i.e.

d

ds
g(s) = g(s)T ξ(s). (1.2.9)

The mapping F in (1.2.8) said to be a functional. The perturbations of a configuration
g(s) are then of the form

δg(s) = (T φ(s))g(s) (1.2.10)

according to (1.2.1). Using the form of the variations (1.2.9) and (1.2.10) one deduces
that the perturbation of the generator vector ξ(s) satisfies

δξ(s) = Ad−1
g(s)

(
d

ds
φ(s)

)
(1.2.11)

where we have used (1.1.27) and (1.1.28). The perturbations (1.2.10) and (1.2.11) allow
the first variation of the functional F in (1.2.8) to be written as

δF [g]δg =

∫ L

0

[
T ∗
(
∂gLgT

)
− d

ds

(
Ad−Tg(s)∂ξL

)]
· φ(s)ds+ Ad−Tg(s)∂ξL · φ(s)|L0 (1.2.12)

where the explicit dependence of the function L in the variables (g, ξ; s) has been hidden
for compactness. Writing the perturbation φ(s) = (φR(s),φr(s)), and the generator
vector ξ(s) = (U(s), V (s)) respectively in terms of their rotational and translational
part, as in (1.1.26) leads to

δF [g]δg =∫ L

0

[
Vect

(
∂RL(g)RT

)
+ r × ∂rL(g)− d

ds
(R(s)∂UL+ r(s)×R(s)∂V L)

]
· φR(s)ds

+

∫ L

0

[
∂rL(g)− d

ds
(R(s)∂V L)

]
· φr(s)ds

+ (R(s)∂UL+ r(s)×R(s)∂V L) · φR(s)|L0 + (R(s)∂V L)] · φr(s)|L0 .
(1.2.13)

The variation of the functional F in the form of (1.2.12), or (1.2.13), is often called the
Euler-Poincaré variation in reference to the pioneering works of L. Euler on rigid body
dynamics [Euler, 1765] and of H. Poincaré [Poincaré, 1901] on calculus on a smooth
group. They are a natural generalisation of the Euler-Lagrange variations. Modern
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treatment of such matrix calculus can be found in [Marsden and Ratiu, 2002, Ellis et al.,
2010, Chirikjian, 2011] for instance. A curve g0 ∈ C1(]0, L[, SE(3)) is then said to a be
stationary configuration of the functional F if

δF [g0]δg = 0 for any δg(s) (1.2.14)

analogously to (1.2.5).

1.3 Coordinate Systems for Matrix Groups

Both the group of special orthogonal matrices SO(3) ⊂ R3×3 and the special euclidean
group SE(3) ⊂ R4×4 have the features that their dimension as a smooth manifold, namely
three for SO(3) and six for SE(3), is strictly less than the space of matrices where they
are naturally embedded, and that they have non-zero Gaussian curvature. In many
applications it is then convenient to make use of a coordinate system to described these
matrix groups. However, there exist many different coordinate system for the rotation
group SO(3) and for the group of rigid body motion SE(3), each of which has been used
in different physical context and by different scientific communities.

A coordinate system on the matrix group SO(3) is defined as a differentiable mapping
of the form

u 7→ Q(u) ∈ SO(3) (1.3.1)

and similarly a coordinate system on SE(3) is of the form

x 7→ a(x) ∈ SE(3). (1.3.2)

In the context of DNA modelling, one finds a version of the Euler angles for the rotations
[Marky and Olson, 1994, Olson et al., 1998, Coleman et al., 2003], a version of the
exponential coordinates [Becker and Everaers, 2007, Chirikjian, 2011] for the full rigid
body motion, the use of the Cayley vector and the introduction of a junction frame
to describe the translation [Lankaš et al., 2009, Walter et al., 2010, Gonzalez et al.,
2013, Petkeviciute et al., 2014] or the use of the unit quaternions for large rotations
[Dichmann et al., 1996, Manning et al., 1996, Manning et al., 1998, Chirikjian, 2010].

In all cases the matrix configuration can be expanded in terms of the internal coor-
dinates, and since it belongs to a matrix group, these expansions can be written in a
specific form. For instance in the case of (1.3.2), a second order expansion of the matrix
a(x) around the coordinates x̄ is

a(x) =

[
Id4 + a

(1)
x̄ (x− x̄) +

1

2
a

(2)
x̄ (x− x̄)

]
ā + o

(
|x− x̄|2

)
(1.3.3)

where a(1)
x̄ (x− x̄) and a(2)

x̄ (x− x̄) stand respectively for the linear and quadratic contribu-
tion of (x− x̄) in this expansion and where by definition ā = a(x̄). To make clearer the
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connexion between the expansion in coordinates x and the one in terms of perturbations
of the form obtained in (1.2.7)

a =

[
Id4 + T Θ +

1

2
(T Θ)2

]
ā + o

(
|Θ|2

)
(1.3.4)

we assume that the vector Θ ∈ R6 can be expressed at the second order as

Θ(x) = L(1)
x̄ (x− x̄) +

1

2
L(2)
x̄ (x− x̄) + o

(
|x− x̄|2

)
(1.3.5)

where L(1)
x̄ (x−x̄) and L(2)

x̄ (x−x̄) denote respectively the linear and quadratic contribution
of (x− x̄). Consequently the relation between the terms in the expansion (1.3.3) and the
one in (1.3.5) is

T L(1)
x̄ (x− x̄) = a

(1)
x̄ (x− x̄) (1.3.6a)

T L(2)
x̄ (x− x̄) = a

(2)
x̄ (x− x̄)−

(
a

(1)
x̄ (x− x̄)

)2
(1.3.6b)

in order to match the first order and second order terms in (1.3.4). For a given choice
of coordinate system x the problem of computing the terms a(1)

x̄ (x − x̄) and a
(2)
x̄ (x −

x̄) is then equivalent to the one of computing the terms L(1)
x̄ (x − x̄) and L(2)

x̄ (x − x̄).
Explicit computations of these terms is done in the section A.1 for the coordinates used
in [Gonzalez et al., 2013, Petkeviciute et al., 2014], which are described in (2.1.18).
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2. On Single and Double Rigid Body Chains

Let a Cartesian coordinate system
be attached to each bond of the chain
in some arbitrarily specified manner.

P. J. Flory, 1964

This second chapter is dedicated to a discussion of the properties of rigid body chains
in classical and equilibrium statistical mechanics. Section 2.1 describes the notions of
rigid body chain and bichain configurations and of internal coordinates. Material symme-
tries are then briefly discussed. The equilibrium conditions subject to end conditions and
a related coordinate independent variational principle are then presented in section 2.2
for both the chain and the bichain models. The bichain formulation is original. We then
describe how this constrained variational principle can be recast into an unconstrained
variational principle using Lagrange multipliers, which in addition can be interpreted as
the set of total couple and force. Section 2.3 presents the definition of a configurational
distribution for chains and bichains in the context of equilibrium statistical mechan-
ics. Observables and their expectations are then discussed. In particular, we emphasize
the special role of the configurational first moment which comprises the frame correla-
tion matrix and the Flory persistence vector. For chains with nearest neighbor internal
energy, a detailed analysis of the configurational first moment is then discussed in sec-
tion 2.4 and an explicit first order approximation is obtained for chains in a semi-flexible
regime. These analytical expressions not only show the equal importance of the expected
chain configuration and of the fluctuation matrix, but also motivate the definition of the
persistence matrix which is shown to characterize the memory lost in the entries of the
configurational first moment. We finally obtain a closed form expression in a short length
expansion.

37



Chapter 2. On Single and Double Rigid Body Chains

2.1 On Chain Configurations

We present in this section the the basic definitions related to rigid body chain models.
Rigid body chain configurations for a linear polymer, together with the notion of internal
coordinates, are formally introduced. The natural extension of this model to double rigid
body chain and bichain descriptions for a double stranded molecule is then discussed in
details. In particular, we introduce the notion of macrostructure and microstructure for
bichains. We finally examine the transformation rules appearing under different natural
material symmetries for chains.

2.1.1 On rigid body chain configurations and internal coordinates

A linear polymer is commonly modelled using a sequence of positions in Euclidean
space where two successive elements are connected by a bond, see for instance [Kuhn,
1934, Flory, 1969, Schellman, 1974, Trifonov et al., 1988, Doi and Edwards, 1986, Öt-
tinger, 1996]. The relative orientation of two consecutive bonds can be measured by
the introduction of a frame in each unit which constitutes the chain [Eyring, 1932, Flory,
1964, Flory, 1969]. More generally, the sequence of positions and orientations allows to de-
scribe the rigid body displacement between any element in the chain [Flory, 1973, Maroun
and Olson, 1988, Gonzalez and Maddocks, 2001, Becker and Everaers, 2007]. Largely
inspired by the existing literature on polymer modelling, we introduce the definition of
the rigid body chain model for linear polymers where each elementary unit is described
as a rigid body configuration, i.e. by a position and an orientation. This model has been
for instance extensively studied in [Becker, 2007].

Formally, a rigid body chain configuration is made of a sequence of N rigid body con-
figurations g1, ..., gN where gn = (Rn, rn) ∈ SE(3) denotes the rigid body configuration
of the nth rigid body in the chain, the rotation matrix Rn ∈ SO(3) denotes the rigid
body orientation and the triple rn ∈ R3 the rigid body position. The rigid body chain
configuration is then denoted as

g = (g1, ..., gN ) ∈ SE(3)N (2.1.1)

where SE(3)N stands for N copies of the special Euclidean group1. A sketch of a rigid
body chain configuration is drawn in figure 2.1. In the continuity of several authors
[Flory, 1973, Maroun and Olson, 1988, Becker and Everaers, 2007, Chirikjian, 2011] we
use the following matrix formulation of the individual rigid body configuration gn

gn =

(
Rn rn
0 1

)
∈ R4×4. (2.1.2)

The relative rotation between the orientation of the nth body and the orientation
(n+ 1)th in the chain is called the junction rotation and is denoted by Qn ∈ SO(3), the

1See section 1.1 for more detail on the special Euclidean group
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2.1. On Chain Configurations

Figure 2.1: Sketch of a rigid body chain configuration
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analogous translation is called the junction translation and denoted by qn ∈ R3. The
rigid body orientations Rn and positions rn then satisfy the recurrence relation

Rn+1 = RnQn (2.1.3a)

rn+1 = rn +Rnqn (2.1.3b)

with the first orientation matrix R1 and position vector r1 given. Using the matrix
notation (2.1.2), expressions (2.1.3) can be simply summarised in the matrix recurrence
relation

gn+1 = gnan (2.1.4)

with the first rigid body configuration g1 prescribed and where the block structure of the
junction displacement an ∈ SE(3) is defined as

an =

(
Qn qn
0 1

)
. (2.1.5)

More generally, the relative rotation between the mth body in the chain and nth one
is denoted by Rm,n ∈ SO(3) and the analogous relative translation by rm,n ∈ R3. They
are defined as

Rm,n = RT
mRn (2.1.6a)

rm,n = RT
m(rn − rm) (2.1.6b)

or, in matrix form, the relative rigid body displacement gm,n is defined as

gm,n = g−1
m gn (2.1.7)

with the block structure

gm,n =

(
Rm,n rm,n

0 1

)
(2.1.8)

analogously to (2.1.2). Note that a similar notation has been used previously in [Becker,
2007, Becker and Everaers, 2007]. Similarly to (2.1.4), the relative rigid displacement in
the chain gm,n can be described through the recurrence relation

gm,n+1 = gm,nan with gm,m = Id4 (2.1.9)

for all 1 ≤ m ≤ n ≤ N . Observe that definition (2.1.7) implies the transition identity

gm,n = gm,kgk,n (2.1.10)

for all 1 ≤ m ≤ k ≤ n ≤ N .
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As described in section 1.3, it is often convenient to describe rigid body displacements
in terms of a coordinate system. The junction displacement an ∈ SE(3) in (2.1.5) can
then be parametrized with a minimal set of coordinates xn ∈ R6 as

an = a(xn). (2.1.11)

The coordinates xn are called local internal coordinates for the junction displacement an
and it is assumed that the coordinates xn naturally split into

xn = (un, vn) (2.1.12)

where the triple un ∈ R3 stands for the local rotational coordinates and the triple vn ∈ R3

for the local translational coordinates. The list

x = (x1, x2, ..., xN−1) ∈ R6(N−1) (2.1.13)

are a set of internal coordinates of the rigid body chain g. Conversely, using the
parametrization in (2.1.11) and the recurrence relation in (2.1.4), the set of internal
coordinates x defines a rigid body chain configuration through a chain reconstruction
rule

x 7→ g(x) (2.1.14)

or more generally, using the definition (2.1.7), we obtain a mapping of the form

x 7→ gm,n(x) (2.1.15)

for any relative rigid body displacement in the chain.
Concerning the choice of parametrization of the junction displacement an = a(xn) in

(2.1.11), many versions appear in the literature, such as, in the context of DNA modelling,
a version of Euler angles [Marky and Olson, 1994, Olson et al., 1998, Coleman et al.,
2003], a version of exponential coordinates [Becker and Everaers, 2007, Chirikjian, 2011]
or the use of the Cayley vector of the rotation matrix Qn and the introduction of a
junction frame to write the component of the translation qn [Lankaš et al., 2009, Walter
et al., 2010, Gonzalez et al., 2013, Petkeviciute et al., 2014]. This last choice is of
particular interest for us, since it satisfies convenient material symmetry relations2, it
allows efficient analytic computations3 for chain configurational first moment and we
possess realistic constitutive parameters in terms of this coordinate system for sequence
dependent coarse grain DNA models [Petkeviciute et al., 2014]. Consequently, we need
to briefly expose the Cayley parametrization of rotation matrices and the definition of
the junction frame as used in [Lankaš et al., 2009, Gonzalez et al., 2013, Petkeviciute

2They are described in section 2.1.4.
3They are described in section 2.4.
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et al., 2014]. Any rotation Qn, which is not a rotation through an angle of π, can be
parametrized by the one-to-one mapping

Qn = Q(un) :=

(
I +

1

2
[un×]

)(
I − 1

2
[un×]

)−1

(2.1.16)

where the operator [ .×] is defined in (1.1.9). The triple un in (2.1.16) is called theCayley
vector of the rotation matrix Qn. The junction translation qn is parametrized as

qn = Q
1
2 (un)vn (2.1.17)

where Q
1
2 (un) denotes the (principal) square root of the rotation matrix Q(un) and

vn ∈ R3. Observe that the rotation Q
1
2 (un) is the midway rotation between the identity

matrix and the rotation matrix Q(un). In matrix form, the junction displacement an, as
defined in (2.1.5) and with the parametrization (2.1.16) and (2.1.17), is then of the form

a(xn) =

(
Q(un) Q

1
2 (un)vn

0 1

)
(2.1.18)

where xn = (un, vn).

2.1.2 On rigid body double chain configurations

By observing more closely polymeric structures, there exist some examples, such as DNA
molecules for instance, where a finer description can be achieved using multi-stranded
rigid body chains. Even if a general theory for such composed object is of interest, we
have restrained our study to the case of two interacting rigid body chains since we shall
concentrate on the case of DNA modelling.

A rigid body double chain configuration (g+, g−) can be described as a pair of rigid
body chain configurations, denoted respectively g+ and g−, where both chains are exactly
made of N rigid bodies. Formally we have

(g+, g−) = (g+
1 , g

−
1 , ..., g

+
N , g

−
N ) ∈ SE(3)2N (2.1.19)

where SE(3)2N denotes 2N copies of the special Euclidean group, as in (2.1.1). A sketch
of a rigid body double chain configuration is drawn in figure 2.2. Analogously to the single
rigid body chain definition, a rigid body configuration in the double chain (g+, g−) is of
the form g±N = (R±n , r

±
n ) where R±n denotes the orientation of the rigid body and r±n its

position. The notation g± is used to describe simultaneously both of the two chains g+ or
g− as in [Moakher and Maddocks, 2005], and each definition related to rigid body chains
can be transposed to the chain g± in an unambiguous way. For example, the relative
rigid body displacement between the neighbouring rigid bodies g±n and g±n+1 along the
same strand is then denoted by a±n . Analogously to the junction displacement a±n , one
can introduce the intra rigid body displacement bn ∈ SE(3) defined as

bn = (g+
n )−1g−n (2.1.20)
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Figure 2.2: Sketch of a rigid body double chain configuration
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whose block structure is denoted as

bn =

(
Pn pn
0 1

)
. (2.1.21)

The double chain configuration satisfies then the relations

g±n+1 = g±n a
±
n (2.1.22a)

for all n = 1, ..., N − 1, as discussed in (2.1.4), and

g−n = g+
n bn (2.1.22b)

for all n = 1, ..., N .

2.1.3 On rigid body bichain configurations and internal coordinates

The rigid body bichain model has been specifically designed to reflect DNA configuration
at the level of individual bases [Lankaš et al., 2009, Gonzalez et al., 2013, Petkeviciute
et al., 2014] and can be seen as a natural generalisation to the rigid base pair model
for DNA [Olson et al., 1998, Gonzalez and Maddocks, 2001, Becker and Everaers, 2007].
More details about these models are presented in section 5.2. Rigid body bichains are
essentially double chains but with a different point of view, but the bichain configurations
often constitute a more convenient description.

A rigid body bichain configuration (g,P) can be described as a macrostructure con-
figuration g together with a microstructure configuration P, as in [Moakher and Mad-
docks, 2005]. The macrostructure configuration is a rigid body chain configuration which
is defined to represent the configuration of the double chain in a large scale descrip-
tion, whereas the microstructure configuration encodes the local features of the double
chain configuration which allow recovery of each actual chain configuration g± from the
macrostructure g. For DNA models, the macrostructure g is meant to describe the con-
figuration at the level of base pair, whereas the microstructure P encodes the respective
base position in the base pairs [Lankaš et al., 2009, Gonzalez et al., 2013, Petkeviciute
et al., 2014]. Formally one has then an invertible mapping

(g+, g−)↔ (g,P) (2.1.23)

between double chain and bichain configurations.
Motivated by previous work on rigid base models for DNA molecules [Lankaš et al.,

2009, Gonzalez et al., 2013, Petkeviciute et al., 2014], the chain macrostructure configu-
ration

g = (g1, ..., gN ) ∈ SE(3)N (2.1.24)

is defined by gn = (Rn, rn) ∈ SE(3) where

Rn = R+
n

(
R+
n
T
R−n

) 1
2 (2.1.25a)
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and

rn =
1

2

(
r+
n + r−n

)
(2.1.25b)

for n = 1, ..., N . The orientation Rn is the average in the rotation group SO(3) be-
tween the orientation R+

n and R−n , and the position rn is the average point in Euclidean
space R3 between the position r+

n and r−n . In a complementary way, the microstructure
configuration

P = (P1, ...,PN ) ∈
(
SO(3)× R3

)N (2.1.26)

is defined by Pn = (Pn,wn) ∈ SO(3)× R3 where

Pn = R+
n
T
R−n (2.1.27a)

describes the relative rotation between the rigid body g+
n and g−n , and where

wn = RT
n

(
r−n − r+

n

)
(2.1.27b)

describes the analogous relative translation. According to the definitions in (2.1.25) and
in (2.1.27), the double chain configuration can be recovered from its associated bichain
configuration by

R±n = RnP
∓ 1

2
n (2.1.28a)

and

r±n = rn ∓
1

2
Rnwn (2.1.28b)

Concerning the rotational and translational part of the local junction displacements a±n =
(Q±n , q

±
n ) we then obtain the relations

Q±n = P
± 1

2
n QnP

∓ 1
2

n+1
(2.1.29a)

and

q±n = P
± 1

2
n

[
qn ∓

1

2
(Qnwn+1 − wn)

]
. (2.1.29b)

A bichain configuration can consequently be summarised as the set of local macrostruc-
ture and microstructure configurations

(g,P) = (g1,P1, ..., gN ,PN ) (2.1.30)

following the natural order in the chain constitution.
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The bichain internal coordinates therefore comprise a set of local internal chain co-
ordinate x = (x1, ..., xN−1) ∈ R6(N−1), called inter coordinates, for the macrostructure
g and a set of local coordinates y = (y1, ..., yN ) ∈ R6N , called intra coordinates, to
parametrize the microstructure P. Precisely, with the application to DNA modelling in
mind, we shall follow the definitions of previous works [Lankaš et al., 2009, Gonzalez
et al., 2013, Petkeviciute et al., 2014]. The macrostructure configuration g is written
in terms of its junction displacements a1, ..., aN−1, similarly to (2.1.4), whereas the mi-
crostructure configuration P is written in terms of the intra displacements b1, ..., bN , as
defined in (2.1.20). The bichain internal coordinates read then

(x, y) = (y1, x1, y2, ..., xN−1, yN ) ∈ R12N−6 (2.1.31)

following the ordering in (2.1.30) and are chosen such that

gn+1 = gna(xn) and bn = b(yn). (2.1.32)

Even if, as in the single rigid body chain case, there exist many bichain internal
coordinates (x, y) satisfying (2.1.32), a convenient choice is given by a(xn) in (2.1.18)
and

b(yn) =

(
P(ηn) P

1
2 (ηn)wn

0 1

)
(2.1.33)

with yn = (ηn,wn) and where ηn denotes the Cayley vector of the rotation matrix
Pn, as defined in (2.1.16) and in (2.1.21) respectively [Lankaš et al., 2009, Gonzalez
et al., 2013, Petkeviciute et al., 2014]. One obtains then formally the following bichain
reconstruction rule

(x, y) 7→ (g,P)(x, y). (2.1.34)

2.1.4 Material framings and transformation rules

Given a physical fragment, either single or double stranded, it is crucial to investigate
whether the notion of configuration and coordinates are ambiguous or not, and, moreover
to know what are the transformation rules under different material framings of the same
physical object.

We first emphasise that both the chain and bichain internal coordinates respect
invariance under overall rigid body motion. Since the local junction displacements an in
the rigid body chain have the property that

(a1, ..., aN−1) 7→ (a1, ..., aN−1) when (g1, ..., gN ) 7→ (Bg1, ..., BgN ) (2.1.35)

for any B ∈ SE(3) according to their definition (2.1.4), then the chain internal coordinates
transform as

(x1, ..., xN−1) 7→ (x1, ..., xN−1) when (g1, ..., gN ) 7→ (Bg1, ..., BgN ) (2.1.36)
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for any B ∈ SE(3). Similarly, the local displacements in the macrostructure and the
microstructure satisfy

(P1, a1, ..., aN−1,PN ) 7→ (P1, a1, ..., aN−1,PN )

when (g+
1 , g

−
1 , ..., g

+
N , g

−
N ) 7→ (Bg+

1 , Bg
−
1 , ..., Bg

+
N , Bg

−
N )

(2.1.37)

for any B ∈ SE(3) which implies

(y1, x1, ..., xN−1, yN ) 7→ (y1, x1, ..., xN−1, yN )

when (g+
1 , g

−
1 , ..., g

+
N , g

−
N ) 7→ (Bg+

1 , Bg
−
1 , ..., Bg

+
N , Bg

−
N )

(2.1.38)

for any B ∈ SE(3).
For a given physical chain and a definition of its chain configuration g = (g1, ..., gN ),

one can redefine locally the description of orientation and the position of the nth rigid
body without changing its physical location. This transformation is called local change
of framing and can be formally stated as gn 7→ gnḡ

−1
n for all n = 1, ..., N . For a single

chain the local junction displacement then transforms as

an 7→ ḡn
(
anā

−1
n

)
ḡ−1
n when gn 7→ gnḡ

−1
n (2.1.39)

where ḡn+1 = ḡnān. For a double chain, if the local change of framing is uniform, i.e. if
g±n 7→ g±n ḡ

−1, then the bichain macrostructure and microstructure transform as

an 7→ ḡanḡ
−1

and (Pn,wn) 7→ (R̄PnR̄
T
, R̄wn − R̄(P

1
2
n − P

T
2
n )R̄

T
r̄)

when g±n 7→ g±n ḡ
−1
n

(2.1.40)

where Pn = (Pn,wn) and where R̄ ∈ SO(3) denotes the rotational part of rigid body
displacement ḡ and r̄ ∈ R3 its translational part. A transformation rule can also be
explicitly stated for non-uniform local change of framing of double chain configuration,
but it is more complicated and not of use in this thesis. For internal bichain coordinates
presented in (2.1.18) and (2.1.33), one has then

(un, vn) 7→ (R̄un, R̄vn − R̄(Q
1
2
n −Q

T
2
n )R̄

T
r̄)

and (ηn,wn) 7→ (R̄ηn, R̄wn − R̄(P
1
2
n − P

T
2
n )R̄

T
r̄)

when g±n 7→ g±n ḡ
−1
n .

(2.1.41)

For single chains, another way of changing the material framing is the downstream
indexing of the chain element which corresponds to switching the role of the two chain
ends. The junction displacement an transforms then as

an 7→ a−1
N−n when (g1, ..., gN ) 7→ (gN , ..., g1) (2.1.42a)
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and the internal coordinates xn as

xn 7→ −xN−n when (g1, ..., gN ) 7→ (gN , ..., g1) (2.1.42b)

in the case of the choice described in (2.1.18). For a bichain, downstream indexing gives

an 7→ a−1
N−n and bn 7→ bN−n when (P1, g1, ..., gN ,PN ) 7→ (PN , gN , ..., g1,P1) (2.1.43a)

and consequently for the internal coordinates

xn 7→ −xN−n and yn 7→ yN−n when (P1, g1, ..., gN ,PN ) 7→ (PN , gN , ..., g1,P1).
(2.1.43b)

For bichains one can moreover switch the role of the chain denoted by + and −,
this is called change of reference strand. The junction displacement an and the intra
displacement in the bichain transform then as

an 7→ an and bn 7→ b−1
n when g± 7→ g∓ (2.1.44a)

whereas the microstructure transforms as

Pn = (Pn,wn) 7→ (P Tn ,−wn) when g± 7→ g∓ (2.1.44b)

and then the internal coordinates xn and yn transform as

xn 7→ xn and yn 7→ −yn when g± 7→ g± (2.1.44c)

in the case of the choice described in (2.1.33).
However, in DNA modelling, the natural change of material framing which arises

is not change of reference strand, but the reading symmetry. This symmetry is due
to the fact that a DNA molecule is an anti-symmetric object in the sense that reading
the strand g+ upstream corresponds to read the strand g− downstream according to its
chemical structure. The reading symmetry is then the composition of the local change
of framing (with r̄ = 0) (2.1.40), the downstream indexing (2.1.43) and the change of
reference strand (2.1.44). Formally, this change of framing involves the transformation
(g+, g−) 7→ (g+′, g−

′
) where by definition

g±
′
= (g∓N , g

∓
N−1, ..., g

∓
1 ). (2.1.45)

As shown in [Gonzalez et al., 2013], the bichain internal coordinates (x, y) defined
respectively in (2.1.18) and in (2.1.33) then transform under the reading symmetry as

(x, y) 7→ (E2yN ,E2xN , ...,E2x1,E2y1) when (g+, g−) 7→ (g+′, g−
′
) (2.1.46)

where E2 stands for the diagonal matrix diag(−1, 1, 1,−1, 1, 1).
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2.2 On Equilibrium Conditions and Variational Principles

This section discusses the notions of couple and force, as well as constitutive relations,
for chains and the definition of equilibrium conditions. Starting with a single chain, we
show how equilibrium configurations can be seen as stationary configurations of a inter-
nal energy with respect to end conditions, with or without the introduction of internal
coordinates. The argument is then extended to the cases of double chains and bichains.
The precise relations between the constitutive relations in the double chain and bichain
descriptions are presented and lead to the definition of the bichain equilibrium condi-
tions. It is then shown how the end conditions can explicitly be incorporated in these
variational principles with a Lagrange multiplier formulation. Moreover, the Lagrange
multipliers are explicitly recognised as the couple and force needed to obtain the desired
end conditions. Finally, we present a very short discussion on the relation between local
bichain and non-local chain theory.

2.2.1 On rigid body chain equilibrium conditions and constitutive re-
lations

The physical configuration of a rigid body chain is modified by the application of local
couples and forces. More precisely, each rigid body gn in the chain feels the action of
internal couples and forces coming from the internal deformation of the entire chain, as
well as the action of external couples and forces coming from the interaction of the chain
with an external field. A rigid body chain is said to be in an equilibrium configuration
if the total couple and force on each rigid body which constitutes it vanish. Formally, if
we denote by mn ∈ R3 the total internal couple around the point rn acting on the nth

rigid body in the chain from the (n− 1)th, and by nn ∈ R3 the analogous total force, the
chain equilibrium conditions can be stated as

−mn+1 + mn − rn+1 × nn+1 + rn × nn + cn + rn × fn = 0 (2.2.1a)

−nn+1 + nn + fn = 0 (2.2.1b)

for n = 2, ..., N − 1 and where cn ∈ R3 and fn ∈ R3 denote respectively the total
external couple (around the point rn) and the total external force on the nth rigid body.
Conditions (2.2.1) are, for instance, deduced from the balance of a single rigid body in an
external field . The chain is said to be an isolated rigid body chain if there is no external
contributions to the total couples and forces acting on the chain, i.e. if cn = 0 and fn = 0.
The chain equilibrium conditions in (2.2.1) only provide conditions for rigid bodies in
the interior of the chain and one needs therefore to introduce chain end conditions. In
this thesis, the conditions of interest are

i. Dirichlet conditions: the orientation and the position of each end of the chain are
prescribed, i.e.

g1 and gN are prescribed. (2.2.2a)
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ii. Unstressed conditions: the orientation and the position are free at each end of the
chain, i.e.

−m2 + c1 = 0, −n2 + f1 = 0 and mN + cN = 0, nN−1 + fN = 0 (2.2.2b)

For compactness we will denote generically by Γ the subset of chain configurations which
satisfies one of the end conditions i. or ii., i.e.

Γ =
{
g ∈ SE(3)N | g satisfies i. or ii.

}
(2.2.3)

The key relations to translate the chain balance laws (2.2.1) into a statement about
the actual chain configuration are the chain constitutive relations. Formally, the con-
stitutive relations for a rigid body chain can be stated as a mapping g 7→ (m,n, c, f)
where m = (m1, ...,mN−1)(g), etc. In particular, we can define the notion of local chain
constitutive relations which means that the local internal couple and force in the chain
are only functions of the local chain deformation, i.e.(

mn

nn

)
= Ψ(m,n)

n (an) for all n = 2, ..., N. (2.2.4)

The constitutive relations reflect informations about the physical constitution of the
chain. The construction of realistic constitutive relations for a given material is generally
far from being an easy task, see for instance [Antman, 1995], and it is still at the heart
of much research in material science. The chain equilibrium conditions then comprise
the conditions (2.2.1) on a set of configurations (2.2.3) together with a given set of
constitutive relations, of the form (2.2.4) for instance.

2.2.2 On rigid body chain internal energy and variational principle

Thechain internal energy E describes the chain stored potential energy arising exclusively
from internal deformations of the rigid body chain. The internal energy is said to be a
local energy, or a nearest-neighbour energy, if the function E : SE(3)N → R is of the
form

E(g) =

N−1∑
n=1

wn(an) (2.2.5)

where the chain configuration g = (g1, ..., gN ) is defined in (2.1.1) and an ∈ SE(3)
denotes the local junction displacement as defined in (2.1.4). Observe that the energy E
is internal in the sense that it is invariant through global rigid body motion of the chain,
as defined in (2.1.35), formally one has

E(Bg1, ..., BgN ) = E(g1, ..., gN ) (2.2.6)

for any B ∈ SE(3). We should emphasise that the nearest-neighbour dependence as-
sumption of the chain internal energy is often violated for realistic descriptions of macro-
molecules and one needs to add longer range dependence in the chain [Flory, 1969, Lankaš
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et al., 2009, Gonzalez et al., 2013]. However, the local energy expression in (2.2.5) is suf-
ficiently general to embrace most of the commonly used chain models, for instance in
DNA modelling [Olson et al., 1998, Becker and Everaers, 2007, Fathizadeh et al., 2013]
or in macroscopic rigid body systems [Schiehlen et al., 2006, Chirikjian, 2011], and it
is thought to be the necessary starting point to understand mechanical and statistical
properties of rigid body chains subject to more sophisticated non-local internal energies.

One of the major interest of the chain internal energy E is that it provides avariational
principle for rigid body chains in the sense that stationary configurations of the function
E on the set of configurations Γ, as defined respectively in (1.2.5) and in (2.2.3), satisfies
balance laws of the form (2.2.1) for an isolated chain together with constitutive relations
of the form (2.2.4). We note that this result can be generalised to include the presence of
an external energy. However, we have to stress that not all constitutive relations of the
form (2.2.4) admit a variational principle, the class of chains which do admit an internal
energy is referred to as hyper-elastic chains.

More precisely, suppose that Γ denotes the set of chain configuration where the first
and last rigid body configuration in the chain are prescribed and suppose that the chain
configuration g0 = (g0

1, ..., g
0
N ) ∈ Γ makes the internal energy E stationary on the set Γ.

Then by definition4 it satisfies

δE(g0)δg = 0 (2.2.7a)

for all perturbation of the form δg = (δg1, ..., δgN ) where

δgn = (T φn)g0
n for n = 2, ..., N − 1 (2.2.7b)

and

δg1 = 0 and δgN = 0 (2.2.7c)

according to the specific form of the perturbation of rigid body configurations detailed
in (1.2.1) and the specific definition of the set of configurations Γ. Furthermore, at
any given chain configurations g ∈ Γ any perturbation δg is of the form (2.2.7b) and
(2.2.7c) and consequently the perturbation of the local junction an displacement reads
δa1 = (g1)−1(T φ2)g2,

δan = g−1
n (T φn+1 − T φn)gn+1 (2.2.8)

for n = 2, ..., N − 2 and δaN−1 = −(gN−1)−1(T φN−1)gN . Then, using the form of the
internal energy E in (2.2.5), its first variation can be written as

δE(g)δg = −
N−1∑
n=2

(mn+1 −mn + rn+1 × nn+1 − rn × nn) · φR
n + (nn+1 − nn) · φr

n

(2.2.9)

4See section 1.2 for more details on variations of functions on a matrix group.
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for φn = (φR
n ,φ

r
n) ∈ R6, where we have defined for n = 1, ..., N − 1

mn+1 = RnVect
(
∂Qnwn(an)QTn

)
(2.2.10a)

nn+1 = Rn∂qnwn(an) (2.2.10b)

and where we recall that Qn ∈ SO(3) and qn ∈ R3 denote respectively the rotational and
translational sub-block of the matrix an as defined in (2.1.5). When the configuration set
Γ denotes the conditions ii. in (2.2.3), a similar argument shows that the variational prin-
ciple for the chain equilibrium conditions in (2.2.9) is also obtained. For completeness,
we observe that a similar result for the variation in 2.2.9 can be found in [Coleman et al.,
2003]. The expression (2.2.9) is called discrete Euler-Poincaré variation for chains5.

Consequently, if the chain constitutive relations in (2.2.4) admit a variational rep-
resentation of the form (2.2.10) for all chain configurations g ∈ Γ, then the stationary
conditions for the internal energy E on the set of configurations Γ in (2.2.7) is literally
an expression of the chain equilibrium conditions (2.2.1) for isolated chains. Equations
(2.2.9) imply that the six quantities

mn + rn × nn ∈ R3 and nn ∈ R3 (2.2.11)

are conserved along stationary configuration of the internal energy E, i.e. along equilib-
rium chain configuration. The existence of conserved quantities in (2.2.11) is a manifes-
tation of the famous Noether’s Theorem, since it can be shown that they reflect that the
internal chain energy E defined in (2.2.5) is invariant through a global rigid body motion
of the chain, as presented in (2.2.6).

An alternative expression of the stationary conditions is given by introducing the
triples mn+1 ∈ R3 and nn+1 ∈ R3 as the respective components of the couple mn+1 and
the force nn+1 in the director frame Rn i.e.

mn+1 = Vect
(
∂Qnwn(an)QTn

)
(2.2.12a)

nn+1 = ∂qnwn(an) (2.2.12b)

according to the definition (2.2.10). Using then the identity(
mn + rn × nn

nn

)
= Ad−Tgn−1

(
mn + qn−1 × nn

nn

)
(2.2.13)

where the operator Adgn is defined as

Adgn =

(
Rn 0

[rn×]Rn Rn

)
(2.2.14)

and as discussed in more details in (1.1.28), the stationary condition (2.2.7) reads(
mn+1 + qn × nn+1

nn+1

)
= AdTan−1

(
mn + qn−1 × nn

nn

)
(2.2.15a)

5See section 1.2 for more detail on Euler-Poincaré variations.
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for n = 2, ..., N − 1

gn+1 = gnan (2.2.15b)

for n = 1, ..., N and with

g ∈ Γ (2.2.15c)

subject to the constitutive relations (2.2.12), and for a choice of the configuration set Γ
in (2.2.3).

However, realistic internal chain energyies as in [Olson et al., 1998, Becker and Ev-
eraers, 2007, Gonzalez et al., 2013] for instance, are given in terms of the internal chain
coordinates x of the form (2.1.12), i.e. as

E(g(x)) =
N−1∑
n=1

wxn(xn) (2.2.16)

where one has to have for consistency

wxn(xn) = wn(a(xn)) (2.2.17)

for all local internal chain coordinates xn and for all n = 1, ..., N − 1, according to the
reconstruction rule (2.1.14). The first variation of the local internal chain energy E with
respect to the internal coordinates xn is then obtained using the identity

δa(xn) =
(
T L(1)

xn δxn

)
a(xn) (2.2.18)

where the explicit expression of the linear operator L(1)
xn depends on the choice of the

internal chain coordinates6 xn. The stationary conditions are then of the form (2.2.15)
but the constitutive relations (2.2.12) read(

mn+1

nn+1

)
=

(
Id3 − [qn×]
03 Id3

)
L(1)
xn

−T
∂xnw

x
n(xn) (2.2.19)

for n = 1, ..., N − 1. For the internal chain coordinates xn used in [Lankaš et al., 2009,
Gonzalez et al., 2013, Petkeviciute et al., 2014], the linear operator L(1)

xn is explicitly given
by

L(1)
xn =

(
P1(un) 0

Q
1
2 (un) [vn×]P2(un) Q

1
2 (un)

)
(2.2.20)

for xn = (un, vn) as defined in (2.1.18), and where we have used

P1(un) =
1

1 +
(
|un|

2

)2

(
Id3 +

1

2
[un×]

)
(2.2.21a)

P2(un) =
(
Id3 +Q

1
2 (un)

)−1
P1(un). (2.2.21b)

A more detailed discussion of the expressions (2.2.21) is presented in appendix A.1.
6See section 1.3 for more detail on matrix expansion with respect to coordinate systems.
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2.2.3 On rigid body double chain equilibrium conditions and constitu-
tive relations

We next aim to define equilibrium conditions for rigid body bichain configurations, in an
analogous way to rigid body chains. However since the bichain configurations (g,P) are
an alternative expression of double chain configurations (g+, g−) it is of interest to first
present the notion of a double chain equilibrium configuration and, then, discuss how it
can be translated into an expression for bichains.

The system made of two interacting rigid body chains is with no doubt more complex
than one single chain. A way to deduce the expression of the double chain balance laws
is to see each strand as a single rigid body chain in an external field. Formally, if for
each rigid body g±n we denote by m±n ∈ R3 the total internal couple around the point r±n
and by n±n ∈ R3 the analogous total force, similarly to the single rigid body chain case
(2.2.1), the double chain equilibrium conditions can be stated as

−m±n+1 + m±n − r±n+1 × n±n+1 + r±n × n±n + c±n + r±n × f±n = 0 (2.2.22a)

−n±n+1 + n±n + f±n = 0 (2.2.22b)

for n = 2, ..., N−1 and where c±n ∈ R3 and f±n ∈ R3 denote respectively the total external
couple (around the point r±n ) and the total external force on the nth rigid body of strand
±. Similarly to single chain, a particular case is the isolated double rigid body chain
which means that there is no external contribution to the total couples and forces acting
on the double chain. A similar expression of the balance laws (2.2.22) can be found in
[Moakher and Maddocks, 2005] for the system of two continuum rods.

In order to make use of the single chain case, the double chain end conditions are
assumed to be of the form

Γ =
{

(g+, g−) ∈ SE(3)2N | g+ and g− satisfies i. or ii.
}

(2.2.23)

where the conditions i. and ii. are defined in (2.2.3). In particular, we do not allow
that g+ satisfies i. and g− satisfies ii. . Of course, in the context of DNA modelling, it
is difficult to ensure that these conditions can represent physical phenomena, but they
serve nevertheless as an instructive starting point for the discussion. In what follows
more sophisticated double chain end conditions can be used, but we will not describe
that for the clarity of the discussion.

The double chain constitutive relations are then formally a mapping (g+, g−) 7→
(m+,m−,n+,n−, c+, c−, f+, f−) wherem± = (m±1 , ...,m

±
N−1)(g+, g−), etc. As in the case

of a single chain, we can define the notion of nearest neighbour double chain constitutive
relations, which means that the local couple and force in the double chain are only
functions of the nearest neighbour deformation, i.e.(

m±n
n±n

)
= Ψ(m,n)

n (bn−1, a
+
n−1, a

−
n−1, bn) (2.2.24a)
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for n = 2, ..., N and(
c±n
f±n

)
= Ψ(c,f)

n (bn−1, a
+
n−1, a

−
n−1, bn, a

+
n , a

−
n , bn+1) (2.2.24b)

for n = 2, ..., N − 1 and(
c±1
f±1

)
= Ψ

(c,f)
1 (b1, a

+
1 , a

−
1 , b2) and

(
c±N
f±N

)
= Ψ

(c,f)
N (bN−1, a

+
N−1, a

−
N−1, bN ). (2.2.24c)

Observe that the arguments (bn−1, a
+
n−1, a

−
n−1, bn) are not independent, but we use

this formulation for convenience. The constitutive relations reflect the physical consti-
tution of the double chain and their explicit formulation for a given material require
very subtle studies. The rigid body double chain equilibrium conditions then comprise
the conditions (2.2.22) on a configuration set Γ together with a given set of constitutive
relations, of the form (2.2.24) for instance.

2.2.4 On rigid body double chain internal energy and variational prin-
ciples

The double chain internal energy is denoted by E|| and describes the stored potential
energy associated to internal deformations of the rigid body double chain. A nearest-
neighbor energy, or a local energy, for the double chain is then defined as E|| : SE(3)2N →
R and is assumed to be of the form

E||(g+, g−) =
N−1∑
n=1

w||n(bn, a
+
n , a

−
n , bn+1) (2.2.25)

where a±n = (g±n )−1g±n+1 ∈ SE(3) is the local junction displacement along each strand ±
respectively and where bn ∈ SE(3) denotes the rigid body displacement from the rigid
body g+

n to g−n on the complementary strand, as defined in (2.1.22). In particular, the
displacements a±n , bn and bn+1 are not independent one from another, but nevertheless
this formulation will be shown to be appropriate. Observe that, similarly to the single
chain internal energy in (2.2.6), the double chain energy E|| is invariant through a global
rigid body motion of the double chain, i.e.

E||(Bg+
1 , Bg

−
1 , ..., Bg

+
N , Bg

−
N ) = E||(g+

1 , g
−
1 , ..., g

+
N , g

−
N ) (2.2.26)

for any B ∈ SE(3). It is worth to emphasize that when the internal double chain energy
E|| is assumed to be local, the two individual chains g± are governed by an effective
non-local internal energy, as mentioned for instance in [Lankaš et al., 2009, Gonzalez
et al., 2013]. That is partially why such a double chain energy, even if they only involve
nearest neighbours, provides a potentially more realistic description of double stranded
macromolecules which are known to have long range couplings than single chain local
energies. The internal energy E|| allows to state a variational principle for rigid body
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double chains, and if the double chain constitutive relations (2.2.24) admit a variational
form it will be called a hyper-elastic double chain.

More precisely, suppose that Γ denote the set of double chain configuration where
each end of both chains is prescribed, which corresponds to the case i. in (2.2.23). Using
conditions of the form (2.2.7b) and (2.2.7c) for the perturbation of the double chain
configuration (g+, g−) and using moreover that δb1 = 0

δbn = (g+
n )−1(T φ−n − T φ+

n )g−n (2.2.27)

for n = 2, ..., N − 1 and δbN = 0 implies that if a double chain configuration (g+, g−)
makes the internal energy E|| in (2.2.25) stationary, then it satisfies the double chain
equilibrium conditions (2.2.22) for

m±n+1 = R±nVect
(
∂Q±nw

||
nQ
±
n
T
)

(2.2.28a)

n±n+1 = R±n ∂q±n w
||
n (2.2.28b)

for n = 1, ..., N − 1 and

c−n = R+
nVect

(
∂Pn

(
w||n + w

||
n−1

)
P Tn

)
(2.2.28c)

f−n = R+
n ∂pn

(
w||n + w

||
n−1

)
(2.2.28d)

c+
n = −c−n − (r−n − r+

n )× f−n (2.2.28e)

f+
n = −f−n (2.2.28f)

for n = 2, ..., N − 1 and where the argument (bn, a
+
n , a

−
n , bn+1) of the internal energy w||n

has been hidden for compactness. Observe that the apparent asymmetry between the
definitions of the couple c−n and c+

n and the force f−n and f+
n is explained by the fact the

internal energy E|| is not invariant through the transformation g+ 7→ g− presented in
(2.1.44). The transformation rule on the expressions (2.2.28) when changing the reference
strand is obtained using δb−1

n = −b−1
n δbnb

−1
n .

As for rigid body chains, the variational principle for the double chain balance laws in
(2.2.22) together with the constitutive relations (2.2.28) can also be obtained when the
condition set Γ denotes the condition ii. in (2.2.23). However, the following additional
relations have to be satisfied

c−1 = R+
1 Vect

(
∂P1w

||
1P

T
1

)
c−N = R+

NVect
(
∂PNw

||
N−1P

T
N

) (2.2.29a)

f−1 = R+
1 ∂p1w

||
1

f−N = R+
N∂pNw

||
N−1

(2.2.29b)
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with c+
n = −c−n + (r−n − r+

n )× f−n and f+
n = −f−n for n = 1 and n = N .

Consequently, if the chain constitutive relations in (2.2.24) admit a variational rep-
resentation of the form (2.2.28) for all the double chain configurations (g+, g−), then
the stationary conditions for the internal energy E|| on the set of configuration Γ is an
expression of the chain balance laws (2.2.22) for isolated double chains. This variational
principle is then called the discrete Euler-Poincaré variation for double chains 7.

In their respective director frames R±n the constitutive relations (2.2.28) then reads

m±n+1 = Vect
(
∂Q±nw

||
nQ
±
n
T
)

(2.2.30a)

n±n+1 = ∂q±n w
||
n (2.2.30b)

for n = 1, ..., N − 1 and

c−n = P Tn Vect
(
∂Pn

(
w||n + w

||
n−1

)
P Tn

)
(2.2.30c)

f−n = P Tn ∂pn

(
w||n + w

||
n−1

)
(2.2.30d)

c+
n = −Pnc−n + pn × Pnf−n (2.2.30e)

f+n = −Pnf−n (2.2.30f)

for n = 2, ..., N − 1 and consequently, the double chain equilibrium conditions can be
summarised as (

m±n+1

n±n+1

)
= AdT

a±n

(
m±n + c±n
n±n + f±n

)
(2.2.31a)

g±n+1 = g±n a
±
n (2.2.31b)

for n = 1, ..., N − 1 and with

(g+, g−) ∈ Γ (2.2.31c)

subject to the constitutive relations (2.2.30), and for a choice of the configuration set Γ
in (2.2.23), analogously to the single chain in (2.2.15). We note that the operator Adgn
is defined in (2.2.14).

2.2.5 On rigid body bichain variational principles and constitutive re-
lations

In contrast, the bichain internal energy is denoted by E : SE(3)2N → R, as in the single
rigid body chain case (2.2.5), and is defined as

E(g,P) =

N−1∑
n=1

wn(Pn, an,Pn+1) (2.2.32)

7See section 1.2 for more detail
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where an ∈ SE(3) and Pn ∈ SE(3) are the local rigid body displacement in the macrostruc-
ture and in the microstructure respectively, and where the energy terms wn(Pn, an,Pn+1)
are defined such that the total bichain internal energy satisfies

E(g,P) = E||(g+, g−) (2.2.33)

for the corresponding double chain configuration, as described in section 2.1.2. It is
then equivalent to study either double chain configurations (g+, g−) which make the
internal energy E|| stationary or bichain configurations (g,P) which make E stationary.
In particular, the bichain energy is internal in the sense that it is invariant with respect
to any overall rigid body motion of the bichain configuration, i.e.

E(P1, Bg1, ..., BgN ,PN ) = E(P1, g1, ..., gN ,PN ) (2.2.34)

for anyB ∈ SE(3). The apparent asymmetry between the transformation of the macrostruc-
ture and microstructure under global rigid body motions of the bichain configuration is
explained by the fact that the microstructure is itself invariant under this transformation,
as discussed in (2.1.37).

In the case of the Dirichlet conditions for double chains in (2.2.23) one also gets
Dirichlet conditions for the bichain macrostructure and microstructure (g,P), and the
first variation of the internal energy E can then be shown to be

−mn+1 + mn − rn+1 × nn+1 + rn × nn = 0 (2.2.35a)

−nn+1 + nn = 0 (2.2.35b)

CPn = 0 (2.2.35c)

FPn = 0 (2.2.35d)

for n = 2, ..., N − 1 and with the relations

mn+1 = RnVect
(
∂QnwnQ

T
n

)
(2.2.36a)

nn+1 = Rn∂qnwn (2.2.36b)

for n = 1, ..., N − 1 and

CPn = Vect
(
P
T
2
n ∂Pn (wn + wn−1)P

T
2
n

)
(2.2.36c)

FPn = ∂wn (wn + wn−1) (2.2.36d)

for n = 2, ..., N − 1 and where the argument (Pn, an,Pn+1) of the internal energy wn
has been suppressed for compactness of the notation. We remark that we have used the
following non-standard perturbation of the rotation matrix Pn

δPn = P
1
2
n [φn×]P

1
2
n (2.2.37)
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for a triple φn ∈ R3. This choice has been made in order to respect the underlying
symmetry between the strand + and −.

Equations (2.2.35a) and (2.2.35b) correspond to the single chain balance laws, as
presented in (2.2.1), and capture the macrostructure equilibrium conditions. The triple
mn ∈ R3 denotes the internal couple around the point rn acting on the rigid bodies
g+
n and g−n in the double chain from the pair indexed by (n − 1), and nn ∈ R3 the

analogous force. In contrast, equations (2.2.35c) and (2.2.35d) define the microstructure
equilibrium conditions, where CPn and FPn denote respectively the couple and the force in
the microstructure. The expressions in (2.2.35) are then called the bichain equilibrium
conditions. Note that the expressions (2.2.35) constitute a discrete version of analogous
formulation in [Moakher and Maddocks, 2005] for the system of two continuum rods.

Using the double chain constitutive relations (2.2.30) together with the identities
(2.1.29), the relations between the double chain couples and forces in (2.2.28) and the
bichain ones in (2.2.36) can be explicitly written as

mn = m+
n + m−n +

1

2
(r−n − r+

n )× (n−n − n+
n ) (2.2.38a)

nn = n+
n + n−n (2.2.38b)

and

CPn = M−n
[
−m−n+1 − q

−
n × n−n+1 + c−n

]
−M+

n (Q−n−1)Tm−n

−M+
n

[
−m+

n+1 − q
+
n × n+

n+1 + c+
n

]
+M−n (Q+

n−1)Tm+
n

(2.2.38c)

FPn =
1

2
P+
n

(
−n−n+1 + n−n + f−n

)
− 1

2
P−n

(
−n+

n+1 + n+
n + f+n

)
(2.2.38d)

for n = 2, ..., N − 1. Note that we used the short notation P+
n = P

1
2
n and P−n = P

T
2
n so

that the matrices M±n are defined by

M±n =

(
Id3 + P

± 1
2

n

)−1

. (2.2.39)

The presence of the matrices M±n in (2.2.38) is explained by the fact that one needs

to differentiate the matrices P±
1
2

n , according to the expression of the double chain local
displacement in (2.1.29). More detail about expressions (2.2.38) can be found in appendix
A.2.

It is interesting to observe that the relations in (2.2.38) are sums and weighted differ-
ences of the expressions in (2.2.22). In particular, the variablesmn and nn are respectively
interpreted as the total couple (around the point rn) and force acting on the rigid bod-
ies g+

n and g−n . The double chain equilibrium conditions and the bichain equilibrium
equations are thus equivalent.

More generally, using the identities in (2.2.38), the double chain end conditions
(2.2.23) can be written in terms of the bichain configuration (g,P) and induces a formu-
lation of the bichain end conditions. They are defined as
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i′. Dirichlet conditions: The macrostructure and the microstructure are prescribed at
both ends, i.e.

(g1,P1) and (gN ,PN ) are prescribed. (2.2.40a)

ii′. Unstressed conditions: The macrostructure and the microstructure are free at both
ends, i.e.

−m2 = 0, −n2 = 0, CP1 = 0, FP1 = 0

and −mN = 0, −nN = 0, CPN = 0, FPN = 0
(2.2.40b)

We remark that the extra constitutive relations

CP1 = Vect
(
P
T
2

1 ∂P1w1P
T
2

1

)
CPN = Vect

(
P
T
2
N ∂PNwN−1P

T
2
N

) (2.2.41a)

FP1 = ∂w1w1

FPN = ∂wNwN−1.
(2.2.41b)

are obtained in the cases ii′.
As in the single rigid body chain case, we generically denote Γ to be the subset of all

bichain configurations satisfying one end condition i′. or ii′., i.e.

Γ =
{

(g,P) ∈ SE(3)2N | (g,P) satisfies i′. or ii′.
}

(2.2.42)

The variational principle for the bichain balance laws in (2.2.35) together with the con-
stitutive relations (2.2.36) is also valid when the condition set Γ denotes the condition
ii’. in (2.2.42). Consequently, if the bichain constitutive relations admit a variational
representation of the form (2.2.36) for all bichain configurations (g,P), then the station-
ary conditions for the internal energy E on the set of configuration Γ is an expression of
the bichain equilibrium conditions (2.2.35) for isolated bichains. This expression is then
referred as discrete Euler-Poincaré variation for bichains8. As a corollary of the bichain
balance laws (2.2.35), the six following quantities

mn + rn × nn ∈ R3 and nn ∈ R3 (2.2.43)

are conserved along equilibrium bichain configuration. Similarly to the single rigid body
chain case in (2.2.11), Noether’s Theorem reveals the connexion between the conserved
quantities in (2.2.43) and the invariance of the internal double chain internal energy E||

under global rigid body motions of the system in (2.2.26), or equivalently in terms of the
bichain internal energy E in (2.2.34).

8See section 1.2 for more detail
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In the director frame of the macrostructure Rn, the constitutive relations (2.2.36a)
and (2.2.36b) become

mn+1 = Vect
(
∂QnwnQ

T
n

)
(2.2.44a)

nn+1 = ∂qnwn (2.2.44b)

for n = 1, ..., N − 1 and consequently, the bichain equilibrium conditions can be summa-
rized as (

mn+1 + qn × nn+1

nn+1

)
= AdTan

(
mn + qn−1 × nn

nn

)
(
CPn
FPn

)
= 0

(2.2.45a)

for n = 2, ..., N − 1

gn+1 = gnan (2.2.45b)

for n = 1, ..., N − 1 and with

(g,P) ∈ Γ (2.2.45c)

subject to the constitutive relations in (2.2.36) and in (2.2.44), and for a choice of the
configuration set Γ in (2.2.42). It has to be noticed that the equilibrium conditions for
a double chain in (2.2.31) can be written as a system which contains the equilibrium
conditions for the macrostructure, which are of the form of those for a single rigid body
chain in (2.2.15), and equilibrium conditions for the microstructure, and that the two
subsystems are coupled through the bichain constitutive relations which reflect the orig-
inal double chain structure. Similar observations are made in [Moakher and Maddocks,
2005] for the system of two continuum rods.

The main application of bichain theory that we will discuss is in the context of
DNA modelling, where a realistic function E can be built in terms of internal bichain
coordinates [Gonzalez et al., 2013, Petkeviciute et al., 2014]. It remains then to translate
the bichain constitutive relations to an internal energy of the form

E(g(x),P(y)) =
N−1∑
n=1

w(x,y)
n (yn, xn, yn+1) (2.2.46)

with

w(x,y)
n (yn, xn, yn+1) = wn(P(yn), a(xn),P(yn+1)) (2.2.47)

for all local internal bichain coordinates and for all n = 1, ..., N − 1, according to the
bichain reconstruction rule (2.1.34).
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The first variation of the local internal chain energy E with respect to the internal
coordinates xn and yn is then obtained using the identities

δa(xn) =
(
T L(1)

xn δxn

)
a(xn)

δP(yn) =

(
P

1
2
n [Bηnδηn×]P

1
2
n , δwn

) (2.2.48)

where the explicit expression of the linear operators L(1)
xn and Bηn depends on the choice

of the internal bichain coordinates9 (x, y). The equilibrium bichain conditions are then
of the form (2.2.45), but the constitutive relations in (2.2.36) and in (2.2.44) read(

mn+1

nn+1

)
=

(
Id3 − [qn×]
03 Id3

)
L(1)
xn

−T
∂xnw

(x,y)
n (2.2.49a)

for n = 1, ..., N − 1 and(
CPn
FPn

)
=

(
B−Tηn 03

03 Id3

)
∂yn

(
w(x,y)
n + w

(x,y)
n+1

)
(2.2.49b)

for n = 1, ..., N . For the internal coordinates used in [Lankaš et al., 2009, Gonzalez et al.,
2013, Petkeviciute et al., 2014], an explicit form of the operator L(1)

xn is given in (2.2.20)
and the operator Bηn can be shown to be

Bηn = P
T
2 (ηn)P1(ηn) (2.2.50)

where the matrix P1(ηn) is defined in (2.2.21a). More detail about explicit formulation
of the linear operators L(1)

xn and Bηn can be found in appendix A.1.

2.2.6 Formulation of bichain equilibrium conditions through Lagrange
multipliers

An alternative formulation of the bichain equilibrium conditions on a configuration set
Γ is obtained using the Lagrange multipliers method regarding the condition (2.2.45c)
as a set of constraints on the internal bichain displacements. Precisely, in the case of
the Dirichlet conditions described in (2.2.40a), a bichain equilibrium configuration is
characterised by the fact that the set of internal junction displacements (a1, ..., aN−1)
and of microstructure configurations (P1, ...,PN ) make the bichain internal energy E, as
defined in (2.2.32), stationary under the constraints that

g1 = Id4, gN =

N−1∏
n=1

an = gN
∗ (2.2.51a)

P1 = P1
∗ and PN = PN ∗. (2.2.51b)

9See section 1.3 for more detail on matrix expansion with respect to coordinate systems.
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Observe that the Dirichlet conditions can always be assumed of the form (2.2.51a) since
the energy E is assumed to respect the invariance through global rigid body motion of
the bichain configuration (g,P), as discussed in (2.2.34).

The set of admissible perturbations induced by the constraints in (2.2.51) can be
shown to be{

(φ,Θ) |
N−1∑
n=1

AdgnΘn = 0, φ1 = 0, φN = 0, δw1 = 0 and δwN = 0

}
(2.2.52a)

with

(φ,Θ) = (φ1,Θ1, ...,ΘN−1, φN ) ∈ R12N−6 (2.2.52b)

using the specific form of the perturbation δan = (T Θn) an and δPn = P
1
2
n [φn×]P

1
2
n

for all n, similarly to (2.2.7b) and (2.2.37), and the definition of the operator Adgn in
(2.2.14).

Consequently, the bichain configurations (g,P) which make stationary the internal
energy E(g,P) in (2.2.32) with the respect to any admissible perturbation (φ,Θ) in
2.2.52 have to satisfy for some real triples λR , λr , λP1 , λ

P
N , λ

w
1 , λ

w
N the conditions(

mn+1 + qn × nn+1

nn+1

)
−AdTgn

(
λR

λr

)
= 0 (2.2.53a)(

CPn
FPn

)
= 0 (2.2.53b)

for n = 2, ..., N − 1 and (
CP1
FP1

)
=

(
λP1
λw

1

)
and

(
CPN
FPN

)
=

(
λPN
λw
N

)
(2.2.53c)

according to the variational constitutive relations in (2.2.36) and in (2.2.44). The set

λ = (λR ,λr , λP1 , λ
P
N , λ

w
1 , λ

w
N ) ∈ R18 (2.2.54)

is called the set of bichain Lagrange multipliers.
Interestingly, it can be shown that introducing the Lagrangian function L : SE(3)2N×

R18 → R as

L(g,P,λ) = E(g,P)− λΦ(P1, gN ,PN ;P1
∗, gN

∗,PN ∗) (2.2.55)

where the function Φ is defined as

Φ(P1, gN ,PN ;P1
∗, gN

∗,PN ∗) =



1
2Vect

(
RN (RN

∗)T
)

rN −RN (RN
∗)T rN

∗

1
2Vect

(
P1 (P1

∗)T
)

1
2Vect

(
PN (PN

∗)T
)

w1 − w1
∗

wN − wN ∗


(2.2.56)
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then the stationary conditions under constraints (2.2.53) exactly correspond to the regu-
lar stationary conditions for the function L over the set of internal junction displacement
and microstructure configuration (P1, a1, ..., aN−1,PN ) and over the Lagrange multipliers
λ, i.e.

δL(g(a),P,λ)(δa, δP, δλ) = 0 (2.2.57)

for any perturbations (δa, δP, δλ) and where the macrostructure configuration g is seen
as a function of the set local junction displacement a = (a1, ..., aN−1) according to the
definition (2.1.4).

We should also observe that, using the identity (2.2.13), the conditions in (2.2.53a)
can be equivalently expressed as(

mn+1 + rn × nn+1

nn+1

)
=

(
λR

λr

)
, (2.2.58)

which, together with (2.2.53c), allows to interpret the Lagrange multipliers
λ = (λR ,λr , λP1 , λ

P
N , λ

w
1 , λ

w
N ) as the set of couple and force which are needed to enforce

the constraints in (2.2.51), and that moreover the triples λR and λr exactly correspond,
in the case of internal bichain energy, to the conserved quantities described in (2.2.43).
This remark shows that the expressions in (2.2.53) can be used to express the equilibrium
conditions where the Lagrange multipliers, i.e. the couple and force, are prescribed by
removing the constraints in (2.2.51). An application of the system (2.2.53) in the context
of the rigid base DNA model is presented in section 6.3.

2.2.7 On bichain models for single chains

We conclude this part on the mathematical formulation of chain and bichain equilibrium
conditions by some remarks on the relations between the rigid body chain model and
and the bichain model.

As discussed in (2.2.45), the bichain configuration contains naturally a macrostruc-
ture g which is a single rigid body chain configuration, and moreover part of the bichain
equilibrium conditions are literally the equilibrium conditions for a single chain. It is
then the bichain constitutive relations which make the study of bichain equilibrium con-
figuration very different from the one single chain equilibrium configuration. A natural
question is then whether the mechanical behaviour of the bichain macrostructure can be
understood as a single chain behaviour.

A trivial example is when the bichain internal energy (2.2.32) decouples into the
contributions from the macrostructure and the microstructure deformations, i.e. when
E is of the form

E(g,P) =

N−1∑
n=1

wan(an) + wPn (Pn,Pn+1). (2.2.59)

In such cases, the energy E is said to be a separable internal bichain energy. This
decoupling implies then that the constitutive relations (2.2.36) have the property that
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the macrostructure deformations are independent from the microstructure ones, and
then that any bichain equilibrium configuration (g,P) governed by this internal energy is
indistinguishable from a single chain equilibrium configuration g governed by the internal
energy E(g) =

∑N−1
n=1 w

a
n(an). The bichain theory with nearest-neighbor internal energy

contains then strictly the single chain theory with local internal energy.
Conversely, another extreme case is given by a constrained microstructure, and it

corresponds to constraining the microstructure P to a given (possibly stressed) config-
uration. Even if a rigorous discussion of this problem is left as a future development,
we believe that all these local constraints imply that the single chain behaviour of the
bichain macrostructure cannot be described by an internal nearest neighbor chain energy.

Consequently, the bichain model can be seen as an intermediate model between local
and fully non-local chain models.
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2.3 On Stationary Configurational Distributions and Chain
Moments

This section discusses an approach to the stochastic behaviour of rigid body chains in
the context of equilibrium statistical mechanics. Based on the existence of a variational
principle for the equilibrium conditions, we present a stationary configurational distri-
bution for single chains, and respectively for bichains, in a coordinate independent way.
The definition of chain observables and their first moment is then introduced, and the
particular role of configurational chain first moment, as well as the coordinate first and
second moments, is emphasised.

2.3.1 On stationary configurational distributions for isolated chains
and bichains

A rigid body chain is said to be an isolated rigid body chain in a stochastic bath if the only
couples and forces which act on it arise from the internal deformations of the material and
from the interactions with the surrounding fluid, which are modelled as linear damping
and Brownian forcing. This definition is a natural extension of the case of a single rigid
body [Steele, 1963a, Steele, 1963b, Brenner, 1964, Brenner, 1965, Hubbard, 1972, Doi
and Edwards, 1986, Walter et al., 2010]

The dynamic of an isolated chain in a stochastic bath, is then, in the context of
equilibrium statistical mechanics, assumed to be be governed by a stationary chain
configurational distribution dρ(g). This assumption is made by many authors, and is
rigorously discussed in [Walter et al., 2010] for instance. We denote by kB the Boltzmann
constant and T the kinetic temperature of the bath. Moreover, for an isolated chain with
free ends, the configurational distribution can be written as a Boltzmann distribution
in terms of the internal chain energy E and a choice of internal chain coordinates x.
Precisely, this distribution of the from

dρ(g)(x) =
1

ZΓ
exp

{
− 1

kBT
E(g(x))

}
J(x)dx for g ∈ Γ (2.3.1a)

with the normalisation constant

ZΓ =

∫
Γ

exp

{
− 1

kBT
E(g(x))

}
J(x)dx (2.3.1b)

where

J(x) =

N−1∏
n=1

Jn(xn) (2.3.1c)

is the Jacobian factor coming from the integration over the rotation group [Eyring, 1932,
Gonzalez and Maddocks, 2001, Becker and Everaers, 2007, Lankaš et al., 2009, Walter
et al., 2010, Chirikjian, 2011, Gonzalez et al., 2013], where the configuration space Γ is
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defined in (2.2.3) using the unstressed end conditions, described in (2.2.2b), and where
dx is a compact notation for dx1...dxN−1.

We should emphasize that the form of the configurational distribution in (2.3.1a) is
the same for local and non-local chain internal energies and, moreover, that this expres-
sion is not strictly a Boltzmann distribution because of the presence of the Jacobian
correction J(x) but is its exact analogue on a non-flat configuration space. The Jaco-
bian factor ensures that the value of the probability density dρ(g)(x) for a given chain
configuration g transforms consistently in any choice of the internal chain coordinates x.
This is why, one can write formally the rigid body chain configurational distribution in
(2.3.1a) in the following compact form

dρ(g) =
1

ZΓ
exp

{
− 1

kBT
E(g(a))

}
da for g ∈ Γ (2.3.2a)

with the normalisation constant

ZΓ =

∫
Γ

exp

{
− 1

kBT
E(g(a))

}
da (2.3.2b)

and with the identification

da = J(x)dx (2.3.2c)

where a = (a1, ..., aN−1) is the set of local junction displacements in the chain, as dis-
cussed in detail by [Chirikjian, 2011].

The functional form of the local Jacobian Jn(xn) depends on the choice of internal
chain coordinates xn. For instance, in terms of the coordinates used in [Lankaš et al.,
2009, Gonzalez et al., 2013, Petkeviciute et al., 2014], one has explicitly

Jn(xn) =
1(

1 + |un|
4

)2 with xn = (un, vn). (2.3.3)

Analogous expressions for some other choice of coordinates are systematically presented
in [Chirikjian, 2011]. If the internal energy chain E is assumed to be local, as in (2.2.5),
the distribution dρ(g)(x) factorizes into

dρ(g)(x) =
N∏
n=1

dρn(a(xn)) (2.3.4a)

with

dρn(a(xn)) =
1

Zn
exp

{
− 1

kBT
wn(a(xn))

}
Jn(xn)dxn (2.3.4b)

where Zn is the local normalising constant and where the chain energy E expressed in
internal coordinates x is presented in (2.2.16). Equivalently, one can write

dρ(g) =
N∏
n=1

dρn(an) (2.3.5a)
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with

dρn(an) =
1

Zn
exp

{
− 1

kBT
wn(an)

}
dan. (2.3.5b)

We remark that, in the DNA modelling literature, approximation of the distribution in
(2.3.4) have been built for different choice of the internal coordinates [Marky and Olson,
1994, Olson et al., 1998, Coleman et al., 2003, Gonzalez and Maddocks, 2001, Becker
and Everaers, 2007, Lankaš et al., 2009].

We define an isolated rigid body double chain in a stochastic bath similarly to single
chains and we also assume the existence of a stationary bichain configurational distribution
dρ(g,P). By adapting the development presented in [Walter et al., 2010] for an isolated
bichain with free ends, we obtain a configurational distribution in terms of the internal
bichain energy E and some internal bichain coordinates (x, y) of the form

dρ(g,P)(x, y) =
1

ZΓ
exp

{
− 1

kBT
E(g(x),P(y))

}
J(x, y)dxdy for (g,P) ∈ Γ (2.3.6a)

with the normalization constant

ZΓ =

∫
Γ

exp

{
− 1

kBT
E(g(x),P(y))

}
J(x, y)dxdy (2.3.6b)

where

J(x, y) =
N−1∏
n=1

Jn(xn)
N−1∏
m=1

Jm(ym) (2.3.6c)

is the Jacobian factor associated to bichain coordinates [Lankaš et al., 2009, Gonza-
lez et al., 2013] and where the configuration set Γ is defined in (2.2.42) using the end
conditions described in (2.2.40b). Since the value of the bichain configurational den-
sity dρ(g,P) for a given bichain configuration transforms consistently in any internal
coordinates (x, y), one can write the expression in (2.3.6) as

dρ(g,P) =
1

ZΓ
exp

{
− 1

kBT
E(g(a),P)

}
dadP for (g,P) ∈ Γ (2.3.7a)

with the normalization constant

ZΓ =

∫
Γ

exp

{
− 1

kBT
E(g(a),P)

}
dadP (2.3.7b)

where

dadP = J(x, y)dxdy. (2.3.7c)

For the choice of the internal bichain coordinates described in (2.1.33), one has Jn(xn)
as in (2.3.3) and similarly

Jm(ym) =
1(

1 + |ηm|
4

)2 with ym = (ηm,wm). (2.3.8)

68



2.3. On Stationary Configurational Distributions and Chain Moments

Using the arguments presented in the section 2.2.7, the single chain configurational
distribution dρ(g) in (2.3.1) can be seen as a marginal of the bichain configurational
distribution dρ(g,P) in (2.3.6). Even for a nearest neighbor bichain internal energy of the
form (2.2.32), the marginal distribution for the macrostructure is in general very different
from the one for local single chains presented in (2.3.4). In contrast, this marginal
distribution exactly factorizes into (2.3.4) when the internal bichain energy decouples
into independent macrostructure and microstructure configurations.

2.3.2 Observables and expectations for chains and bichains

A rigid body chain observable A is formally a function of the chain configuration
A(g1, ..., gN ) ∈ R, which will simply be denoted by A(g) ∈ R. The most common
observables A(g) in polymer physics include, for instance, the projection of some given
bond in the chain on the first one, or of the end-to-end vector [Flory, 1969, Schellman,
1974, Doi and Edwards, 1986, Maroun and Olson, 1988, Yamakawa, 1997]. The chain
configurational distribution dρ(g) allows the definition of the expectation of a chain
observable A(g) as

〈A(g(x))〉 =

∫
Γ
A(g(x))dρ(g)(x) (2.3.9)

where x denotes a set of chain internal coordinates of the chain configuration g, as defined
in (2.1.14), and Γ denotes the set of chain configuration where the ends are free in (2.2.3),
and where dρ(g)(x) denotes the stationary chain configurational distribution written in
terms of the coordinates x, as in (2.3.1). As discussed in section 2.3.1, the distribution
dρ(g)(x) transforms consistently in any choice of internal coordinates x, and one can
then write the expectation in (2.3.9) as

〈A(g)〉 =

∫
Γ
A(g)dρ(g). (2.3.10)

The symbol 〈 . 〉 stands therefore for the expectation over the configuration ensemble Γ,
and the value of 〈A(g)〉 is independent of the choice of internal chain coordinates used
to describe the Boltzmann distribution and the observable A(g(x)).

Similarly, a rigid body bichain observable is also denoted by A but it is a function of
the bichain configuration A(P1, g1, ..., gN ,PN ) ∈ R, or simply A(g,P) ∈ R. Using the
bichain configurational distribution in (2.3.6) allows one to define the expectation of a
bichain observable as

〈A(g(x),P(y))〉 =

∫
Γ
A(g(x),P(y))dρ(g,P)(x, y) (2.3.11)

where (x, y) denotes a set of bichain internal coordinates of the bichain configuration
(g,P), as defined in (2.1.34) and where Γ denotes the set of bichain configurations with
free ends in (2.2.42). Since the distribution dρ(g,P)(x, y) transforms consistently in any
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choice of internal coordinates (x, y), one can then write the expectation in (2.3.11) as

〈A(g,P)〉 =

∫
Γ
A(g,P)dρ(g,P). (2.3.12)

As for the single chains in (2.3.10), one deduces that the value of the expectation
〈A(g,P)〉 is independent of the choice of internal bichain coordinates.

A chain observable A(g) is said to be an internal chain observable if it is invariant
under any overall rigid body motion of the chain, i.e. if

A(Bg1, ..., BgN ) = A(g1, ..., gN ) (2.3.13)

for any B ∈ SE(3). Similarly, an internal bichain observable A(g,P) has the property

A(P1, Bg1, ..., BgN ,PN ) = A(P1, g1, ..., gN ,PN ) (2.3.14)

for any B ∈ SE(3). In the context of isolated chain and isolated bichains, internal
observables are of interest since they are the only observables whose expectation is well
defined. In other words, if an observable A is not internal then the computation of
its expectation, in (2.3.10) and (2.3.12) respectively, requires information which is not
described by a configurational distribution that is only a function of the internal energy
E.

Among the variety of internal observables of chain and bichain configurations, the
relative rigid body motion gm,n between the mth element and the nth element in the
chain, as defined in (2.1.7), or respectively in the bichain macrostructure, is of particular
interest. The first moment of the relative rigid body motion, or simply the configurational
first moment, is defined as a general chain observable, i.e. as

〈gm,n〉 =

∫
Γ
gm,ndρ(g) (2.3.15)

according to the definitions (2.3.10), and as

〈gm,n〉 =

∫
Γ
gm,ndρ(g,P) (2.3.16)

for bichains according to (2.3.12). In both cases, the block structure of 〈gm,n〉 can be
written in terms of the relative rotation Rm,n and relative translation rm,n, defined in
(2.1.6), as

〈gm,n〉 =

(
〈Rm,n〉 〈rm,n〉

0 1

)
. (2.3.17)

Moments of a chain configuration provide condensed information about their sta-
tistical properties and offer a useful way to compare and characterise different chains,
however they are probably not sufficient to deduce the detailed mechanical parameters of
the chain [Flory, 1969, Yamakawa, 1997]. The study of the configurational first moment
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〈gm,n〉 is of importance because it encodes many other significant observables in polymer
physics. More details are presented in section 2.4.

Another set of observables of interest are the moments of the chain, or respectively
bichain, internal coordinates. For a bichain configurational distribution and for some
internal coordinates (x, y) we will use the specific notation x̂n and ŷn for the first moment
of the internal coordinates xn and yn respectively. We denote the centered second moment
of the internal coordinates by the matrix c. The triples x̂n and ŷn are also referred to as
the local bichain coordinate expectations and the matrix c as thebichain covariance matrix.
Using the ordering of the internal coordinates in (2.1.31), the coordinate expectation can
be summarized as

(x̂, ŷ) = (ŷ1, x̂1, ..., x̂N−1, ŷN ) (2.3.18a)

where

x̂n = 〈xn〉 and ŷn = 〈yn〉 , (2.3.18b)

and where the expectation 〈 . 〉 is understood in the sense of (2.3.12). The covariance
matrix then has the block structure

c =


cyy1,1 cyx1,1 ... cyx1,N cyy1,N

cxy1,1 cxx1,1 ... ... cxy1,N

... ... ... ... ...
cxyN−1,1 ... ... cxxN−1,N−1 cyxN,N−1

cyyN,1 cxyN,1 ... cxyN,N−1 cyyN,N

 (2.3.19a)

where the blocks are defined as

cyym,n = 〈(ym − ŷm)⊗ (yn − ŷn)〉 , cxxm,n = 〈(xm − x̂m)⊗ (xn − x̂n)〉
cyxm,n = 〈(ym − ŷm)⊗ (xn − x̂n)〉 and cxym,n = (cyxm,n)T .

(2.3.19b)

Furthermore, if the internal coordinates are of the form xn = (un, vn) ∈ R6, as are the
ones described in (2.1.18), and yn = (ηn,wn) ∈ R6, as are the ones described in (2.1.33),
then the expectations in (2.3.18b) naturally decompose into

x̂n =

(
ûn
v̂n

)
and ŷn =

(
η̂n
ŵn

)
(2.3.20)

and consequently the blocks in (2.3.19b) decompose into 3-by-3 sub-blocks denoted

cyym,n =

(
cηηm,n cηwm,n
cwηm,n cww

m,n

)
, cxxm,n =

(
cuum,n cuvm,n
cvum,n cvvm,n

)
and cyxm,n =

(
cηum,n cηvm,n
cwum,n cwvm,n

)
(2.3.21)

where we have used the same notation as in (2.3.19b).
In the case of a single chain, the first and second moment of internal coordinates x

are defined similarly to (2.3.18) and (2.3.19). Moreover, if the chain has a local internal
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energy, with the concomitant factorisation of the configurational distribution dρ(g) in the
form of (2.3.5), then the local internal chain coordinates xn are statistically independent
and the covariance matrix cxx is 6-by-6 block diagonal since

〈(xn − x̂n)⊗ (xm − x̂m)〉 = 0 (2.3.22)

for any m 6= n.
We would like to stress that the above definition of the first and second moments

of internal chain, and bichain, coordinates show that different choices of coordinates
lead to different values of the expectation (x̂, ŷ) and of the covariance matrix c, despite
that underlying statistical physics is not different. In particular the knowledge of the
configurational distribution in any set of coordinates allows to compute, in principle, the
first and second moments in any other coordinates.

In the context of DNA modelling, the sequence dependence of the values for the
first and second moments of the internal coordinates, in (2.3.18) and (2.3.19), have been
particularly studied and have been used to build sequence dependent normal distributions
for chain configurations [Marky and Olson, 1994, Olson et al., 1998, Coleman et al.,
2003, Gonzalez and Maddocks, 2001, Becker and Everaers, 2007, Lankaš et al., 2009]
and bichain configurations [Lankaš et al., 2009, Gonzalez et al., 2013, Petkeviciute et al.,
2014]. More details about these distributions are presented in section 5.2.
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2.4 The Persistence Matrix for a Heterogenous Rigid Body
Chain

A detailed analysis of the configurational chain first moment is presented in this section.
We discuss more precisely how it encodes other frequently adopted polymer observables
and in particular the frame correlation matrix and the Flory persistence vector. The
notion of the expected chain configuration and of the fluctuation matrix allows us to state
a formal definition of a semi-flexible regime for chains and to derive a first order expansion
for the configurational first moment. This analytical expression emphasises the equal role
of the expected chain and the fluctuation matrix and leads to a general description of
the configurational first moment behaviour for non degenerate chains. In particular, the
frame correlation matrix is shown to be generally asymptotically vanishing as a function
of the molecular distance, but in a non-monotonic way, and that the components of
the Flory persistence vector converge to finite values. Moreover, the explicit formula
motivates the factorisation of the configurational first moment into the expected chain
and the persistence matrix, whose blocks characterise the memory lost as well as the
limiting values of the Flory persistence vector. Furthermore, the formula obtained can
be also expanded in terms of the molecular length and lead to the discussion of short
and long length approximations. The short length expansion delivers explicit closed form
solutions.

2.4.1 Recurrence relation for the chain configurational first moment

As defined in section 2.3.2, thefirst moment of the relative rigid body motion from themth

and nth rigid body in the chain, or just the configurational first moment, is denoted by
〈gm,n〉 = (〈Rm,n〉 , 〈rm,n〉). It is of particular interest since it encodes some observables
which are frequently used to characterise polymer statistical physics properties, such as:

(a) The Kratky-Porod persistence length, which is the component of the vector 〈rm,∞〉
in the direction of the first translation vector. It was proposed, following the work
of M. Smoluchowski on stochastic trajectories, as a characteristic value for a chain
[Porod, 1948, Krakty and Porod, 1949, Flory, 1969, Doi and Edwards, 1986].

(b) The Flory persistence vector which is the triple 〈rm,n〉. It generalises the Kratky-
Porod persistence length [Flory, 1973, Schellman and Harvey, 1995].

(c) The tangent-tangent correlation which is defined as tm · 〈Rm,n〉 tn where tm ∈ R3

and tn ∈ R3 describe a given and deterministic direction in the frames Rm and
Rn respectively. In some very specific cases this quantity can be simply related to
the Kratky-Porod persistence length and to some bending parameters of the chain
[Landau and Lifshitz, 1959, Schellman, 1974, Doi and Edwards, 1986, Yamakawa,
1997]. We note, moreover, that tangent-tangent correlation is in general very different
from the chord-chord correlation 〈(rm,m+1 − rm,m) · (rm,n+1 − rm,n)〉 because of the
possible presence of extension and shear deformations.
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(d) The frame correlation matrix which is the matrix 〈Rm,n〉 that contains all the cross
correlations between the director frames indexed by m and n. It generalises the
tangent-tangent correlation [Maroun and Olson, 1988, Panyukov and Rabin, 2000].

(e) The mean squared end-to-end distance is strongly related to configurational first
moments, even if in general it cannot be directly deduced from the entries in 〈gm,n〉
[Flory, 1969, Marky and Olson, 1994].

In order to study some properties of the first moment 〈gm,n〉, we concentrate for the
rest of this section on the case of rigid body chains with local internal energy E, as
defined in (2.2.5). According to this hypothesis, the configurational distribution dρ(g)
factorizes into local distributions over junction displacements an, as presented in (2.3.4).
Consequently, the recurrence relation for the relative rigid body displacement gm,n in
(2.1.9) leads to the following recurrence relation for the first moment

〈gm,n+1〉 = 〈gm,n〉 〈an〉 (2.4.1)

where

〈an〉 =

∫
R6

a(xn)dρn(a(xn)) (2.4.2)

in terms of the chain internal coordinates (2.1.11), or equivalently as

〈an〉 =

∫
SE(3)

a(xn)dρn(an) (2.4.3)

according to the distribution in (2.3.5). More generally, the relation (2.4.1) gives

〈gm,n〉 = 〈gm,k〉 〈gk,n〉 (2.4.4)

for all 1 ≤ m ≤ k ≤ n ≤ N according to the transition identity (2.1.10). In terms of the
moments 〈Rm,n〉 and 〈rm,n〉 the recurrence relation (2.4.1) reads

〈Rm,n+1〉 = 〈Rm,n〉 〈Qn〉 (2.4.5a)

〈rm,n+1〉 = 〈rm,n〉+ 〈Rm,n〉 〈qn〉 (2.4.5b)

for 1 ≤ m ≤ n ≤ N . The definition of the moment 〈Rm,n〉 is originally found in [Eyring,
1932] and is extensively discussed in [Flory, 1969] as the matrix multiplication method
[Flory and Jernigan, 1965, Flory and Miller, 1966]. This method is then generalised to
the matrix 〈gm,n〉 in [Flory, 1973].

Consequently, one of the key steps in the understanding of the observables listed in
(a) to (e) above in the case of rigid body chains with local energy is the explicit knowl-
edge of the first moment of the junction displacement 〈an〉 in (2.4.2) [Flory, 1969, Flory,
1973, Maroun and Olson, 1988, Marky and Olson, 1994]. It would be even more valuable
to be able to write the matrix 〈an〉 directly as a function of the Boltzmann distribution
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dρn(an) for each n, or equivalently as a function of the local potential energy wn, as de-
fined in (2.2.5), for each n [Eyring, 1932, Schellman, 1980, Schellman and Harvey, 1995].
Exact analytical values of the entries of the matrix 〈an〉 are, for most of the realistic
Boltzmann distribution dρn(a(xn)), still challenging to obtain. We will however show
that an approximation can be provided for general local chain configurational distribu-
tions in the semi-flexible regime. We observe that the matrix multiplication method in
(2.4.1) is no longer valid for non-local chain energies [Eyring, 1932, Flory, 1969], or even
for general nearest neighbor bichain distribution dρ(g,P), which emphasises the diffi-
culty of studying analytically the configurational first moment 〈gm,n〉 for realistic chain
models.

2.4.2 An explicit expansion for semi-flexible chains

In order to approximate the junction displacement expectation 〈an〉 in (2.4.2), it is con-
venient to first introduce the expected junction ān ∈ SE(3) which has the following block
structure

ān =

(
Q̄n q̄n
0 1

)
(2.4.6)

analogous to (2.1.5). The expected junction is defined as follows. We factorize the
junction displacement an in the form

an = αnān (2.4.7)

and we expand the matrix αn, according to (1.3.4), as

αn = Id4 + T Θn +
1

2
(T Θn)2 + o

(
|Θn|2

)
(2.4.8)

where we recall that the operator T stands for the tangent map defined as

T Θn =

([
ΘR
n ×
]

Θr
n

0 0

)
∈ R4×4 for Θn = (ΘR

n ,Θ
r
n) ∈ R6 (2.4.9)

with the superscripts R and r denoting the rotational and translational parts of the vector
Θn respectively, as in (1.1.22). The matrix an is then described by the deformation αn
from a given junction configuration ān and, moreover, the variable Θn can be interpreted
as a parametrization of linear perturbations around ān. The expected junction ān is then
defined as the junction displacement in (2.4.7) such that

〈Θn〉 = 0 (2.4.10)

where the expectation is taken in the sense of (2.3.10). The expected junction can then be
seen as a junction displacement such that the expectation of the linear perturbation van-
ishes. The expected junction always exists, and it is moreover unique if the distribution of
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the an is sufficiently concentrated [Kendall, 1990, Becker and Everaers, 2007, Chirikjian,
2011]. For completeness, we should note that the expression of the junction in (2.4.7) is
the one used in [Becker and Everaers, 2007, Becker, 2007] to parametrize the junction
displacement in a rigid body chain, and that the expansion (2.4.8) can be interpreted as
higher order terms for the exponential coordinates of the deformation matrix αn.

The expected chain ḡ is the rigid body chain configuration generated by the set of
expected junction ā1, ..., āN−1. More generally, the expected chain relative rigid body
displacement is defined, in analogy to (2.1.7), by

ḡm,n+1 = ḡm,nān with ḡm,m = Id4. (2.4.11)

The block structure of ḡm,n is denoted as

ḡm,n =

(
R̄m,n r̄m,n

0 1

)
(2.4.12)

where R̄m,n and r̄m,n denote respectively the expected chain relative rotation and the
expected chain relative translation from the mth to the nth element in the chain, as in
(2.1.7).

It is crucial to observe that for a given choice of rigid body chain coordinates x,
one does not in general have that a(x̂n) = ān where x̂n denotes the expectation of the
coordinates xn, as defined in (2.3.18b). To compute the expected junction ān from a
distribution dρn(a(xn)) is then generally non-trivial and a priori requires a numerical
approximation. However, in the case of a sufficiently concentrated normal distribution
dρn(a(xn)) in (2.4.2), an analytical approximation can be derived. This construction is
presented in appendix A.5.

We now need to define formally the notion of the semi-flexible regime for rigid body
chains. Observing that the expansion (2.4.8) allows the expectation of the junction
deformation αn to be written as

〈αn〉 = Id4 +
1

2

〈
(T Θn)2

〉
+
〈
o
(
|Θn|2

)〉
(2.4.13)

we say that the corresponding chain is in the semi-flexible regime if there exists a small
parameter ε > 0 such that∣∣∣〈(T Θn)2

〉∣∣∣ = O (ε) and
〈
o
(
|Θn|2

)〉
= o (ε) (2.4.14)

for all n = 1, .., N − 1 in the expression (2.4.13). This definition implies that the defor-
mation matrix αn is on average close to the identity and moreover that its expectation
can be well approximated by truncation at the first order. According to the definition
(2.4.9), one finds the identity

(T Θn)2 =

([
ΘR
n ×
]2

ΘR
n ×Θr

n

0 0

)
. (2.4.15)
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Defining the local chain fluctuation matrix Cn together with its block structure

Cn =

(
CRR
n CRr

n

CRr
n

T Crrn

)
(2.4.16a)

where

CRR
n =

〈
ΘR
n ⊗ΘR

n

〉
, CRr

n =
〈
ΘR
n ⊗Θr

n

〉
and Crrn = 〈Θr

n ⊗Θr
n〉 (2.4.16b)

leads then to the expression〈
(T Θn)2

〉
= −

(
Tr
(
CRR
n

)
Id3 − CRR

n Vect
(
CRr
n

)
0 0

)
(2.4.17)

where the operator Vect ( . ) is defined in (1.1.13). We note that to deduce (2.4.17) we
have used the following identities for any triples y, y1, y2 ∈ R3

[y×]2 = y ⊗ y − (y · y)Id3 (2.4.18)

and

y1 × y2 = Vect (y2 ⊗ y1) . (2.4.19)

In the definition (2.4.14) one can then replace the first estimation by the following ones
in terms of the blocks of the fluctuation matrices∣∣CRR

n

∣∣
Sp = O (ε) and

∣∣Vect (CRr
n

)∣∣ = O (ε) (2.4.20)

for all n = 1, ..., N where
∣∣CRR
n

∣∣
Sp denotes the largest eigenvalue of the matrix CRR

n , as
presented in (1.1.4).

Under the hypothesis of the rigid body chain being in the semi-flexible regime, one
then obtains the following asymptotic expansion of the deformation matrix expectation

〈αn〉 = Id4 +
1

2

〈
(T Θn)2

〉
+ o (ε) (2.4.21)

and consequently, using the factorisation (2.4.7) together with the expansion (2.4.21) and
the identity (2.4.17), the first moment of the junction displacement 〈an〉 reads

〈an〉 =

(
Id4 −

1

2
Λn

)
ān + o (ε) (2.4.22)

where we have defined for compactness

Λn =

(
Tr
(
CRR
n

)
Id3 − CRR

n Vect
(
CRr
n

)
0 0

)
. (2.4.23)
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We denote the sub-blocks of Λn by respectively

Tr
(
CRR
n

)
Id3 − CRR

n = ΛRR
n and Vect

(
CRr
n

)
= ΛRr

n (2.4.24)

and observe that the assumption (2.4.14), or equivalently (2.4.20), implies that∣∣ΛRR
n

∣∣
Sp = O (ε) and

∣∣ΛRr
n

∣∣ = O (ε) . (2.4.25)

Expansion (2.4.22) then provides a way to factorize the first moment of the junction
displacement 〈an〉 into the expected junction ān and a first order perturbation. The
configurational first moment 〈gm,n〉, as described in (2.4.1), can then be explicitly written
using (2.4.22) as the recurrence relation

〈gm,n+1〉 = 〈gm,n〉
(
Id4 −

1

2
Λn

)
ān + o (ε) with gm,m = Id4 (2.4.26)

or, equivalently in terms of 〈Rm,n〉 and 〈rm,n〉, as

〈Rm,n+1〉 = 〈Rm,n〉
(
Id3 −

1

2
ΛRR
n

)
Q̄n + o (ε) with Rm,m = Id3 (2.4.27a)

〈rm,n+1〉 = 〈rm,n〉+ 〈Rm,n〉
[(

Id3 −
1

2
ΛRR
n

)
q̄n −

1

2
ΛRr
n

]
+ o (ε) with rm,m = 0

(2.4.27b)

where Q̄n and q̄n are defined in (2.4.6), and ΛRR
n and ΛRr

n are defined in (2.4.24).
These expressions generalise the work in [Schellman and Harvey, 1995] using an

isotropic wedge model on the static and dynamic contributions, as originally proposed in
[Trifonov et al., 1988], to the average chain configuration. For completeness, we note that
in the context of continuum chains similar expressions to (2.4.26) have been deduced, in
the constant coefficient and diagonal case [Panyukov and Rabin, 2000] and in the general
case [Becker, 2007]. One should emphasize that these recurrence relations stress the equal
importance of the expected chain configuration ḡn and of the local covariance matrices
Cn on the chain first moment 〈gm,n〉, and consequently on the Flory persistence vector
and on the frame correlation matrix for instance. Moreover the characteristic value of
the parameter ε can be chosen as

ε = max
1≤n≤N−1

{
4
∣∣CRR
n

∣∣
Sp

π2
,
2
∣∣Vect (CRr

n

)∣∣
π |q̄ |

}
(2.4.28)

where π
2 and |q̄ | = max1≤n≤N−1 |q̄n| have been chosen as characteristic scales for the

rotations and translations respectively. Applications of the expressions in (2.4.26), or
equivalently in (2.4.27), are presented in section 7.2.1 in the context of coarse grained
DNA modelling. By comparing their predictions with the results given by a full Monte
Carlo simulation, we conclude that they provide a remarkably good analytical approxi-
mation for semi-flexible chains.
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2.4.3 General behaviour of semi-flexible chain first moment

In contrast to what is widely assumed, the expression (2.4.26) shows that the entries in
the matrix 〈Rm,n〉, as well as the components of the vector 〈rm,n〉, do not exhibit in
general a monotone behaviour for increasing values of n, mainly because the expected
junction ān is in general far from the identity Id4, as for example in coarse grain models
of DNA molecule where the intrinsic helicity, as well as local intrinsic bends, can be quite
large. In particular the tangent-tangent correlation tm · 〈Rm,n〉 tn should not in general
be expected to be exponentially decaying and can even become negative. Moreover,
according the recurrence relation (2.4.26), this quantity is not only a function of the
bending parameters of the chain, but also of the expected chain configuration. This fact
has already be observed in the case of simple chain models in [Schellman and Harvey,
1995, Yamakawa, 1997, Panyukov and Rabin, 2000, Vaillant, 2001, Liu et al., 2011], and
in the general case in [Becker, 2007]. Similarly, the third component of the vector 〈rm,∞〉
is only a partial measure of the chain persistence, since its first and second component
do not vanish in general, and can also be negative, as noted in [Flory, 1973, Maroun and
Olson, 1988, Schellman and Harvey, 1995, Yamakawa, 1997, Becker, 2007].

In contrast, the relation (2.4.27a) implies that the spectral norm of the matrix 〈Rm,n〉,
as defined in (1.1.4), is, at leading order, decaying for increasing values of n since

|〈Rm,n+1〉|Sp ≤ |〈Rm,n〉|Sp

∣∣∣∣(Id3 −
1

2
ΛRR
n

)∣∣∣∣
Sp

+ o (ε) ≤ |〈Rm,n〉|Sp + o (ε) (2.4.29)

and the block ΛRR
n = Tr

(
CRR
n

)
Id3 − CRR

n , as defined in (2.4.24), is always positive
definite. More generally, one has then

|〈Rm,n〉|Sp ≤ (1− λmin)n−m + o
(

1− (1− λmin)n−m

λmin
ε

)
(2.4.30)

where λmin = minm≤k≤n λ
min
k and λmin

k denotes the minimum eigenvalue of 1
2ΛRR

k . By
definition of the matrix ΛRR

k the value of λmin can be shown to be

λmin = min
m≤k≤n

1

2
(γ1,k + γ2,k) (2.4.31)

where γ1,k and γ2,k denote the two smallest eigenvalues of CRR
k . We observe in particular

that the value of λmin vanishes if and only if at least one of the matrices CRR
k has

exactly two zero eigenvalues. A rigid body chain with λmin = 0 is called a degenerate
chain. Expression (2.4.30) allows us to deduce that if the chain is non degenerate, then
the spectral norm |〈Rm,n〉|Sp is, at leading order, strictly decaying and all frame cross-
correlations are asymptotically vanishing, i.e.

〈Rm,n〉 → 0 for n−m >> 1. (2.4.32)

Using the recurrence relation (2.4.27b) together with the expression (2.4.30) we ob-
tain, at leading order, the estimate

|〈rm,n+1〉 − 〈rm,n〉| ≤ (1− λmin)n−m
[
(1− λmin) |q̄ |+ 1

2

∣∣ΛRr
∣∣] (2.4.33)
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where we have used the notation |q̄ | = maxm≤k≤n |q̄k| and
∣∣ΛRr

∣∣ = maxm≤k≤n

∣∣∣ΛRr
k

∣∣∣.
For non-degenerate chains, the relation (2.4.33) gives then

|〈rm,n〉| ≤
1− (1− λmin)n−m

λmin

[
(1− λmin) |q̄ |+ 1

2

∣∣ΛRr
∣∣] (2.4.34)

and, consequently, the three components of the relative translation vector 〈rm,n〉 converge
to finite values 〈rm,∞〉. Precisely we have that

〈rm,n〉 → 〈rm,∞〉 for n−m >> 1 (2.4.35)

with

|〈rm,∞〉| ≤
1

λmin

[
(1− λmin) |q̄ |+

∣∣ΛRr
∣∣] . (2.4.36)

Statements (2.4.32) and (2.4.35) constitute general convergence results for non-degenerate
semi-flexible chains. They show that the larger the value of m−n is, the less correlated is
the relative orientation Rn from Rm, and moreover that the limiting value of the Flory
persistence vector is always finite. Even if these facts seem very natural, to our knowledge
no precise and general argument has previously been presented in the literature.

Finer statements about the behaviour of the first moment of the relative rigid body
motion 〈gm,n〉 requires more detailed information about the structure of the chain, i.e.
about the expected chain ḡm,n and the values of the fluctuation matrix Cn. Numerical
studies of the behaviour of both the entries in 〈Rm,n〉 and in 〈rm,n〉 has been performed,
for instance in [Maroun and Olson, 1988, Marky and Olson, 1994, Liu et al., 2011] in
the context of DNA modelling, by using Monte Carlo methods to approximate the first
moment of the junction displacement 〈an〉.

In the specific case of a homogeneous chain, i.e. 〈an〉 = 〈a〉 for all 1 ≤ n ≤ N ,
analytical formulas can obtained for the matrix 〈Rm,n〉 and for the component of the
vector 〈rm,n〉 as a function of m−n and of the entries of the matrix 〈a〉. This allows the
computation of the triple 〈rm,∞〉 [Flory, 1969]. The analytical approximation presented
in (2.4.22) leads then to the following expression for homogeneous semi-flexible chains

〈Rm,n〉 = 〈Q〉n−m (2.4.37a)

〈rm,n〉 =
(
Id3 − 〈Q〉m−n

)
(Id3 − 〈Q〉)−1 〈q〉 (2.4.37b)

where

〈Q〉 =

(
Id3 −

1

2
ΛRR

)
Q̄ (2.4.38a)

〈q〉 =

(
Id3 −

1

2
ΛRR

)
q̄ − 1

2
ΛRr (2.4.38b)

The limiting values of the Flory persistence vector is then,

〈rm,∞〉 = (Id3 − 〈Q〉)−1 〈q〉 . (2.4.39)
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2.4.4 Global factorization and the persistence matrix

Even if the use of the recurrence relation (2.4.26) allows the deduction of a few general
statements about the behaviour of the first moment 〈gm,n〉 for any n ≥ m, a finer
understanding of the detailed features in the entries of 〈gm,n〉 is still missing. Some
interesting insights are obtained from the factorization of the expected chain configuration
in the configurational chain first moment.

In analogy to (2.4.7) we can express the relative rigid body displacement gm,n in the
form

gm,n = Dm,nḡm,n (2.4.40)

where ḡm,n is presented in (2.4.11) and where Dm,n will be called the deformation matrix.
Consequently the first moment 〈gm,n〉 can then be expressed as

〈gm,n〉 = 〈Dm,n〉 ḡm,n. (2.4.41)

Writing the block structure of 〈Dm,n〉 as

〈Dm,n〉 =

(
〈∆m,n〉 〈δm,n〉

0 1

)
(2.4.42)

gives the following expressions of the first moment of the relative rotation 〈Rm,n〉 and
the relative translation 〈rm,n〉

〈Rm,n〉 = 〈∆m,n〉 R̄m,n (2.4.43a)

〈rm,n〉 = 〈δm,n〉+ 〈∆m,n〉 r̄m,n (2.4.43b)

where we have used the block structure of ḡm,n defined in (2.4.12). Expression (2.4.41), or
equivalently (2.4.43), decomposes the first moment of the relative rigid body displacement
〈gm,n〉 into the expected chain displacement ḡm,n and the first moment of the deformation
matrix 〈Dm,n〉.

Using the explicit approximation of the junction expectation 〈an〉 in (2.4.22) and the
recurrence relation for ḡm,n in (2.4.11), the sequence of matrices 〈Dm,n〉 can be expressed,
up to o (ε) , through their own recurrence relation for n ≥ m by

〈Dm,n+1〉 = 〈Dm,n〉
(
Id4 −

1

2
ḡm,nΛnḡ

−1
m,n

)
with Dm,m = Id4 (2.4.44)

or equivalently for the blocks in (2.4.42) by

〈∆m,n+1〉 = 〈∆m,n〉
(
Id3 −

1

2
R̄m,nΛRR

n R̄
T
m,n

)
(2.4.45a)

〈δm,n+1〉 = 〈δm,n〉+ 〈∆m,n〉
[

1

2
R̄m,nΛRR

n R̄
T
m,nr̄m,n −

1

2
R̄m,nΛRr

n

]
. (2.4.45b)
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In contrast to the first moment 〈Rm,n〉, the matrix 〈∆m,n〉 is a product of strictly
positive definite matrices which leads to the estimates

(1− λmax) |〈∆m,n〉|Sp ≤ |〈∆m,n+1〉|Sp ≤ (1− λmin) |〈∆m,n〉|Sp (2.4.46)

where λmax = maxm≤k≤n λ
max
k and λmax

k denotes the maximum eigenvalue of 1
2ΛRR

k ,
which can be computed analogously to λmin in (2.4.31) using the two largest eigenvalues
of the matrix CRR

k . One then has

(1− λmax)n−m ≤ |〈∆m,n〉|Sp ≤ (1− λmin)n−m (2.4.47)

and consequently, for non-degenerate chains, the spectral norm of the matrix 〈∆m,n〉 is
strictly decaying and is asymptotically vanishing, i.e.

|〈∆m,n+1〉|Sp < |〈∆m,n〉|Sp and 〈∆m,n〉 → 0 for n−m >> 1. (2.4.48)

We observe moreover that the variations in the entries of the matrix 〈∆m,n〉 as a function
of the index n have to be small since

|〈∆m,n+1〉 − 〈∆m,n〉|Sp ≤
1

2
|〈∆m,n〉|Sp

∣∣ΛRR
n

∣∣
Sp = O

(
(1− λmin)n−mε

)
(2.4.49)

according to the hypothesis (2.4.25) and the estimate (2.4.47), whereas, in general, the
variations in the entries of the relative rotation first moment only satisfy |〈Rm,n+1〉 − 〈Rm,n〉| =
O (1). Consequently, for non-degenerate semi-flexible chains, the first moment of the rel-
ative rotation 〈Rm,n〉 can always be factorized into a fast and non-decaying rotation
matrix R̄m,n and another slowly varying and strictly decaying matrix 〈∆m,n〉.

Concerning the triple 〈δm,n〉, the definition (2.4.45b), using the estimation (2.4.47),
gives for n > m

|〈δm,n〉| ≤
n−1∑
k=m

(1− λmin)k−m
[
λmax

∣∣r̄m,k∣∣+
1

2

∣∣ΛRR
∣∣] (2.4.50)

which implies

|〈δm,n〉| ≤
1− (1− λmin)n−m

λmin

[
λmax

λmin
(1− λmin) |q̄ |+

∣∣ΛRr
∣∣]

−λ
max

λmin
|q̄ | (n−m)(1− λmin)n−m

(2.4.51)

where |q̄ | is defined in (2.4.33) and where we have used
∣∣r̄m,n∣∣ ≤ |q̄ | (n−m) for n > m.

The limiting value |〈δm,∞〉| is then finite and admits the upper bound

|〈δm,∞〉| ≤
1

λmin

(
λmax

λmin
(1− λmin) |q̄ |+

∣∣ΛRr
∣∣) . (2.4.52)
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We observe moreover that

〈δm,∞〉 = 〈rm,∞〉 (2.4.53)

according to (2.4.43) and that we have the estimate

|〈δm,n+1〉 − 〈δm,n〉| ≤
1

2
|〈∆m,n〉|Sp

(∣∣ΛRR
n

∣∣
Sp

∣∣r̄m,n∣∣+
∣∣ΛRr

n

∣∣)
= O

(
ε(1− λmin)n−m

(∣∣r̄m,n∣∣+ 1
)) (2.4.54)

using (2.4.45b). The first moment of the translation vector 〈rm,n〉 of non-degenerate
semi-flexible chains can therefore be decomposed into the non-converging vector r̄m,n
damped by the matrix 〈∆m,n〉 and by a convergent part 〈δm,n〉. Moreover, the triple
〈δm,n〉 is made up of a damped sum of the expected translation vector r̄m,n according to
its definition (2.4.45b), which grows slower than r̄m,n and which has the same limiting
values as the vector 〈rm,n〉.

We should notice that the estimation proposed in (2.4.47) and (2.4.51) are very coarse
in general, and that they are used to depict qualitatively the behaviour of the first moment
〈∆m,n〉 and 〈δm,n〉 and then of 〈Rm,n〉 and 〈rm,n〉. More precise estimation could be
established when more information is known about the chain constitution.

The matrix 〈Dm,n〉 can be observed to have the interesting properties that the block
〈∆m,n〉 encodes how much of the expected chain configuration ḡm,n has persisted in the
value of configurational first moment 〈gm,n〉, by definition in (2.4.43), and that the limit-
ing value of 〈δm,n〉 behaves like the Flory persistence vector 〈rm,n〉, as shown in (2.4.53).
We will consequently call the matrix 〈Dm,n〉 the persistence matrix. The factorization
formula in (2.4.43) can be seen as a more sophisticated manifestation of the ideas pro-
posed originally in [Trifonov et al., 1988], and then discussed in details in [Schellman and
Harvey, 1995], which is that the behaviour of the configurational first moment 〈gm,n〉
is governed both by a deterministic, or static, part and by a stochastic, or dynamic,
part, and it therefore generalises, in a mathematical sense, the expressions proposed in
[Trifonov et al., 1988, Schellman and Harvey, 1995] in the context of DNA modelling
for the static and dynamic persistence lengths. Application of this factorization of the
configurational first moment into the expected chain configuration and the persistence
matrix are presented in section 7.2.2 for a rigid base pair model of DNA.

2.4.5 Short and long length behaviour approximation

The approximate recurrence relation for the relative rigid body displacement first mo-
ment 〈gm,n〉, obtained in (2.4.26) for a chain in the semi-flexible regime, can be further
investigated using the persistence matrix factorization in (2.4.41) by studying short and
long length behaviours.

Under the semi-flexible regime hypothesis asserted in (2.4.25), it can be shown that
the leading order term of the persistence matrix 〈Dm,n〉 of the recurrence relation (2.4.44)
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for n sufficiently close to m is

〈Dm,n〉 = exp

{
−1

2

n−1∑
k=m

ḡm,kΛkḡ
−1
m,k

}
+ o ((n−m)ε) (2.4.55)

using the Baker-Campbell-Hausdorff formula for the exponential form of a product of
non-commutating matrices, see for instance [Chirikjian, 2011], and combining with the
fact that for any matrix ∈ R4×4

ln (Id4 +A) = A+ o
(
|A|Sp

)
. (2.4.56)

More precisely, defining the matrices

Ωm,n =
1

2

n−1∑
k=m

R̄m,kΛ
RR
k R̄

T
m,k (2.4.57a)

and the triples

ωm,n =

(
n−1∑
k=m

R̄m,kΛ
RR
k R̄

T
m,k

)−1 [n−1∑
k=m

R̄m,kΛ
RR
k R̄

T
m,kr̄m,k − R̄m,kΛ

Rr
k

]
(2.4.57b)

for each n ≥ m, the expression in (2.4.55) leads to

〈∆m,n〉 = exp {−Ωm,n}+ o ((n−m)ε) (2.4.58a)

〈δm,n〉 = [Id3 − exp {−Ωm,n}]ωm,n + o ((n−m)ε) (2.4.58b)

as approximations of the blocks of the matrix 〈Dm,n〉 in (2.4.42). Note that, to deduce
(2.4.58), we have used the identity

exp

{(
B b
0 0

)}
=

(
expB (expB − Id3)B−1b

0 1

)
(2.4.59)

for any invertible matrix B ∈ R3×3 in (2.4.55). Consequently, using the short length
behaviour expressions (2.4.58) together with the factorization in (2.4.43) we deduce that
the first moment of the relative rotation Rm,n and of the relative translation rm,n can
be approximated as

〈Rm,n〉 = exp {−Ωm,n} R̄m,n + o ((n−m)ε) (2.4.60a)

〈rm,n〉 = [Id3 − exp {−Ωm,n}]ωm,n + exp {−Ωm,n} r̄m,n + o ((n−m)ε) (2.4.60b)

for n sufficiently close to m. The formulas in (2.4.60) constitute the short length asymp-
totic behaviour for rigid body chains.
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We deduce that the direct dependence of the expected chain configuration ḡm,n in
the entries of the first moment 〈gm,n〉 is, at the first order, exponentially damped at a
rate governed by the symmetric and positive definite matrix

Ωm,n =
1

2

n−1∑
k=m

Tr
(
CRR
k

)
Id3 − R̄m,kCRR

k R̄
T
m,k (2.4.61)

according to the expression (2.4.60) and the definition of ΛRR
k in (2.4.24). Interestingly,

for n sufficiently close to m, the persistence vector 〈rm,n〉 is expressed as a convex sum
of the vector ωm,n and r̄m,n, and, in addition, the vector ωm,n is made up of a weighted
average of the translation vector r̄m,n. In particular one has the following estimates for
non-degenerate chains

(n−m)λmin ≤ |Ωm,n|Sp ≤ (n−m)λmax (2.4.62a)

|ωm,n| ≤
λmax

λmin

1

n−m

n−1∑
k=m

∣∣r̄m,k∣∣+
1

2

∣∣ΛRr
∣∣

λmin
(2.4.62b)

analogously to (2.4.47) and (2.4.50). Since the coefficients in Ωm,n and ωm,n are strongly
dependent on the detailed constitution of the chain, more information is needed on the
expected chain ḡm,n and on the fluctuation matrices Cn if one wants to describe more
precisely their behaviour. One can however use relations (2.4.62) in (2.4.60) to deduce
that for non-degenerate semi-flexible chains and for n sufficiently close to m, the first
moments 〈Rm,n〉 and 〈rm,n〉 satisfy

exp {−(n−m)λmax} ≤ |〈Rm,n〉|Sp ≤ exp
{
−(n−m)λmin

}
(2.4.63a)

|〈rm,n〉| ≤ (1− exp {−(n−m)λmax})

[
λmax

λmin

1

n−m

n−1∑
k=m

∣∣r̄m,k∣∣+
1

2

∣∣ΛRr
∣∣

λmin

]
+ exp

{
−(n−m)λmin

} ∣∣r̄m,n∣∣
(2.4.63b)

In contrast, the long length behaviour, i.e. when the index difference n−m is large,
is governed by the asymptotic values given by |m − n| → ∞. For non-degenerate semi-
flexible chains, the solution of the recurrence relation (2.4.27) can be approximated by
the constant values

〈Rm,n〉 = 0 + O
(

(1− λmin)n−m

λmin

)
(2.4.64a)

〈rm,n〉 = 〈rm,∞〉+ O
(

(1− λmin)n−m

λmin

)
(2.4.64b)

according to (2.4.27), (2.4.30) and (2.4.34). A more detailed analysis is required however
to estimate the first correction to describe the behaviour of the first moments 〈Rm,n〉
and 〈rm,n〉 close to their limiting values and is left as an open topic. The quality of the
short and long length approximations in (2.4.60) and (2.4.64) are discussed in section
7.2.3 in the context of a rigid base pair model of DNA.
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3. On Single and Double Continuum Rods

L’ensemble continu à une dimension de tels trièdres (...)
sera ce que nous appellerons une ligne déformable.

E. & F. Cosserat, 1909.

This third chapter has been built as the continuum analogue of chapter 2 for chains
and presents rod properties in classical statics and equilibrium statistical mechanics.
Section 3.1 describes the continuum rod configuration and the associated infinitesimal
generator vector. These notions are then extendedd to double rod, and then birod,
configurations and to internal coordinates. The equilibrium conditions subject to end
conditions are discussed and the related variational principles are presented in section
3.2. The birod formulation is a generalised version of the original one in [Moakher
and Maddocks, 2005]. In particular, in section 3.2.8, an original coordinate indepen-
dent Hamiltonian structure is obtained for the birod equilibrium conditions. We then
present how an unconstrained variational principle using Lagrange multipliers, which are
interpreted as the set of total couple and force, can be obtained. Section 3.3 presents
the definition of a configurational distribution for rods, and respectively birods, in the
context of equilibrium statistical mechanics as a path integral density. We discuss how
these infinite dimensional distributions can be interpreted as the appropriate limit of a
sequence of chain distributions for discretised rod configurations. This development is
then extended to observables and their expectations. Similarly to chains, we emphasize
the special role of the configurational first moment which comprise, here in a continuum
version, the frame correlation matrix and the Flory persistence vector. An explicit first
order approximation is obtained in section 3.4 for the configurational first moment for
single rods which have a local internal energy and are assumed to be in a semi-flexible
regime. In analogy to the case of chains, the analytical expressions shows the equal im-
portance of the expected rod configuration and of the fluctuation matrix. They also lead
to the definition of the persistence matrix which is shown to characterise the decay rates
in the entries of the configurational first moment and allows the derivation of a closed
form expression in a short length expansion.
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3.1 On Rod Configurations

This section discuss the notion of configurations and generator vectors for rods. We
then extend these definitions to two rod and birod systems, and present a set of internal
variables to describe birod configurations as a macrostructure and microstructure. Fi-
nally, some specific transformations rules arising from natural material symmetries are
explicitly derived.

3.1.1 On continuum rod configurations and infinitesimal generators

Many continuum models have been used to study and to predict polymer statistical
physics properties. The most famous is doubtless the Wormlike chain which appears
in the pioneering work [Krakty and Porod, 1949] and then in [Landau and Lifshitz,
1959, Doi and Edwards, 1986] for instance. This model has been extended to the Helical
Wormlike chain in [Bugl, 1969, Yamakawa, 1976, Yamakawa, 1997] for instance, and then
has taken more and more sophisticated forms [Benham, 1979, Marko and Siggia, 1994,
R.S. Manning, 1996, Becker and Everaers, 2007]. In the context of classical mechanics,
all of these models belong to a family of continuum rod models which can be described
as special Cosserat rod models [Cosserat and Cosserat, 1909].

A continuum rod configuration is a continuum path g(s) = (R(s), r(s)) ∈ SE(3) in the
special Euclidean group1. The rotation matrices R(s) ∈ SO(3) describe the orientation
of the rod cross sections and the triple r(s) ∈ R3 the position of its centreline. Typically,
the continuum parameter s is chosen to represent unstressed arc length of the rod, i.e.
s ∈]0, L[ where L is the total length of the rod in its unstressed state. Formally, a rod
configuration is then denoted by

g = g(s) ∈ SE(3)]0,L[ (3.1.1)

where SE(3)]0,L[ denotes the space of continuous curve in the special Euclidean group.
In analogy to the rigid body chain configurations defined (2.1.2), we use the following

matrix formulation

g(s) =

(
R(s) r(s)

0 1

)
∈ R4×4 (3.1.2)

as in [Becker and Everaers, 2007, Chirikjian, 2011] for instance. Note that, by convention,
we use rod as the name for the continuum representation of a polymer in contrast to chain
for the discrete one. xThe infinitesimal variations of a continuum rod configuration at a
value s ∈]0, L[ can be expressed as

d

ds
R(s) = R(s) [U(s)×] (3.1.3a)

d

ds
r(s) = R(s)V (s) (3.1.3b)

1See section 1.1 for more detail on the special Euclidean group
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3.1. On Rod Configurations

Figure 3.1: Sketch of a continuum rod configuration
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Chapter 3. On Single and Double Continuum Rods

for all s ∈]0, L[. The triple U(s) ∈ R3 denotes the three infinitesimal rotational degrees of
freedom at s and is often referred as the Darboux vector [Darboux, 1894], and the triple
V (s) ∈ R3 denotes the analogous three infinitesimal translational degrees of freedom.
More details about the standard expressions (3.1.3) are given in section 1.2. In terms of
the rod configuration in (3.1.2), expressions (3.1.3) can be summarized as

d

ds
g(s) = g(s)T ξ(s) (3.1.4)

where

ξ(s) = (U(s), V (s)) ∈ R6 (3.1.5)

is the rod infinitesimal generator vector2 and where the tangent map3 T is defined as

T ξ(s) =

(
[U(s)×] V (s)

0 0

)
for ξ(s) = (U(s), V (s)) . (3.1.6)

The skew operator [ .×] is defined in (1.1.9). We emphasize that the evolution equation
(3.1.4) is the continuum analogue of the discrete one in (2.1.4) for rigid body chains.

The relative rigid body displacement between two cross sections located at s′ and s is
denoted g(s′, s) ∈ SE(3) and defined by

g(s′, s) = g−1(s′)g(s). (3.1.7)

The matrix g(s′, s) has the following block structure

g(s′, s) =

(
R(s′, s) r(s′, s)

0 1

)
(3.1.8)

with

R(s′, s) = RT (s′)R(s) (3.1.9a)

r(s′, s) = RT (s′)[r(s)− r(s′)]. (3.1.9b)

Analogously to (3.1.4), the relative rigid body motion g(s′, s) is the solution of

∂sg(s′, s) = g(s′, s)T ξ(s) with g(s′, s′) = Id4 (3.1.10)

for s′ ≤ s < L, which satisfies the following transition identity

g(s′′, s) = g(s′′, s′)g(s′, s) (3.1.11)

2The vector ξ(s) is precisely a right infinitesimal generator, in contrast to a left infinitesimal generator,
we will not insist on this difference however. See section 1.2 for more details.

3See sections 1.1 and 1.2 for more details on variations on matrix groups.
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for all 0 < s′′ ≤ s′ ≤ s < L. The relation (3.1.10) leads then formally to the mapping

ξ(s) 7→ g[ξ] (3.1.12)

or more generally to

ξ(s) 7→ g[ξ](s′, s). (3.1.13)

In contrast to the analogous relation for a rigid body chain in (2.1.14), we here use
square brackets [ . ] to emphasize the fact that relations (3.1.12) and (3.1.13) are mappings
between functions and may involve the solution of an ODE system. Nevertheless, the
expression (3.1.12) has to be understood as the continuum version of the one in (2.1.14).

3.1.2 On continuum double rod configurations

As already noted in the context of chain model, several examples of macromolecule
exhibit an interesting multi-stranded structure which is only poorly captured by single
rod models. This statement is motivated the study of a system made of two rods in
[Moakher and Maddocks, 2005], especially designed to produce DNA models.

Acontinuum double rod configuration (g+, g−) can be described as a pair of continuum
rod, denoted respectively g+ and g−, which are assumed to be parametrized by a common
parameter s ∈]0, L[. Formally we have

(g+, g−) = (g+(s), g−(s)) ∈
(
SE(3)]0,L[

)2
(3.1.14)

where
(
SE(3)]0,L[

)2 denotes two copies of the set of continuous paths in the special
Euclidean group, as in (3.1.1). Note that we use the same notation for double rod
configurations and double chain configurations, as in (3.1.14), since their use will be
unambiguous.

Each continuum rod in the double rod configuration (g+, g−) is of the form g±(s) =
(R±(s), r±(s)) where R±(s) denotes the rod orientation and r±(s) its position. The
notation g± is used to described one of the two rods g+ or g− respectively, as in [Moakher
and Maddocks, 2005], and each definition related to rods can be translated to the rods
g± in an unambiguous way. For example, the infinitesimal generator of the rod g±(s) is
then denoted by ξ±(s).

Analogously to the double chain description in (2.1.20), we introduce the intra rigid
body displacement b(s) defined as

b(s) =
(
g+(s)

)−1
g−(s) (3.1.15)

whose block structure is denoted as

b(s) =

(
P(s) p(s)

0 1

)
. (3.1.16)
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Chapter 3. On Single and Double Continuum Rods

Figure 3.2: Sketch of a continuum double rod configuration
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3.1. On Rod Configurations

Consequently, the double rod configuration satisfies the relations

d

ds
g±(s) = g±(s)T ξ±(s) (3.1.17a)

for all s ∈]0, L[ and

g−(s) = g+(s)b(s) (3.1.17b)

for all s ∈]0, L[.

3.1.3 On continuum birod configurations and internal variables

The birod model was originally presented in [Moakher and Maddocks, 2005] and was
developed to describe double stranded DNA molecules as a continuum. The model is
a natural extension of single rods and describes the mechanics of two rods with a local
interaction.

A continuum birod configuration (g,P) can be described as a macrostructure con-
figuration g(s) together with a microstructure configuration P(s). The macrostructure
configuration is a continuum rod configuration and is aimed to represent on average the
configuration of the double rod, whereas the microstructure configuration encodes the
relative rotation and the relative translation and allows the reconstruction of the actual
double rod configurations g± from the macrostructure g. The continuum birod config-
uration is then essentially a double rod configuration, but described in a different way.
Formally one has then a one-to-one mapping

(g+, g−)↔ (g,P) (3.1.18)

between double rod configurations and birod configurations.
In [Moakher and Maddocks, 2005], the microstructure is defined as a function of the

half rotation and half translation between the two rods at a given common parameter
s. However, since we will use the birod model to produce a large scale continuum DNA
model it will be convenient if the microstructure is parametrized consistently with the
discrete models [Lankaš et al., 2009, Gonzalez et al., 2013, Petkeviciute et al., 2014], i.e
as a function of the full rotation and translation.

Consequently, the rod macrostructure configuration g is defined as g(s) = (R(s), r(s)) ∈
SE(3) where

R(s) = R+(s)
[
R+(s)

T
R−(s)

] 1
2 (3.1.19a)

and

r(s) =
1

2

[
r+(s) + r−(s)

]
(3.1.19b)

for s ∈]0, L[. The orientation R(s) is the average element in the rotation group between
the orientation R+(s) and R−(s), and the position r(s) is the average point in the
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Euclidean space between the position r+(s) and r−(s). The microstructure configuration
P is then defined as P(s) = (P(s),w(s)) ∈ SO(3)× R3 where

P(s) = R+(s)
T
R−(s) (3.1.20a)

describes the relative rotation between the cross-sections g+(s) and g−(s), and where

w(s) = R(s)T
[
r−(s)− r+(s)

]
(3.1.20b)

describes the analogous relative translation. Observe that the definitions (3.1.19) and
(3.1.20) are precisely the continuum analogues of the discrete expressions in (2.1.25) and
(2.1.27).

According to the definition in (3.1.19) and in (3.1.20), the double rod configuration
can be recovered from its associated birod configuration by

R±(s) = R(s)P∓
1
2 (s) (3.1.21a)

and

r±(s) = r(s)∓ 1

2
R(s)w(s). (3.1.21b)

The infinitesimal generator ξ±(s) = (U±(s), V ±(s)) and each continuum rod g±(s) is
then shown to satisfy

U±(s) = P±
1
2 (s)U(s)∓M∓(s)UP(s) (3.1.22a)

and

V ±(s) = P±
1
2 (s)

[
V (s)∓ 1

2
U(s)× w(s)∓ 1

2
Vw

]
. (3.1.22b)

where we have used

d

ds
g(s) = g(s)T ξ(s) (3.1.23)

where ξ(s) = (U(s), V (s)) ∈ R6 stands for the macrostructure generator vector similarly
to the rod case (3.1.4), and the expressions for the microstructure

d

ds
P(s) = P

1
2 (s) [UP(s)×]P

1
2 (s) (3.1.24a)

d

ds
w(s) = Vw(s) (3.1.24b)

and the matrices

M±(s) =
(
Id3 + P±

1
2 (s)

)−1
. (3.1.25)
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similarly to (2.2.39). The variation in (3.1.24a) is not standard and is introduced to force
a simple symmetry relation when interchanging the role of the rods denoted by + and −.
A similar expression has been used in the case of bichains in (2.2.37). The expressions
in (3.1.24) motivate the definition of the microstructure generator vector ξP(s) ∈ R6 as

ξP(s) = (UP(s), Vw(s)) (3.1.26)

and the associated tangent map T P defined by the relation

d

ds
P(s) = T PξP(s) (3.1.27)

according to (3.1.24). The microstructure generator vector ξP has the property of satis-
fying a simple transformation rule when the role of the strands g+ and g− are exchanged,
as described in more details in section 3.1.4. It constitutes a centered generator vector
because it is neither a left nor a right generator vector.

We should stress that the continuum microstructure P(s) can then be recovered from
the vector ξP(s) using the equations in (3.1.27), whereas the continuum macrostructure
g(s) is recovered for the vector ξ(s) using (3.1.4). Observe that again the expressions in
(3.1.22) are continuum versions of the analogous discrete ones in (2.1.29).

The birod internal variables then comprise a one parameter family of infinitesimal rod
generators ξ(s), s ∈]0, L[, for the macrostructure g and a set of local coordinates y(s), s ∈
]0, L[, called intra coordinates, to parametrize the microstructure P. Following the choices
for the bichain model made in [Lankaš et al., 2009, Gonzalez et al., 2013, Petkeviciute
et al., 2014], the intra displacements b(s), as defined in (3.1.15), are parametrized in
terms of the birod internal coordinates y(s) according to

b(y(s)) =

(
P(η(s)) P

1
2 (η(s))w(s)

0 1

)
(3.1.28)

where y(s) = (η(s),w(s)) and where η(s) denotes the Cayley vector of the rotation matrix
P(s) as defined in (2.1.16), and in (3.1.16), similarly to (2.1.33).

3.1.4 Material framings and transformation rules

As discussed in the analogous section 2.1.4, it is important to present the transformation
rules related to differentmaterial framings in the description of continuum rod and birod
configurations.

For rods, the infinitesimal generator ξ(s) defined in (3.1.4) respect invariance under
overall rigid body motion, i.e.

ξ(s) 7→ ξ(s) when g 7→ Bg (3.1.29)

for any B ∈ SE(3). Similarly, for a birod configuration the generator vector of the
macrostructure and the local displacements in the microstructure satisfy

ξ(s) 7→ ξ(s) and P(s) 7→ P(s) when (g+, g−) 7→ (Bg+, Bg−) (3.1.30a)
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for any B ∈ SE(3) according to its definition in (3.1.20), or in terms of the birod internal
variables

ξ(s) 7→ ξ(s) and y(s) 7→ y(s) when (g+, g−) 7→ (Bg+, Bg−) (3.1.30b)

for any B ∈ SE(3).
For a given rod configuration g(s) one can redefine locally the description of ori-

entation and the position of the cross-section at s. This can be formally stated as
g(s) 7→ g(s)ḡ(s)−1 for all s ∈]0, L[ and is called a local change of framing. For a single
rod one has then that the infinitesimal rod generator vector transforms as

ξ(s) 7→ Adḡ(s)

(
ξ(s)− ξ̄(s)

)
when g(s) 7→ g(s)ḡ(s)−1 (3.1.31)

where d
ds ḡ(s) = ḡ(s)T ξ̄(s) and where we have used the result in (2.2.14). For a double

rod, if the local change of framing is uniform, i.e. if g±(s) 7→ g±(s)ḡ−1, then the birod
macrostructure and microstructure transform as

ξ(s) 7→ Adḡ(s)ξ(s)

and (P(s),w(s)) 7→ (R̄P(s)R̄T , R̄w(s)− R̄(P
1
2 (s)− P

T
2 (s))R̄T r̄)

when g±(s) 7→ g±(s)ḡ−1

(3.1.32)

where P(s) = (P(s),w(s)) and where R̄ ∈ SO(3) denotes the rotational part of rigid
body displacement ḡ and r̄ ∈ R3 its translational part. A transformation rule can also
be explicitly stated for non-uniform local change of framing of double rod configurations,
but it is more complicated and will not be used in this thesis. For the internal birod
coordinates presented in (3.1.28), one has then

(η(s),w(s)) 7→ (R̄η(s), R̄w(s)− R̄(P
1
2 (s)− P

T
2 (s))R̄T r̄)

when g±(s) 7→ g±(s)ḡ−1.
(3.1.33)

Similarly to chains, one can also change the framing by downstream indexing which
corresponds to starting the parametrization of the rod from the other end. The rod
infinitesimal generator ξ(s) then transforms as

ξ(s) 7→ −ξ(L− s) when g(s) 7→ g(L− s) (3.1.34)

for all s ∈]0, L[. For a birod configuration, downstream indexing leads to

ξ(s) 7→ −ξ(L− s) and P(s) 7→ P(L− s)
when (g(s),P(s)) 7→ (g(L− s),P(L− s))

(3.1.35a)

and consequently the internal coordinates become

ξ(s) 7→ −ξ(L− s) and y(s) 7→ y(L− s)
when (g(s),P(s)) 7→ (g(L− s),P(L− s))

(3.1.35b)
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As in bichains, one can also switch the role of the rods denoted by + and −, this
is called change of reference strand. The infinitesimal rod generator ξ(s) and the intra
displacement in the microstructure of the birod then transform as

ξ(s) 7→ ξ(s) and b(s) 7→ b(s)−1 when g± 7→ g∓ (3.1.36a)

whereas the microstructure transforms as

P(s) = (P(s),w(s)) 7→ (P(s)T ,−w(s)) and ξP(s) 7→ −ξP(s)

when g± 7→ g∓
(3.1.36b)

and the internal coordinates y transform as

y(s) 7→ −y(s) when g± 7→ g∓ (3.1.36c)

in the case of the choice described in (3.1.28).
In DNA modeling, the natural symmetry is not a simple change of reference strand,

but the reading symmetry. This symmetry, as described in the analogous section 2.1.4,
reflects the fact that DNA molecules are anti-symmetric objects since reading the strand
g+ upstream corresponds to reading the strand g− downstream according to its chemical
structure. The reading symmetry is then the composition of the local change of fram-
ing (3.1.32), the downstream indexing (3.1.35) and the double rod symmetry (3.1.36).
Formally, this symmetry involves the transformation (g+, g−) 7→ (g+′, g−

′
) where by

definition

g±
′
(s) = g∓(L− s). (3.1.37)

One obtains then that the birod variables, similarly to the bichain internal coordinates,
transforms under the reading symmetry, as

ξ(s) 7→ E2ξ(L− s) and y(s) 7→ E2y(L− s)

when (g+, g−) 7→ (g+′, g−
′
)

(3.1.38)

and where E2 stands for the diagonal matrix diag(−1, 1, 1,−1, 1, 1).
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3.2 On Equilibrium Conditions and Variational Principles

We discuss in this section the standard definitions of couple and force, as well as equilib-
rium conditions for continuum rods. We describe also the notion of rod internal energy
and show that it provides a coordinate independent variational principle for the rod
equilibrium and, moreover, leads to a Hamiltonian formulation. These results are then
extended to double rods and birods. In particular, the birod equilibrium conditions also
admit a Hamiltonian structure and are shown to comprise the rod equilibrium condi-
tions for the macrostructure configuration which is coupled to the description of the
microstructure equilibrium.

3.2.1 On continuum rod equilibrium conditions and constitutive rela-
tions

Similarly to chains, continuum rod configurations adapt to the application of local couples
and forces. One can distinguish between the action of internal couples and forces coming
from the internal deformation of the rod and the action of external couples and forces
coming from the interaction of the rod with an external field. A continuum rod is said to
be in an equilibrium configuration if the total couple and force densities acting on each
cross section vanish. Using a similar notation than the one we have used for rigid body
chains, we denote by m(s) ∈ R3 the total internal couple around the point r(s) acting on
the cross section located at s from the material part of the rod parametrized by s ∈]0, L[,
and by n(s) ∈ R3 the analogous total force, the rod equilibrium conditions can be stated
as

− d

ds
[m(s) + r(s)× n(s)] + c(s) + r(s)× f(s) = 0 (3.2.1a)

− d

ds
n(s) + f(s) = 0 (3.2.1b)

for s ∈]0, L[ and where c(s) ∈ R3 and f(s) ∈ R3 denote respectively the total external cou-
ple density (around the point r(s)) and the total external force density at s. Conditions
(3.2.1) can be deduced for instance from the equilibrium conditions in three dimensional
continuum elasticity [Love, 1927, Antman, 1995]. We observe that the rod balance laws
can be interpreted as a continuum version of the chain balance laws in (2.2.1). The rod
is said to be an isolated continuum rod if there is no external contributions to the total
couples and forces acting on the chain, i.e. if c(s) = 0 and f(s) = 0.

As for rigid body chains, one needs to introduce rod end conditions. We are interested
in the following ones

i. Dirichlet conditions: the orientation and the position of each end of the rod are
prescribed, i.e.

g(0) and g(L) are prescribed. (3.2.2a)
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ii. Unstressed conditions: the orientation and the position are free at each end of the
rod, i.e.

m(0) = 0, n(0) = 0 and m(L) = 0, n(L) = 0 (3.2.2b)

For compactness we will denote generically by Γ the subset of rod configurations which
satisfies one of the end conditions i. or ii., i.e.

Γ =
{
g ∈ SE(3)N | g satisfies i. or ii.

}
(3.2.3)

We observe that the rod end conditions in (3.2.2) are the continuum version of the ones
in (2.2.2).

The rod constitutive relations are formally a mapping of the form g 7→ (m,n, c, f).
In particular, we can define the notion of local rod constitutive relations which means
that the local internal couple and force in the chain are only functions of the local rod
deformation, i.e. (

m(s)
n(s)

)
= Ψ(m,n)(ξ(s); s) for all s ∈]0, L[. (3.2.4)

The constitutive relations contain information about the physical constitution of the rod.
The construction of realistic constitutive relations for a given material is far from being
straightforward and it is still at the heart of research in material science, see [Antman,
1995] for instance. The balance law conditions (3.2.1) on a set of configuration (3.2.3)
together with a given set of constitutive relations, of the form (3.2.4) for instance, are
called the rod equilibrium conditions.

3.2.2 On continuum rod internal energy and variational principle

The rod internal energy is denoted by E, as for rigid body chains. It describes the stored
potential energy arising exclusively from internal deformations of the continuum rod.
The internal energy is said to be a local energy, if the functional E : SE(3)]0,L[ → R is of
the form

E[g] =

∫ L

0
W(ξ(s); s)ds (3.2.5)

where the rod configuration g(s) is defined in (3.1.1) and where ξ(s) ∈ R6 denotes the
rod infinitesimal generator as defined in (3.1.4). This energy formulation for rods appears
originally in the work of E. and F. Cosserat [Cosserat and Cosserat, 1909] which is why
such a rod theory is called a Cosserat rod theory. The energy E is said to be internal
because it is invariant through global rigid body motion of the rod, as defined in (3.1.29),
formally one has

E[Bg] = E[g] (3.2.6)

99



Chapter 3. On Single and Double Continuum Rods

for any B ∈ SE(3).
It is not clear that the locality assumption of the internal rod energy is very accurate in

general, since this hypothesis has been show to break for analogous rigid body chain mod-
els of macromolecules [Flory, 1969, Lankaš et al., 2009, Gonzalez et al., 2013]. However,
the local energy expression in (3.2.5) is sufficiently general to embrace most of the com-
monly used continuum rod models, for instance in polymer and DNA modelling [Landau
and Lifshitz, 1959, Bugl, 1969, Yamakawa, 1976, Marko and Siggia, 1994, R.S. Manning,
1996, Yamakawa, 1997].

The rod internal energy E allows the statement of a variational principle for con-
tinuum rods in the sense that stationary configurations of the functional E on the set
of configurations Γ, as defined respectively in (1.2.14) and in (3.2.3), satisfy equilibrium
conditions of the form (3.2.1) for an isolated rod together with constitutive relations of
the form (3.2.4). Note that it is straightforward to generalise the result in the presence
of an external potential. However, we have to stress that not all constitutive relations of
the form (3.2.4) admit a variational principle, the class of rods which admit an internal
energy is called hyper-elastic rods.

More precisely, suppose that Γ denotes the set of continuum rod configurations where
the cross-sections at s = 0 and s = L in the rod are prescribed and suppose that the rod
configuration g0(s) ∈ Γ makes the internal energy E stationary on the set Γ. Then by
definition4 it satisfies

δE[g0]δg = 0 (3.2.7a)

for all perturbations δg(s) where

δg(s) = (T φ(s))g0(s) for s ∈]0, L[ (3.2.7b)

and

δg(0) = 0 and δg(L) = 0 (3.2.7c)

according to the specific form of the perturbation of continuum rod configurations in
(1.2.10) and the specific definition of the set of configuration Γ. Furthermore, at any
smooth enough configuration g ∈ Γ any perturbation δg is of the form (3.2.7b) and
(3.2.7c) and the perturbation of the rod generator vector ξ(s) reads

δξ(s) = Ad−1
g(s)

(
d

ds
φ(s)

)
(3.2.8)

for s ∈]0, L[, where the matrix Adg(s) is defined as

Adg(s) =

(
R(s) 0

[r(s)×]R(s) R(s)

)
. (3.2.9)

4See section 1.2 for more detail on variations of functions on a matrix group.
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We observe that the expression (3.2.8) is discussed in more detail in (1.2.11) and that it
can be interpreted as the continuum version of the variation in (2.2.8). Using then the
form of the internal energy E in (3.2.5), its first variation can be written as

δE[g]δg = −
∫ L

0

{
d

ds
[m(s) + r(s)× n(s)] · φR(s) +

d

ds
n(s) · φr(s)

}
ds (3.2.10)

for φ(s) = (φR(s),φr(s)) ∈ R6, where we have defined for s ∈]0, L[

m(s) = R(s)∂UW(ξ; s) (3.2.11a)

n(s) = R(s)∂VW(ξ; s) (3.2.11b)

and where we recall that U(s) and V (s) denote respectively the rotational and transla-
tional part of the rod generator vector ξ(s) as defined in (3.1.5). When the boundary
condition set Γ denotes case ii. in (3.2.3), a similar argument shows that the variational
principle for the chain balance laws in (3.2.10) is also obtained. The variational principle
(3.2.10) is called the continuum Euler-Poincaré variation for rods 5. Observe that the
expressions in (3.2.10) are a continuum version of (2.2.9). More details about variational
principles for rods can be found in [Antman, 1995, Dichmann et al., 1996, Chouaïeb,
2003, Cotta-Ramusino, 2008, Ellis et al., 2010] for instance.

Consequently, if the rod constitutive relations in (3.2.4) admit a variational repre-
sentation of the form (3.2.11) for all rod configurations g ∈ Γ, then the stationarity
conditions for the internal energy E on the set of configurations Γ in (3.2.7) is literally
an expression of the rod equilibrium conditions (3.2.1) for isolated chains. Equations
(3.2.10) imply that the six quantities

m(s) + r(s)× n(s) ∈ R3 and n(s) ∈ R3 (3.2.12)

are conserved along equilibrium rod configuration, or equivalently, on stationary configu-
ration of the internal energy E. The existence of conserved quantities in (3.2.12) is again
the manifestation of the famous Noether’s Theorem, since it expresses the invariance of
the internal rod energy E defined in (3.2.5) under a global rigid body motion of the rod,
as presented in (3.2.6).

An alternative expression of the stationary conditions is given by introducing the
triples m(s) ∈ R3 and n(s) ∈ R3 as the respective components of the couple m(s) and
the force n(s) in the director frame R(s) i.e.

m(s) = ∂UW(ξ(s); s) (3.2.13a)

n(s) = ∂VW(ξ(s); s) (3.2.13b)

according to the definition (3.2.11). Using then the identities(
m(s) + r(s)× n(s)

n(s)

)
= Ad−Tg(s)

(
m(s)
n(s)

)
(3.2.14)

5See section 1.2 for more details on variation on matrix groups
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and

d

ds
Adg(s) = Adg(s)adξ(s) (3.2.15)

where the operator Adg(s) is defined in (3.2.9) and the operator adξ(s) by

adξ(s) =

(
[U(s)×] 0
[V (s)×] [U(s)×]

)
(3.2.16)

for ξ(s) = (U(s), V (s)), and as discussed in more detail in (1.1.34), the stationary con-
dition (3.2.7) reads

d

ds

(
m(s)
n(s)

)
= adTξ(s)

(
m(s)
n(s)

)
(3.2.17a)

d

ds
g(s) = g(s)T ξ(s) (3.2.17b)

for s ∈]0, L[ and with

g ∈ Γ (3.2.17c)

subject to the constitutive relations (3.2.13), and for a choice of the configuration set Γ
in (3.2.3). Observe that the conditions in (3.2.17) can be seen as a continuum description
of the analogous chain conditions (2.2.15).

3.2.3 Hamiltonian formulation of rod equilibrium conditions

An interesting property of the rod equilibrium conditions in (3.2.17) is that they can be
shown to admit a Hamiltonian structure. For compactness, we introduce the notation

ζ(s) =

(
m(s)
n(s)

)
∈ R6 (3.2.18)

which allow the constitutive relation (3.2.13) to be written as

ζ(s) = ∂ξW(ξ(s); s). (3.2.19)

Using the famous Legendre transform of the function W, defined as

H(ζ; s) = max
ζ∈R6

{ξ · ζ −W(ξ; s)} , (3.2.20)

one can write the inverse of the mapping in (3.2.19) as

ξ(s) = ∂ζH(ζ(s); s) (3.2.21)
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for any functionW strictly convex in ξ. The function H is here called the rod Hamiltonian.
The equilibrium conditions (3.2.17) then become for s ∈]0, L[

d

ds
ζ(s) = ad†ζ(s)∂ζH(ζ(s); s) (3.2.22a)

d

ds
g(s) = g(s)T ∂ζH(ζ(s); s) (3.2.22b)

with g ∈ Γ (3.2.22c)

where we have defined

ad†ζ(s) =

(
[m(s)×] [n(s)×]
[n(s)×] 0

)
for all ζ(s) = (m(s), n(s)) ∈ R6, (3.2.23)

and which satisfies adTφ1φ2 = ad†φ2φ1 for any triples φ1, φ2 ∈ R6, according to the defini-
tion of the operator ad in (1.1.34). Moreover, defining the rod Hamiltonian variable

z(s) = (ζ(s), g(s)) ∈ R6 × SE(3) (3.2.24)

one can write the rod equilibrium equations in an even more compact formulation as

d

ds
z(s) = J (z(s)) ∂zH(z(s); s) (3.2.25a)

with

J (z(s)) =

(
ad†ζ(s) −T ∗g(s)T

g(s)T 0

)
(3.2.25b)

with g ∈ Γ, and where the operators ad and T ∗ are defined in (3.2.16) and (1.1.23)
respectively. Equations (3.2.25) constitute the Hamiltonian form of the rod equilibrium
equations. We have to stress that the locality assumption on the internal rod energy E
in (3.2.5) is key here to obtain the system (3.2.25). More detailed discussion of the rod
Hamiltonian properties can be found for instance in [Dichmann et al., 1996, R.S. Man-
ning, 1996, Kehrbaum, 1997, Rey, 2002, Chouaïeb, 2003, Ellis et al., 2010].

3.2.4 Continuum double rod equilibrium conditions and constitutive
relations

The goal of this section is to define continuum birod equilibrium configurations in an
analogous way to continuum rods. However since the birod configurations (g,P) are an
alternative expression of double rod configurations (g+, g−) it is of interest to first present
the notion of continuum double rod equilibrium configurations and then discuss how they
can be translated into an expression for birods. This strategy follows the pioneering work
of [Moakher and Maddocks, 2005] in birod theory.
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Chapter 3. On Single and Double Continuum Rods

As for rigid body double chains, a way to deduce the expression of the balance laws
is to see each strand of the double rod as a single continuum rod in an external field.
Formally, if for each cross section whose configuration is given by g±(s) we denote by
m±(s) ∈ R3 the total internal couple around the point r±(s) and by n±(s) ∈ R3 the
analogous total force, similarly to the single continuum rod case (3.2.1), the double rod
balance laws can be stated as

− d

ds

[
m±(s) + r±(s)× n±(s)

]
+ c±(s) + r±(s)× f±(s) = 0 (3.2.26a)

− d

ds
n±(s) + f±(s) = 0 (3.2.26b)

for s ∈]0, L[ and where c±(s) ∈ R3 and f±(s) ∈ R3 denote respectively the total external
couple (around the point r±(s)) density and the total external force density at s on the
strand ±. A double rod is said to be an isolated double rod if there is no external contri-
bution to the total couples and forces acting on the double chain. A similar expression
of the balance laws (3.2.26) can be found in [Moakher and Maddocks, 2005].

Based on the double chain end conditions (2.2.23), the double rod end conditions can
be stated to be of the form

Γ =

{
(g+, g−) ∈

(
SE(3)]0,L[

)2
| g+ and g− satisfy i. or ii.

}
(3.2.27)

where the conditions i. and ii. refer to the single rod case in (3.2.3). In particular, we
recall that we do not allow that g+ satisfies i. and g− satisfies ii. . The accuracy of
these end conditions in the context of DNA modelling has of course to be discussed, but
we believe that they serve as instructive starting points.

The double rod constitutive relations are then formally a mapping
(g+, g−) 7→ (m+,m−,n+,n−, c+, c−, f+, f−). In the case of an isolated double rod, we
can define the notion of local double rod constitutive relations, which means that the local
couple and force in the double rod are only functions of the local deformations, i.e.(

m±(s)
n±(s)

)
= Ψ(m,n)(b(s), ξ+(s), ξ−(s); s) (3.2.28a)

and (
c±(s)
f±(s)

)
= Ψ(c,f)(b(s), ξ+(s), ξ−(s); s) (3.2.28b)

for s ∈]0, L[.
As in the single rod case (3.2.4), the constitutive relations reflect the physical constitu-

tion of the double rod and their explicit determination for a given material requires subtle
studies. The double rod equilibrium conditions then comprise the conditions (3.2.26) on a
configuration set Γ together with a given set of constitutive relations, of the form (3.2.28)
for instance.
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3.2. On Equilibrium Conditions and Variational Principles

3.2.5 On continuum double rod internal energy and variational prin-
ciple

The double rod internal energy is denoted by E||, as in rigid body double chain the-
ory. It describes the stored potential energy associated to internal deformations of the
continuum double rod system. A local energy, for the double rod is then defined as
E|| :

(
SE(3)]0,L[

)2 → R of the form

E||[g+, g−] =

∫ L

0
W||(b(s), ξ+(s), ξ−(s); s)ds (3.2.29)

where ξ±(s) ∈ R6 is the rod generator vector along each strand ± respectively and b(s) ∈
SE(3) denotes the rigid body displacement from the cross section whose configuration
is described by g+(s) to g−(s) on the complementary strand, as defined in (3.1.17).
Observe that, similarly to the single rod internal energy in (3.2.6), the double rod energy
E|| is invariant through a global rigid body motion of the double rod, i.e.

E||[Bg+, Bg−] = E||[g+, g−] (3.2.30)

for any B ∈ SE(3). It is worth to emphasize that when the internal double rod energy
E|| is assumed to be local, the two individual rods g± are governed by an effective non-
local energy, similarly to double chains. The internal energy E|| allows the statement
of a variational principle for continuum double rods, and if the double rod constitutive
relations (3.2.28) admit a potential energy it will be called a hyper-elastic double rod.

More precisely, suppose that Γ denote the set of double rod configurations i. in
(3.2.27). Using conditions of the form (3.2.7b) and (3.2.7c) for the perturbation of the
double rod configuration (g+, g−), and using moreover that δb(0) = 0

δb(s) = (g+(s))−1(T φ−(s)− T φ+(s))g−(s) (3.2.31)

for s ∈]0, L[ and δb(L) = 0, implies that a double rod configuration (g+, g−) makes
the internal energy E|| in (3.2.29) stationary if it satisfies the double chain balance laws
(3.2.26) for

m±(s) = R±(s)∂U±W
|| (3.2.32a)

n±(s) = R±(s)∂V ±W
|| (3.2.32b)

for s ∈]0, L[ and

c−(s) = R+(s)Vect
(
∂PW

||P(s)T
)

(3.2.32c)

f−(s) = R+(s)∂pW
|| (3.2.32d)

c+(s) = −c−(s)− (r−(s)− r+(s))× f−(s) (3.2.32e)
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f+(s) = −f−(s) (3.2.32f)

for s ∈]0, L[ and where the argument (b(s), ξ+(s), ξ−(s); s) of the internal energy W||

has been hidden for compactness. Observe that the apparent asymmetry between the
definitions of the couple c−(s) and c+(s) and between the force f−(s) and f+(s) is
explained by the fact the internal energy E|| is not invariant through the transformation
g+ 7→ g− presented in (3.1.36). The transformation rule is then obtained using
δb(s)−1 = −b(s)−1δb(s)b(s)−1.

As for a single continuum rod, the variational principle for the double rod balance
laws in (3.2.26) together with the constitutive relations (3.2.32) can also be obtained
when the set Γ denotes the condition ii. (3.2.27). Consequently, if the double rod
constitutive relations in (3.2.28) admit a variational representation of the form (3.2.32)
for all configurations (g+, g−), then the stationary conditions for the internal energy E||

on the set of configurations Γ is an expression of the equilibrium conditions (3.2.26) for
isolated double rods. This expression is then called a continuum Euler-Poincaré variation
for double rods.6

In their respective director framesR±(s) the constitutive relations (3.2.32) reads then

m±(s) = ∂U±W
|| (3.2.33a)

n±(s) = ∂V ±W
|| (3.2.33b)

for s ∈]0, L[ and

c−(s) = P(s)TVect
(
∂PW

||P(s)T
)

(3.2.33c)

f−(s) = P(s)T∂p(s)W
|| (3.2.33d)

c+(s) = −P(s)c−(s) + p(s)× P(s)f−(s) (3.2.33e)

f+(s) = −P(s)f−(s) (3.2.33f)

for s ∈]0, L[ and consequently, the double rod equilibrium conditions can be summarized
as

d

ds

(
m±(s)
n±(s)

)
= adTξ±(s)

(
m±(s)
n±(s)

)
+

(
c±(s)
f±(s)

)
(3.2.34a)

g±(s) = g±(s)T ξ±(s) (3.2.34b)

for s ∈]0, L[ and with

(g+, g−) ∈ Γ (3.2.34c)

subject to the constitutive relations (3.2.33), and for a choice of the configuration set Γ
in (3.2.27), where we recall that the operator adg is defined in (3.2.16). Observe that the
evolution equations in (3.2.34) can be seen as a continuum version of the ones in (2.2.31).

6See section 1.2 for more detail
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3.2.6 Hamiltonian formulation of double rod equilibrium conditions

Since the double rod equilibrium conditions in (3.2.34) is made of two copies of the rod
equilibrium conditions in (3.2.17) with couples and forces which act between the two rods,
a similar Hamiltonian formulation to the one for a single rod (3.2.25) can be deduced.

Introducing the notation

ζ±(s) =

(
m±(s)
n±(s)

)
(3.2.35)

and

F±(s) =

(
c±(s)
f±(s)

)
(3.2.36)

the constitutive relation in (3.2.33) can be written as

ζ±(s) = ∂ξ±W
|| (3.2.37a)

F±(s) = T ∗
(
g±(s)

)T
∂g±W

|| (3.2.37b)

where the arguments (b(s), ξ+(s), ξ−(s); s) of the function W|| have been suppressed for
compactness and where the operator T ∗ is defined in (1.1.23). More detail about the
expressions in (3.2.37) can be found in section 1.2.

Similarly to (3.2.20) we introduce the Legendre transform H|| of the function W||

which is defined as

H||(ζ+, g+, ζ−, g−; s) = max
(ζ+,ζ−)∈R6

{
ξ+ · ζ+ + ξ− · ζ− −W||

(
(g+)−1g−, ξ+, ξ−; s

)}
(3.2.38)

which has the property that

ξ±(s) = ∂ζ±H
|| (3.2.39a)

F±(s) = −T ∗
(
g±(s)

)T
∂g±H

|| (3.2.39b)

for any functionW strictly convex in ξ according to the relations in (3.2.37) and where the
arguments (ζ+, g+, ζ−, g−; s) of the function H|| have been suppressed for compactness.
The function H is here called the double rod Hamiltonian. Using the notation

z±(s) =
(
ζ±(s), g±(s)

)
(3.2.40)

for the double rod Hamiltonian variables, similarly to the rod case in (3.2.24), the equi-
librium conditions (3.2.34) become for s ∈]0, L[

d

ds

(
z+(s)
z−(s)

)
=

(
J (z+(s)) 0

0 J (z−(s))

)(
∂z+H

||(z+(s), z−(s); s)

∂z−H
||(z+(s), z−(s); s)

)
(3.2.41)

with (g+, g−) ∈ Γ. Note that the operator J ( . ) is defined in (3.2.25b). The equations
(3.2.41) constitute the Hamiltonian form of the double rod equilibrium equations.
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3.2.7 On continuum birod variational principle and constitutive rela-
tions

In contrast to double rods, the birod internal energy is denoted by E :
(
SE(3)]0,L[

)2 → R,
as in the single rod case (3.2.5), and is defined as

E[g,P] =

∫ L

0
W
(
P(s), ξP(s), ξ(s); s

)
ds (3.2.42)

where ξP(s) and ξ(s) denote the generator vector of the microstructure and macrostruc-
ture respectively, P(s) is the microstructure configuration, and where the energy terms
W
(
P(s), ξP(s), ξ(s); s

)
are defined such that the total birod internal energy satisfies

E[g,P] = E||[g+, g−] (3.2.43)

for the corresponding double rod configuration, as described in (3.1.18). In particular the
terms ξP(s) and ξ(s) appear naturally from the relations (3.1.22). It is then equivalent to
study double rod configurations (g+, g−) which make the internal energy E|| stationary
and birod configurations (g,P) which make E stationary. In particular, the birod energy
is internal in the sense that it satisfies invariance through global rigid body motion of
the birod configuration, i.e.

E[Bg,P] = E[g,P] (3.2.44)

for any B ∈ SE(3).
More precisely, in the case of the Dirichlet conditions for double rods in (3.2.27) one

also gets Dirichlet conditions for the birod macrostructure and microstructure (g,P).
The first variation of the internal energy E can then be shown to be

− d

ds
[m(s) + r(s)× n(s)] = 0 (3.2.45a)

− d

ds
n(s) = 0 (3.2.45b)

− d

ds
mP(s) +

1

2

[(
M−(s)−M−(s)

)
mP(s)×

]
UP(s) + cP(s) = 0 (3.2.45c)

− d

ds
nP(s) + fP(s) = 0 (3.2.45d)

for s ∈]0, L[ with the relations

m(s) = R(s)∂UW (3.2.46a)

n(s) = R(s)∂VW (3.2.46b)

mP(s) = ∂UPW (3.2.46c)
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nP(s) = ∂VwW (3.2.46d)

cP(s) = Vect
(
P
T
2 (s)∂PWP

T
2 (s)

)
(3.2.46e)

fP(s) = ∂wW (3.2.46f)

for s ∈]0, L[ and where the argument
(
P(s), ξP(s), ξ(s); s

)
of the internal energy W

has been suppressed for compactness. Note that we have used the following symmetric
perturbation of the microstructure P(s)

δP(s) = T Pφ(s) (3.2.47)

for some differentiable function φ(s) ∈ R6 and where the operator T P is defined in
(3.1.27). The perturbation for the generator vector ξP(s) = (UP(s), Vw(s)) of the mi-
crostructure then satisfy

δUP(s) =
d

ds
φR(s) +

[
M−(s)φR(s)×

]
UP(s) +

[
M+(s)UP(s)×

]
φR(s) (3.2.48a)

δVw(s) =
d

ds
φr(s) (3.2.48b)

where φ(s) = (φR(s), φr(s)) and the matrices M±(s) are defined in (3.1.25).
The equations (3.2.45a) and (3.2.45b) correspond to the single rod balance laws, as

presented in (3.2.1), and describe the macrostructure balance laws. The triple m(s) ∈ R3

denotes the internal couple around the point r(s) acting on the cross sections g+(s) and
g−(s) in the double rod from the material parametrized by ]0, s[, and n(s) ∈ R3 the anal-
ogous force. In contrast, the equations (3.2.45c) and (3.2.45d) define the microstructure
balance laws, where cP(s) and fP(s) denote respectively the couple and the force in the
microstructure. The expressions in (3.2.45) are called birod equilibrium conditions. We
should emphasize that the form of the equations (3.2.45) are different from the one ap-
pearing in [Moakher and Maddocks, 2005], because the internal energy is here expressed
in a coordinate free formulation.

Using the double rod constitutive relations (3.2.32) and (3.2.33) together with the
identities (3.1.22), the relations between the double rod couples and forces (3.2.32) and
the birod ones (3.2.46) can be explicitly written as

m(s) = m+(s) + m−(s) +
[
r−(s)− r+(s)

]
×R(s)nP(s) (3.2.49a)

n(s) = n+(s) + n−(s) (3.2.49b)

mP(s) = M−(s)m−(s)−M+(s)m+(s) (3.2.49c)

nP(s) =
1

2

[
P+(s)n−(s)− P−(s)n+(s)

]
(3.2.49d)
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and

cP = M−(s)
[
m−(s)× U−(s) + n−(s)× V −(s) + c−(s)

]
−M+(s)

[
m+(s)× U+(s) + n+(s)× V +(s) + c+(s)

]
+
d

ds

(
M+(s)

)
P+(s)m−(s)− d

ds

(
M−(s)

)
P−(s)m+(s)

(3.2.49e)

fP(s) =
1

2

[
P+(s)f−(s)− P−(s)f+(s)

]
− U(s)× nP(s) (3.2.49f)

for s ∈]0, L[ and where the presence of the matrices M±(s) is explained by the fact that
one needs to differentiate the matrix P

1
2 (s), according to the expression of the double

rod generator vector (3.1.22). More details about the identities in (3.2.49) can be found
in appendix A.3.

It is interesting to observe that the relations in (3.2.49) are sums and weighted dif-
ferences of the expressions in (3.2.26). In particular, the variables m(s) and n(s) are
respectively interpreted as the total couple (around the point r(s)) and force acting on
the rigid bodies g+(s) and g−(s). The double rod equilibrium conditions and the birod
equilibrium equations under Dirichlet conditions are then equivalent.

More generally, using the identities in (3.2.49), the double rod end conditions (3.2.27)
written in terms of the birod configuration (g,P) comprise the birod end conditions and
are consequently defined as

i′. Dirichlet conditions: The macrostructure and the microstructure are prescribed at
both ends, i.e.

(g(0),P(0)) and (g(L),P(L)) are prescribed. (3.2.50a)

ii′. Unstressed conditions: The macrostructure and the microstructure are free at both
ends, i.e.

−m(0) = 0, −n(0) = 0, mP(0) = 0, nP(0) = 0

and −m(L) = 0, −n(L) = 0, mP(L) = 0, nP(L) = 0
(3.2.50b)

As in the single rigid rod case, we will denote generically by Γ the subset of birod
configurations which satisfies one of the end conditions i′. or ii′., i.e.

Γ =

{
(g,P) ∈

(
SE(3)]0,L[

)2
| (g,P) satisfies i′. or ii′.

}
(3.2.51)

The variational principle for the double chain balance laws in (3.2.45) together with
the constitutive relations (3.2.46) is also valid when the condition set Γ denotes the
condition ii′. in (3.2.51).

Consequently, if the birod constitutive relations admit a variational representation
of the form (3.2.46) for all birod configurations (g,P), then the stationary conditions
for the internal energy E on the set of configurations Γ is an expression of the birod
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equilibrium conditions (3.2.45) for an isolated birod. This expression is then called the
continuum Euler-Poincaré variation for birods.

As a corollary of the birod balance laws (3.2.45), the six quantities

m(s) + r(s)× n(s) ∈ R3 and n(s) ∈ R3 (3.2.52)

are conserved along equilibrium birod configuration, or equivalently, along stationary
configuration of the internal energy E. Similarly to the single continuum rod case in
(3.2.12), the Noether’s Theorem associates the conserved quantities in (3.2.52) to the
invariance of internal double rod internal energy E|| under global rigid body motions of
the system in (3.2.30), or equivalently in terms of the birod internal energy E in (3.2.44).

In the director frame of the macrostructure R(s), the constitutive relations (3.2.46a)
and (3.2.46b) become

m(s) = ∂UW (3.2.53a)

n(s) = ∂VW (3.2.53b)

for s ∈]0, L[ where the argument
(
P(s), ξP(s), ξ(s); s

)
of the internal energy W has been

hidden for compactness. Consequently, the birod equilibrium conditions can be summa-
rized as

d

ds

(
m(s)
n(s)

)
= adTξ(s)

(
m(s)
n(s)

)
d

ds

(
mP(s)
nP(s)

)
=

(
1
2

[
(M−(s)−M+(s))mP(s)×

]
UP(s) + cP(s)

fP(s)

) (3.2.54a)

g(s) = g(s)T ξ(s) (3.2.54b)

for s ∈]0, L[ and with

(g,P) ∈ Γ (3.2.54c)

subject to the constitutive relations (3.2.46), and for a choice of the configuration set
Γ in (3.2.51). It is interesting to observe that the equilibrium conditions for a birod in
(3.2.54) can be written as a system which contains the equilibrium conditions for the
macrostructure, which are of the form of those for a single continuum rod (3.2.17), along
with equilibrium conditions for the microstructure, and that two subsystems are coupled
through the birod constitutive relations which reflect the original double rod structure,
as already noticed in [Moakher and Maddocks, 2005].

The main application of the birod theory that we will discuss is in the context of
DNA modelling, where a realistic function E will not be given in terms of the rotation
P(s) used to describe the microstructure, but in terms of a parametrization vector of
this rotation matrix. It this then useful to describe the birod internal energy in terms of
the generator vector of macrostructure ξ(s) and a set of internal coordinates y(s) for the
microstructure.
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If one uses the continuum analogue of internal coordinate in (2.1.33) to define

y(s) = (η(s),w(s)) (3.2.55)

we obtain that the generator vector of the microstructure ξP(s) = (UP(s), Vw(s)) is
expressed by

UP(s) = Bη(s)Uη(s) with Uη(s) =
d

ds
η(s) and Vw(s) =

d

ds
w(s) (3.2.56)

according to the expression in (2.2.48) and where the matrix Bη(s) is defined in (2.2.50).
The internal birod energy then reads as

E [g,P(y)] =

∫ L

0
W
(
y(s),

d

ds
y(s), ξ(s); s

)
ds (3.2.57)

with

W
(
y(s),

d

ds
y(s), ξ(s); s

)
= W

(
P(s), ξP(s), ξ(s)

)
(3.2.58)

for all birod configuration and for all s ∈]0, L[, according to the identities in (3.2.56).
The stationary conditions for the birod internal energy become

− d

ds
[m(s) + r(s)× n(s)] = 0 (3.2.59a)

− d

ds
n(s) = 0 (3.2.59b)

− d

ds
mP(s) + cP(s) = 0 (3.2.59c)

− d

ds
nP(s) + fP(s) = 0 (3.2.59d)

for s ∈]0, L[ with the relations

m(s) = R(s)∂UW (3.2.60a)

n(s) = R(s)∂VW (3.2.60b)

mP(s) = ∂UηW (3.2.60c)

nP(s) = ∂VwW (3.2.60d)

cP(s) = ∂ηW (3.2.60e)

fP(s) = ∂wW (3.2.60f)

for s ∈]0, L[ and where the argument
(
y(s), ddsy(s), ξ(s); s

)
of the internal energy W has

been suppressed for compactness. The conditions (3.2.59) together with the relations
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(3.2.60) are called the equilibrium birod conditions in internal coordinates. It is then
equivalent to solve equilibrium conditions (3.2.45) or (3.2.59) with the corresponding
constitutive relations (3.2.46) or (3.2.60). The main difference between these two formu-
lations is the expression of the moment balance in the microstructure in (3.2.45c) and
(3.2.59c). The relation between the variables mP(s) and mP(s) is deduced, using the
expression in (3.2.56), to be

mP(s) = B−Tη(s)m
P(s) (3.2.61)

whereas cP(s) and cP(s) satisfy

cP(s) = B−Tη(s)c
P(s) (3.2.62)

similarly to (2.2.49b).

3.2.8 Hamiltonian formulation of birod equilibrium conditions

An interesting property of the birod equilibrium conditions in (3.2.45) and (3.2.59) is
that they can be shown to admit a Hamiltonian structure which is similar to the one
deduced for rods in section 3.2.3.

We use the compact notation ζ(s) = (m(s), n(s)) ∈ R6, presented in (3.2.18), and
similarly we introduce

ζP(s) =

(
mP(s)
nP(s)

)
∈ R6 (3.2.63)

and

FP(s) =

(
cP(s)
fP(s)

)
∈ R6 (3.2.64)

which allow the constitutive relation (3.2.46) and (3.2.53) to be written as

ζ(s) = ∂ξW (3.2.65a)

ζP(s) = ∂ξPW (3.2.65b)

FP(s) =
(
T P
)∗
∂PW (3.2.65c)

where the arguments (P(s), ξP(s), ξ(s); s) of the function W have been suppressed for
compactness and where we recall that the operator T P associated to perturbation of the
microstructure is defined in (3.1.27).

Similarly to the rod case in (3.2.20), we denote by H the Legendre transform of the
function W, but it is here defined as

H(P, ζP , ζ; s) = max
(ζ,ζP )∈R12

{
ξ · ζ + ξP · ζP −W(P, ξP , ξ; s)

}
. (3.2.66)
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The function H is then called the birod Hamiltonian. According to (3.2.65) it satisfies

ξ(s) = ∂ζH (3.2.67a)

ξP(s) = ∂ζPH (3.2.67b)

FP(s) = −
(
T P
)∗
∂PH (3.2.67c)

for any function W strictly convex in the variables ξ and ξP , and where the arguments
(P(s), ζP(s), ζ(s); s) of the function H have been suppressed for compactness. The birod
Hamiltonian variables can be described as

z(s) = (zg(s), zP(s)) (3.2.68a)

where

zg(s) = (ζ(s), g(s)) ∈ R6 × SE(3) (3.2.68b)

are the conjugate variables associated to the macrostructure g and

zP(s) = (ζP(s),P(s)) ∈ R6 × SO(3)× R3 (3.2.68c)

to the microstructure P. The equilibrium conditions (3.2.54) can then be written for
s ∈]0, L[ as

d

ds
zg(s) = Jg (zg(s)) ∂zgH(z(s); s) (3.2.69a)

d

ds
zP(s) = JP (zP(s)) ∂zPH(z(s); s) (3.2.69b)

with (g,P) ∈ Γ (3.2.69c)

where the operator Jg ( . ) is the one appearing in the rod Hamiltonian system in (3.2.25)
and the operator JP ( . ) is defined as

JP (zP) =

(1
2

[
(M− −M+)mP×

]
0

0 0

)
−
(
T P
)∗

T P 0

 . (3.2.70)

Consequently, theHamiltonian form of the birod equilibrium conditions can be written
as

d

ds
z(s) = J (z(s)) ∂zH(z(s); s) (3.2.71a)

with

J (z(s)) =

(
Jg (zg(s)) 0

0 JP (zP(s))

)
(3.2.71b)
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(g,P) ∈ Γ. (3.2.71c)

In the case where the birod internal energy E is given in terms of internal birod
variables, as in (3.2.57), then the birod equilibrium conditions take the form presented
in (3.2.59) according to the constitutive relations in (3.2.60). If one denotes, analogously
to (3.2.18), (3.2.63) and (3.2.64), by

ζ(s) = (m(s), n(s)), ζPy (s) = (mP(s), nP(s)) and FPy (s) = (cP(s), fP(s)) (3.2.72)

where in particular mP(s) and cP(s) are the variables appearing in (3.2.60), then the
birod Hamiltonian in internal coordinates, denoted by H, is defined as

H(y, ζPy , ζ; s) = max
(ζ,ζPy )∈R12

{
ξ · ζ + ξPy · ζPy −W(y, ξPy , ξ; s)

}
(3.2.73)

where we have used the notation ξPy (s) = d
dsy(s). Defining the variable

z(s) = (zg(s), zy(s)) (3.2.74)

where zg(s) is the set of Hamiltonian variables associated to the macrostructure in
(3.2.68b) and where

zy(s) = (ζPy (s), y(s)) ∈ R12 (3.2.75)

are the conjugate variable related to the microstructure, the birod equilibrium equations
in terms of the internal coordinates y(s) (3.2.59) can be written as the Hamiltonian
system

d

ds
z(s) = J (z(s)) ∂zH(z(s); s) (3.2.76a)

with

J (z(s)) =

Jg (zg(s)) 0

0

(
0 −Id6

Id6 0

) (3.2.76b)

with (g, y) ∈ Γ, and where Jg ( . ) is defined in (3.2.25). The expressions (3.2.76) are
the Hamiltonian form of birod the equilibrium conditions in internal coordinates. An
application of this Hamiltonian system is presented in section 6.2.

It is worthwhile to observe that the birod Hamiltonian function H and the double
rod Hamiltonian function H||, defined in (3.2.38), take the same value for corresponding
descriptions of equilibrium birod configurations, i.e.

H(zg(s), zP(s); s) = H||(z+(s), z−(s); s) (3.2.77)

for all equilibrium birod configuration, as can be proven using the relations between
the birod and double rod constitutive relations in (2.2.38). The transformation rule

115



Chapter 3. On Single and Double Continuum Rods

between the birod and the double rod Hamiltonian variables are summarised in table 3.1.
Similarly the functions H and H also have the same value for corresponding descriptions
of equilibrium birod configurations, i.e.

H(zg(s), zP(s); s) = H(zg(s), zy(s); s) (3.2.78)

as can be proven using the relations (3.2.61) and (3.2.62).

Table 3.1: Relations between birod and double rod Hamiltonian variables

Birod Double Rod

R R+
[
R+TR−

] 1
2

r 1
2 (r+ + r−)

P R+TR−

w RT [r− − r+]

m P
T
2 m+ + P

1
2m− + w× nP

n P
1
2 n− + P

T
2 n+

mP M−m− −M+m+

nP 1
2

[
P

1
2 n− − P

T
2 n+

]

Birod Double Rod
RP

T
2 R+

RP
1
2 R−

r − 1
2Rw r+

r + 1
2Rw r−

M−
[
m− w× nP

]
− P

1
2mP m+

M+
[
m− w× nP

]
+ P

T
2 mP m−

P
1
2

[
1
2n− nP

]
n+

P
T
2

[
1
2n + nP

]
n−

3.2.9 Formulation of the birod equilibrium conditions through La-
grange Multipliers

Similarly to the bichain case, the birod equilibrium conditions (3.2.54) can alternatively
be described through the Lagrange multiplier method. For instance, assuming the Dirich-
let conditions described in (3.2.50a) of the form

g(0) = Id4, g(L) = gL
∗ (3.2.79a)

P(0) = P0
∗ and P(L) = PL∗ (3.2.79b)

we define the Lagrangian function L :
(
SE(3)]0,L[

)2 × R18 → R as

L[g,P,λ] = E[g,P]− λΦ (P(0), g(L),P(L);P0
∗, gL

∗,PL∗) (3.2.80)
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where the function Φ is defined as

Φ (P(0), g(L),P(L);P0
∗, gL

∗,PL∗) =



1
2Vect

(
R(L) (RL

∗)T
)

r(L)−R(L) (RL
∗)T rL

∗

1
2Vect

(
P(0) (P0

∗)T
)

1
2Vect

(
P(L) (PL

∗)T
)

w(0)− w0
∗

w(L)− wL∗


(3.2.81)

and where E[g,P] denotes the internal bichain energy, defined in (3.2.42). The set

λ = (λR ,λr , λP0 , λ
P
L, λ

w
0 , λ

w
L) ∈ R18 (3.2.82)

is called the set of birod Lagrange multipliers. Note that the expression in (3.2.80) is
strongly inspired from the analogous one for bichains in (2.2.55).

The stationary conditions for the functional L over the set of birod configuration
(g,P) and over the Lagrange multipliers λ can be shown to be the birod equilibrium
conditions in (3.2.45) with the extra boundary conditions(

m(L) + r(L)× n(L)
n(L)

)
=

(
λR

λr

)
(3.2.83a)

(
mP(0)
nP(0)

)
=

(
λP0
λw

0

)
and

(
mP(L)
nP(L)

)
=

(
λPL
λw
L

)
(3.2.83b)

together with the requirement that the array of constraints in (3.2.81) vanishes.
Consequently, the Lagrange multipliers λ = (λR ,λr , λP1 , λ

P
N , λ

w
1 , λ

w
N ) can be inter-

preted as the set of couple and force which are needed to enforce the constraints in
(3.2.79) and moreover the triples λR and λr exactly correspond, in the case of internal
birod energy, to the conserved quantities described in (3.2.52).

3.2.10 On birod models for single rods

We conclude this part on the variational principle for rods with some remarks on the
relations between the rod model and and the birod model.

Similarly to rigid body bichains, the birod configuration is made up of a rod con-
figuration to describe their macrostructure and the birod equilibrium conditions contain
the rod equilibrium conditions to express the macrostructure balance laws, either in the
Euler-Poincaré form (3.2.54) or in the Hamiltonian form (3.2.69). However, the mechan-
ical behaviour of a birod macrostructure is in principle very different from the one of a
single rod whose equilibrium conditions are governed by the Hamiltonian system (3.2.25)
due to the fact that the respective constitutive relations can be very different.

A particular case of the birod internal energy (3.2.42) is when it decouples into
separate contributions from the macrostructure and the microstructure deformations,
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i.e. when E is of the form

E[g,P] =

∫ L

0
Wξ(ξ(s); s) + WP(P(s), ξP(s); s)ds. (3.2.84)

In such cases, the energy E is said to be a separable internal birod energy. The birod
Hamiltonian function is then of the form

H(zg(s), zP(s); s) = Hzg (zg(s); s) + HzP (zP(s); s) (3.2.85)

according to the Legendre transform definition in (3.2.66). Consequently, equilibrium
equations for the macrostructure in (3.2.69) are independent from those for the mi-
crostructure, and then both are only, and exactly, governed by their respective Hamilto-
nian function denoted by Hzg and HzP in (3.2.85).

Conversely, one can study the case of constrained microstructure which corresponds
to prescribing the microstructure P to a given (possibly stressed) configuration. The
rigorous analysis of this problem is left as an open topic, but we believe that the induced
rod mechanical behaviour of the macrostructure will not be described by a single rod
Hamiltonian of the form (3.2.25) since a non-local character arises from this constraint.
Similarly to the rigid body bichain, we conclude that the birod model can be seen as an
intermediate model between local rods and non-local rods.
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3.3 On Stationary Configurational Distributions and Rod
Moments

This section presents the definition of stationary configurational distributions for con-
tinuum rods and birods in a stochastic environment. In particular, these infinite dimen-
sional distributions are understood as the appropriate limit of finite dimensional chains
and bichain distributions. We then discuss the notion of moments of rod and birod
observables and emphasize the interest of the rod configurational first moment.

3.3.1 Stationary configurational distributions for isolated rods and birods

Similarly to rigid body chains, we say that a rod is said to be an isolated continuum rod
in a stochastic bath if the only external couples and forces which act on it are due to
the interactions with the surrounding fluid. This definition is appearing for instance in
previous studies in continuum rod statistical mechanics and it is often assumed, more-
over, that in such conditions the continuum rod admits a stationary rod configurational
distribution dρ[g] [Landau and Lifshitz, 1959, Bugl, 1969, Yamakawa, 1976, Doi and Ed-
wards, 1986, Marko and Siggia, 1994, Manning et al., 1996, Yamakawa, 1997, Becker,
2007, Cotta-Ramusino, 2008]. If, moreover, the ends of the rod are free we define the rod
configurational distribution to be expressed as a function of the rod generator vector ξ
as the path integral density

dρ [g[ξ]] ∼ exp

{
− 1

kBT
E[g]

}
D[ξ] for g ∈ Γ (3.3.1)

where E denotes the internal energy of the rod, defined in (3.2.5), kB the Boltzmann
constant, T the kinetic temperature of the bath and Γ the set of continuum rod configura-
tions with free ends, similarly to the rigid body chain (2.3.1). The distribution dρ [g[ξ]]
is called the Boltzmann distribution for a Cosserat rod.

We should stress that the rod distribution dρ[g] is a probability distribution on a space
of rod configurations and, in contrast to rigid body chain, is therefore a distribution on an
infinite dimensional space. It can then be understood through the following construction.
For a rod configuration g(s) with s ∈]0, L[, introduce a mesh containing d nodes

0 < s1
(d) < s2

(d) < ... < sd
(d) < L (3.3.2)

and suppose that we can observe the rigid body chain configuration defined by the
discretised rod configuration g(d) = (g1

(d), ..., gd
(d)) where gi(d) ∈ SE(3) is given by

gi
(d) = g(si

(d)) for i = 1, ..., d. (3.3.3)

The discretised junction displacement between two consecutive elements in the discretised
rod is denoted by ai(d) ∈ SE(3) and is defined similarly to the rigid body chain case (2.1.4)
as

ai
(d) = (gi

(d))−1gi+1
(d) (3.3.4)
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which leads to the following set of internal chain coordinates of the discretised rod

x(d) = (x1
(d), ..., xd−1

(d)) (3.3.5)

where

ai
(d) = a(xi

(d)) for i = 1, ..., d (3.3.6)

similarly to (2.1.11).
Given the observed discretised rod configuration (3.3.23) we introduce a smooth rod

interpolation of the chain configuration g(d) as

g(d)(s) = g(d)(x(d); s) for s ∈]0, L[ (3.3.7)

which satisfies

g(d)(x(d); si
(d)) = gi

(d) (3.3.8)

for all nodes si in (3.3.2). This allows the definition, for a given mesh in (3.3.2) and for
a given interpolation rule in (3.3.7), of the discretised space of rod configurations Γ(d) as
the set of interpolations of discretised rod configurations g(d), i.e. as

Γ(d) =
{
g(d)(s) | g ∈ Γ

}
(3.3.9)

where Γ denotes the set of rod configurations with free ends in (3.3.1). Similarly to
(3.1.4), we define the rod interpolation generator vector ξ(d)(s) by the relation

d

ds
g(d)(s) = g(d)(s)T ξ(d)(s) (3.3.10)

for all s ∈]0, L[. Formally, one then has a map

ξ(d)(s) = ξ(d)(x(d); s) for s ∈]0, L[ (3.3.11)

analogously to (3.3.7). The definition (3.3.10) together with (3.3.11) imply that both
the interpolation generator vector ξ(d)(s) and the interpolation of the discretised rod
configuration g(d)(s) converge asymptotically to the continuum rod generator vector ξ(s)
and to the configuration g(s) when the number of nodes d in the interval ]0, L[ increases,
i.e.

lim
d→∞

ξ(d)(s) = ξ(s) (3.3.12a)

lim
d→∞

g(d)(s) = g(s). (3.3.12b)

for smooth rod configurations g(s). In other terms we have formally that

lim
d→∞

Γ(d) = Γ. (3.3.13)
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Moreover, using the definition of ai(d) in (3.3.4) and ξ(d)(s) in (3.3.10), one can show
that for si(d) < s < si+1

(d)

lim
d→∞

1

hi
(d)

(
ai

(d) − Id4

)
= T ξ(s) (3.3.14)

where we have defined

hi
(d) = si+1

(d) − si(d). (3.3.15)

Consequently g(d)(s) can be thought of as a rigid body chain approximation of the
original rod configuration g(s). Observe that this limiting process does not depend on
the mesh nodes si chosen in (3.3.2) and that the construction (3.3.7) has strong similarity
to the geodesic finite element method for rods proposed in [Sander, 2010] in the context
of classical mechanics.

The configurational distribution for a Cosserat rod dρ[g] in (3.3.1) is then defined
using the strong similarity to rigid body chain stochastic calculus. Let A[g] ∈ R be a
smooth functional on the continuum rod configurations set Γ. This functional can be
thought of as the end-to-end vector of the rod for instance. For clarity, we assume that
the internal chain coordinates x(d) = (x1

(d), ..., xd−1
(d)) ∈ R6(d−1) in (3.3.5) are chosen

according to the definitions (2.1.18). The distribution dρ [g[ξ]] is then defined as the
limit ∫

Γ
A[g]dρ [g[ξ]] = lim

d→∞

∫
Γ(d)
A[g(d)]dρ(d)(g(d))(x(d)) (3.3.16a)

for any smooth functional A[g] ∈ R where

dρ(d)(g(d))(x(d)) =
1

Z(d)
exp

{
− 1

kBT
E[g(d)]

}
J(x(d))dx(d) (3.3.16b)

with

Z(d) =

∫
Γ(d)

exp

{
− 1

kBT
E[g(d)]

}
J(x(d))dx(d). (3.3.16c)

and where we have used with the short notation dx(d) for dx1
(d)...dxd−1

(d), J(x(d)) is
the explicit Jacobian factor in (2.3.2c) and in (2.3.3) related to the definition of local
coordinates x(d) in (3.3.5), the finite dimensional set Γ(d) is defined in (3.3.9) and Z(d)

is the normalising constant for each fixed d. Note that in (3.3.16) the interpolation
g(d)(s) is seen as an explicit function of the local chain coordinates through the relation
(3.3.7). The distribution dρ(d)(g(d))(x(d)) is called a finite dimensional rod marginal
distribution since it corresponds to the observation of only a finite number of rod cross
section configurations gi(d). In other words, the rod configurational distribution dρ [g[ξ]]
is defined as the appropriate limit of the rigid body chain configurational distribution
dρ(d)(g(d))(x(d)) in (3.3.16). This construction can be referred to as time slicing, by
analogy to the literature on imaginary path integrals.
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The assumptions of the functional form of the finite dimensional distribution
dρ(d)(g(d))(x(d)) in (3.3.16) have to be discussed. A complete argument would require a
rigorous mathematical proof, however we have decided to give here only some informal
justification. As presented in (2.3.1), this form of the stationary distribution is correct
for isolated rigid body chains when the fluid interactions are modelled in the framework
of Langevin stochastic dynamics, as discussed in detail in [Walter et al., 2010]. Assuming
the analogous stochastic dynamics for a continuum rod, we claim that any discretised
rod configuration g(d) satisfies a stationary distribution of the form that is precisely like
the chain configurational distribution but with the discretised energy. Consequently,
the presence of the Jacobian factor ensures that the finite dimensional rod marginal
distribution dρ(d)(g(d))(x(d)) transforms consistently in any internal discretised chain
coordinates x(d), and this implies that the limiting distribution dρ [g[ξ]] is independent
of the internal coordinates chosen to describe the discretised configurations.

We observe, moreover, that we can always choose a chain interpolation g(d)(s) in
(3.3.7) such that the associated generator vector ξ(d)(s) in (3.3.11) is only a function of
the local chain coordinates xi(d) in the interval si(d) < s < si+1

(d) for all i = 1, ..., d− 1,
i.e.

ξ(d)(s) = ξ(d)(xi
(d); s) for si(d) < s < si+1

(d). (3.3.17)

A rod interpolation g(d)(s) whose generator vector satisfies (3.3.17) is said to be a local rod
interpolation. This specific choice, together with the form of the Cosserat rod energy E in
(3.2.5) and the Jacobian definition in (2.3.2c), allows the factorization of the distribution
dρ(d)(g(d))(x(d)) as

dρ(d)(g(d))(x(d)) =
d−1∏
i=1

dρi
(d)(a(xi

(d))) (3.3.18a)

and

dρi
(d)(a(xi

(d))) =
1

Zi
(d)

exp

{
− 1

kBT
wi

(d)(a(xi
(d)))

}
Ji(xi

(d))dxi
(d) (3.3.18b)

where

wi
(d)(a(xi

(d))) =

∫ s+1

si

W(ξ(xi
(d); s); s)ds (3.3.18c)

and where Zi(d) denotes the local normalization constant. Expressions (3.3.18) make even
stronger the relation with the stochastic calculus for local rigid body chains described in
(2.3.1).

An interesting fact however, which contrasts with the calculus for rigid body chains,
is that the Jacobian factor can be neglected for continuum rod configurational distribu-
tions. This fact has been noticed in [Becker, 2007] when using exponential coordinates
to described discretised chain configuration. In terms of the internal coordinates x(d)
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3.3. On Stationary Configurational Distributions and Rod Moments

used in the definition (3.3.16), we observe that, according to the limit in (3.3.14), for all
1 ≤ i ≤ d

xi
(d) = O

(
hi

(d)
)

(3.3.19)

where hi(d) = si+1
(d) − si(d) which implies that

lim
d→∞

d−1∑
i=1

ln
{
Ji(xi

(d))
}

= 0 (3.3.20a)

since

Ji(xi
(d)) = 1 + O

(
hi

(d)2
)

(3.3.20b)

according to the definition of the Jacobian factor Ji in (2.3.3). Consequently, one can
replace the definition of the finite dimensional rod marginal in (3.3.16a) of the local
normalising constant (3.3.16c) by

dρ(d)(g(d))(x(d)) =
1

Z(d)
exp

{
− 1

kBT
E[g(d)]

}
dx(d) (3.3.21a)

and

Z(d) =

∫
Γ(d)

exp

{
− 1

kBT
E[g(d)]

}
dx(d). (3.3.21b)

without changing the limiting behaviour, or in other words the Jacobian factor correction
vanishes in the limit d→∞.

We define the notion of an isolated continuum birod in a stochastic bath in a similar
way to the single rod case and so assume the existence of a stationary birod configurational
distribution dρ[g,P]. In the case where both ends of the birod configuration are free,
the birod distribution is defined in terms of the macrostructure generator ξ and of the
microstructure configuration P

dρ [g[ξ],P] ∼ exp

{
− 1

kBT
E[g,P]

}
D[ξ,P] for (g,P) ∈ Γ (3.3.22)

in analogy to the configurational rod distribution in (3.3.1), but where E now denotes
the continuum birod internal energy and where Γ denotes the set of continuum birod
configurations with free ends. The distribution dρ [g[ξ],P] is then also understood as a
limit of finite dimensional marginal distributions.

For a given birod configuration (g,P) and a given mesh of the form (3.3.2), we define
the discretised birod configuration (g(d),P(d)) = (g1

(d),P1
(d), ..., gd

(d),Pd(d)) where

gi
(d) = g(si

(d)) and Pi(d) = P(si
(d)) for i = 1, ..., d (3.3.23)
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Chapter 3. On Single and Double Continuum Rods

and where (g(d),P(d)) can be seen as a bichain configuration of the form (2.1.30). Con-
sequently, the local rigid body displacements ai(d), bi

(d) ∈ SE(3) in the discretised birod
configuration are defined as

ai
(d) = (gi

(d))−1gi+1
(d) and bi(d) = (g+

i
(d)

)−1g−i
(d) (3.3.24)

and this leads to the set of internal bichain coordinates

(x(d), y(d)) = (y1
(d), x1

(d), ..., xd−1
(d), yd

(d)) (3.3.25)

where

ai
(d) = a(xi

(d)) and bi(d) = b(yi
(d)) (3.3.26)

similarly to (2.1.32).
Similarly to the single rod case, we introduce a smooth birod interpolation of the

bichain configuration (g(d),P(d)) as

g(d)(s) = g(d)(x(d); s) and P(d)(s) = P(d)(y(d); s) for s ∈]0, L[ (3.3.27)

which satisfy

g(d)(x(d); si
(d)) = gi

(d) and P(d)(y(d); si
(d)) = Pi(d) (3.3.28)

for all nodes si in (3.3.2), and then the discretised space of birod configurations Γ(d) as
the set of interpolations of discretised birod configurations g(d) for a given mesh in (3.3.2)
and for any given interpolation rule of the form (3.3.27), i.e. as

Γ(d) =
{

(g(d)(s),P(d)(s)) | (g,P) ∈ Γ
}

(3.3.29)

where Γ denotes the set of birod configuration with free ends in (3.3.22).
The birod interpolation generator vectors of the macrostructure ξ(d)(s) and the mi-

crostructure ξP (d)
(s) are then defined by the relations

d

ds
g(d)(s) = g(d)(s)T ξ(d)(s) and

d

ds
P(d)(s) = T PξP (d)

(s) (3.3.30)

for all s ∈]0, L[ according to their definition in (3.1.23) and (3.1.27) respectively and one
then has maps of the form

ξ(d)(s) = ξ(d)(x(d); s) and ξP (d)
(s) = ξP

(d)
(y(d); s) for s ∈]0, L[ (3.3.31)

analogously to (3.3.27).
The definitions (3.3.30) together with (3.3.31) imply that the birod interpolation

generator vectors ξ(d)(s) and ξP (d)
(s), and the interpolation of the discretised birod con-

figuration (g(d)(s),P(d)(s)) converge asymptotically to the continuum generator vectors
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3.3. On Stationary Configurational Distributions and Rod Moments

ξ(s) and ξP(s) and to the birod configuration (g(s),P(s)) when the number of nodes d
in the interval ]0, L[ increases for smooth birod configuration (g(s),P(s)).

The configurational distribution for a birod dρ[g,P] in (3.3.22) is then defined sim-
ilarly to the single rod distribution. Let A[g,P] ∈ R be a smooth functional on the
continuum birod configuration set Γ, and define the internal coordinates of the discre-
tised birod configuration (x(d), y(d)) to be the bichain coordinates defined in (2.1.18) and
(2.1.33) respectively. The distribution dρ [g[ξ],P] is then defined as the limit∫

Γ
A[g,P]dρ [g[ξ],P] = lim

d→∞

∫
Γ(d)
A[g(d),P(d)]dρ(d)(g(d),P(d))(x(d), y(d)) (3.3.32a)

for any smooth functional A[g,P] ∈ R where

dρ(d)(g(d),P(d))(x(d), y(d)) =
1

Z(d)
exp

{
− 1

kBT
E[g(d),P(d)]

}
J(x(d), y(d))dx(d)dy(d)

(3.3.32b)

with

Z(d) =

∫
Γ(d)

exp

{
− 1

kBT
E[g(d),P(d)]

}
J(x(d), y(d))dx(d)dy(d). (3.3.32c)

and where we have used with the short notation dx(d)dy(d) for dy1
(d)dx1

(d)...dxd−1
(d)dyd

(d),
J(x(d), y(d)) is the explicit Jacobian factor in (2.3.6c), (2.3.3) and (2.3.8) related to the
definition of local coordinates (x(d), y(d)) in (3.3.25), the finite dimensional set Γ(d) is
defined in (3.3.29) and Z(d) is the normalising constant for each fixed d. The distribution
dρ(d)(g(d),P(d))(x(d), y(d)) is called a finite dimensional birod marginal distribution and
is deduced similarly to the single rod case.

Conversely, we should stress the asymmetry between the roles played by the internal
coordinates x(d) for the discretised macrostructure and by the internal coordinates y(d)

for the discretised microstructure. In particular one has

lim
d→∞

xi
(d) = 0 whereas lim

d→∞
yi

(d) = y(s) with P(s) = P(y(s)) (3.3.33)

which implies that the contribution of the Jacobian factor associated with the macrostruc-
ture coordinates x(d) can be neglected, similarly to the single rod case in (3.3.21), but
not the one coming from the microstructure coordinates y(d).

As discussed in section 3.2.7, and more precisely in (3.2.57), a realistic birod in-
ternal energy will be given in terms of the microstructure internal coordinates. The
birod configurational distribution in terms of the internal coordinates y(s) is denoted by
dρ [g[ξ],P(y)] and is defined by

dρ [g[ξ],P(y)] ∼ exp

{
− 1

kBT
E[g,P(y)]

}
D[ξ, y] for (g,P(y)) ∈ Γ (3.3.34)

according to the birod configurational distribution in (3.3.22).
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Using the arguments presented in section 3.2.10, one can see the single rod configura-
tional distribution dρ[g] in (3.3.1) as a marginal of the birod configurational distribution
dρ[g,P] in (3.3.22). Even for a local birod internal energy of the form (3.2.42), the
marginal distribution for the macrostructure is in general very different from the one for
local single rod presented in (3.3.1), but, in contrast, this marginal distribution exactly
factorizes into (3.3.1) when the internal birod energy decouples into the macrostructure
and the microstructure configurations.

3.3.2 Observables and expectations of rods and birods

A continuum rod observable A is formally a functional on a set of rod configurations
and it is denoted by A[g] ∈ R. In contrast to the rigid body chain case, we use here
square brackets [ . ] to emphasize that the evaluation of A[g] can involve the evaluation
of derivatives of the configuration g(s) for instance. The most common observables A[g]
in polymer physics, include the projection of some given direction at arc-length s ∈]0, L[
in the rod on some other direction at s = 0, or of the end-to-end vector for instance
[Krakty and Porod, 1949, Landau and Lifshitz, 1959, Doi and Edwards, 1986, Yamakawa,
1997, Panyukov and Rabin, 2000].

The expectation of a rod observable A[g] ∈ R with respect to the continuum rod
configurational distribution dρ[g], as presented in (3.3.1), is defined as

〈A[g]〉 =

∫
Γ
A[g]dρ [g[ξ]] (3.3.35)

according to the expression in (3.3.16a). Practically, we introduce a mesh on the interval
]0, L[, as described in (3.3.2), and a set of interpolated rod configuration Γ(d) presented in
(3.3.9) to define the finite dimensional observable approximation A[g(d)] of the observable
A[g] which has the property that

lim
d→∞

A[g(d)] = A[g] (3.3.36)

according to (3.3.12). Then, the finite dimensional expectation 〈A[g]〉(d) of the finite
dimensional approximation of the observable A[g(d)] is given by

〈A[g]〉(d) =

∫
Γ(d)
A[g(d)]dρ(d)(g(d))(x(d)) (3.3.37)

where dρ(d)(g(d))(x(d)) denotes the finite dimensional rod marginal distribution defined in
(3.3.16b). Using the definition in (3.3.16a), the expectation in (3.3.35) is then understood
as the limit d→∞ of the finite dimensional expectation, i.e.

〈A[g]〉 = lim
d→∞

〈A[g]〉(d). (3.3.38)

As discussed in section 3.3.1, the limiting value in (3.3.38), when it exists, is indepen-
dent of the discretization and of the internal discretised rod coordinates x(d) chosen to
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3.3. On Stationary Configurational Distributions and Rod Moments

evaluate the finite dimensional expectation 〈A[g]〉(d). The symbol 〈 . 〉 stands therefore
for the expectation over an ensemble of continuum rod configurations and is a function
of only the rod internal energy E. A related discussion can be found in [Becker, 2007].

In the case where the observable A[g] is a function of the arc-length s, we define its
expectation 〈A[g]〉 to be the function such that∫ L

0
〈A[g]〉 · b(s)ds =

〈∫ L

0
A[g] · b(s)ds

〉
(3.3.39)

for any non-stochastic and smooth function b(s) and where 〈 . 〉 is in the sense of (3.3.35),
or equivalently (3.3.38).

A continuum birod observable is also denoted by A but is a functional of birod
configurations A[g,P] ∈ R. Similarly to the single rod case, we define the expectation of
a birod observable as

〈A[g,P]〉 =

∫
Γ
A[g,P]dρ[g,P] (3.3.40)

according to the definition of the continuum birod configurational distribution dρ[g,P] in
(3.3.22). Defining the finite dimensional expectation of the birod observable 〈A[g,P]〉(d)

in a similar way to the single rod case (3.3.37), we also understand (3.3.40) as

〈A[g,P]〉 = lim
d→∞

〈A[g,P]〉(d) (3.3.41)

and conclude that the value of the birod expectation 〈A[g,P]〉, when it exists, is inde-
pendent of the choices made to describe the discretised birod configurations. Similarly to
rods, if the observable A[g,P] is a function of the parameter s, its expectation is defined
by ∫ L

0
〈A[g,P]〉 · b(s)ds =

〈∫ L

0
A[g,P] · b(s)ds

〉
(3.3.42)

for any non-stochastic and smooth function b(s).
A rod observable A[g] is said to be an internal rod observable if it is invariant through

any overall rigid body motion of the chain, i.e. if

A[Bg] = A[g] (3.3.43)

for any B ∈ SE(3). Similarly, an internal birod observable A[g,P] has the property

A[Bg,P] = A[g,P] (3.3.44)

for any B ∈ SE(3). Internal observables are the only observables whose expectation is
well defined for isolated rods and birods.

As in the case of chains, we are particularly interested in the specific internal ob-
servable of the relative rigid body motion g(s′, s) between the cross section located at s′
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and the one located at s in the rod configuration, as defined in (3.1.7), or respectively
in the birod macrostructure. The first moment of the relative rigid body motion, or
configurational first moment, is defined as for a general rod observable, i.e. as〈

g(s′, s)
〉

=

∫
Γ
g(s′, s)dρ[g] (3.3.45)

according to the definitions (3.3.35), and as

〈
g(s′, s)

〉
=

∫
Γ
g(s′, s)dρ[g,P] (3.3.46)

for birods according to (3.3.40). In both cases, the block structure of 〈g(s′, s)〉 can be
written in terms of the relative rotation R(s′, s) and relative translation r(s′, s), defined
in (3.1.9), as

〈
g(s′, s)

〉
=

(
〈R(s′, s)〉 〈r(s′, s)〉

0 1

)
. (3.3.47)

The importance of the study of the first moment 〈g(s′, s)〉 is due to the fact that it
encodes, similarly to chains in section 2.4, many other important observables in polymer
physics, as discussed more precisely in section 3.4.

An other set of internal observables is the first moment of the birod internal variables
ξ(s) and y(s), as defined in (3.2.55). The first moment of the macrostructure generator
vector 〈ξ(s)〉 ∈ R6 is denoted by ξ̄(s) ∈ R6 and defined as〈∫ L

0
ξ(s) · b(s)ds

〉
=

∫ L

0
ξ̄(s) · b(s)ds (3.3.48)

for any deterministic function b(s) ∈ R6, according (3.3.39). The first moment of the
birod microstructure internal variables 〈y(s)〉 is denoted by ŷ(s) and defined analogously
to (3.3.48).

Interestingly, if one assumes a birod configurational distribution of the form (3.3.34)
with an internal energy of the form (3.2.57), then the cross-correlations between the birod
variables y(s′), ddsy(s′) and ξ(s′) and y(s), ddsy(s) and ξ(s) are in general non-vanishing for
s′ 6= s. For instance, the second moment of the macrostructure generator vector, denoted
by Cξξ(s′, s) ∈ R6×6, is defined as〈∫ L

0

∫ L

0

(
ξ(s′)− ξ̄(s′)

)
⊗
(
ξ(s)− ξ̄(s)

)
: B(s′, s)ds′ds

〉
=

∫ L

0

∫ L

0
Cξξ(s′, s) ·B(s′, s)ds′ds

(3.3.49)

for any deterministic function B(s′, s) ∈ R6×6. All the other cross correlations are defined
similarly.

Moreover, if 〈 . 〉 in (3.3.49) stands for the expectation with respect to a rod con-
figurational distribution governed by a local internal energy of the form in (3.2.5), or
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with respect to a birod distribution governed by a separable internal energy of the form
(3.2.84), the generator vectors ξ(s′) and ξ(s) have the property of being independent for
s′ 6= s. Precisely, one obtains∫ L

0

∫ L

0
Cξξ(s′, s) : B(s′, s)ds′ds

=

〈∫ L

0

∫ L

0

(
ξ(s′)− ξ̄(s′)

)
⊗
(
ξ(s)− ξ̄(s)

)
: B(s′, s)ds′ds

〉
= lim

d→∞

d−1∑
i=1

d−1∑
j=1

∫ si+1
(d)

si(d)

∫ sj+1
(d)

sj(d)
hi

(d)
〈(
ξ(s′)

(d) − ξ̄(s′)
)
⊗
(
ξ(s)(d) − ξ̄(s)

)〉(d) δij

hi
(d)

: B(s′, s)ds′ds

=

∫ L

0
C(s)δs(s

′) : B(s′, s)ds′ds

(3.3.50)

for any deterministic matrix function B(s′, s), where the matrix C(s) is defined as

C(s) = lim
d→∞

hi
(d)
〈(
ξ(s)(d) − ξ̄(s)

)
⊗
(
ξ(s)(d) − ξ̄(s)

)〉(d)
for si(d) < s < si+1

(d)

(3.3.51)

and δs denotes the famous Dirac function on the interval ]0, L[. Consequently the matrix
Cξξ(s′, s) is of the form

Cξξ(s′, s) = C(s)δs(s
′). (3.3.52)
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3.4 The Persistence Matrix for Heterogenous Continuum
rods

This section presents detailed results on the configurational first moment for continuum
rods. Its relation to other important observables in polymer physics is briefly discussed
and we propose to study the behaviour of the frame correlation matrix and of the Flory
persistence vector, as in the chain case. Introducing the definitions of the expected rod
configuration and of the fluctuation matrix leads to the notion of a semi-flexible regime
for rods and to an explicit ODE governing, at first order, the rod configurational first
moment. As in the case of chains, the equal importance of expected rod configuration
and of the fluctuation matrix is observed. For non-degenerate rods, the frame correlation
matrix is shown to have, in general, a non-monotonic decay and the Flory persistence
vector to be convergent. The definition of the persistence matrix for rods allows a fac-
torization of the configurational first moment and emphasises, as for semi-flexible chains,
the contribution of the possibly rapidly varying expected configuration. A short length
expansion is then obtained which yields very explicit expressions for configurational first
moment.

3.4.1 Ordinary differential equation for the rod first moment

The first moment of the relative rigid body motion between the cross section located at
s′ and the one located at s in the rod configuration, or configurational first moment, is
denoted by 〈g(s′, s)〉 = (〈R(s′, s)〉 , 〈r(s′, s)〉) as defined in section 3.3.2. Similarly to
the discussion made for chains in section 2.4.1, this matrix is of interest because of its
relation to popular observables in polymer physics, but here in their continuum versions.

(a) TheKratky-Porod persistence length, which is the component of the vector 〈r(s′,∞)〉
in the direction of the rod tangent vector located at the arc length s′ and has been
proposed, following the work of M. Smoluchowski on stochastic trajectories, as a
characteristic value for a rod [Porod, 1948, Krakty and Porod, 1949, Landau and
Lifshitz, 1959, Yamakawa, 1976, Rivetti et al., 1998, Panyukov and Rabin, 2000,
Becker and Everaers, 2007]

(b) The Flory persistence vector which is the vector 〈r(s′, s)〉, analogously to chains,
and generalises the Kratky-Porod persistence length [Yamakawa, 1997, Panyukov
and Rabin, 2000, Becker, 2007]

(c) The tangent-tangent correlation which is defined as t·〈R(s′, s)〉 t and where t ∈ R3 de-
scribes a given and deterministic direction in the frame R(s′) and R(s) respectively.
In some very specific cases this quantity is related to the Kratky-Porod persistence
length and to some bending parameters of the rod [Landau and Lifshitz, 1959, Schell-
man, 1974, Doi and Edwards, 1986, Yamakawa, 1997].

(d) The frame correlation matrix 〈R(s′, s)〉 contains all the cross correlations between
the director frames at the arc-length s′ and s. It generalises, analogously to chains,
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3.4. The Persistence Matrix for Heterogenous Continuum rods

the tangent-tangent correlation [Maroun and Olson, 1988, Panyukov and Rabin,
2000, Vaillant, 2001, Becker and Everaers, 2007, Liu et al., 2011].

(e) The mean squared end-to-end distance is strongly related, but cannot be directly
deduced in general, from the matrix 〈R(s′, s)〉 [Landau and Lifshitz, 1959, Yamakawa,
1976, Panyukov and Rabin, 2000, Becker, 2007].

Similarly to section 2.4 for the case of chains, we aim to study more precisely some
general properties of the rod first moment 〈g(s′, s)〉 and we will focus the discussion
on a single rod admitting a local internal energy E[g], in the sense of (3.2.5). Since
the associated configurational distribution has therefore the property that each finite
dimensional distribution is of the particular form (3.3.18), the following ODE for the
first moment 〈g(s′, s)〉 is implied

∂s
〈
g(s′, s)

〉
=
〈
g(s′, s)

〉
A(s) (3.4.1a)

where

A(s) = lim
d→∞

1

hi
(d)

(〈
ai

(d)
〉(d)
− Id4

)
for si(d) < s < si+1

(d) (3.4.1b)

provided that this limit exists. In more details, using the definitions (3.1.10) and (3.3.38),
and the property (3.3.14), the coefficient matrix A(s) has to be understood as satisfying∫ L

0

〈
∂sg(s′, s)

〉
: B(s)ds =

〈∫ L

0
∂sg(s′, s) : B(s)ds

〉
= lim

d→∞

d−1∑
i=1

∫ si+1
(d)

si(d)
g(d)(s′, s)

1

hi
(d)

(〈
ai

(d)
〉(d)
− Id4

)
: B(s)ds

=

∫ L

0
g(s′, s)A(s) : B(s)ds.

(3.4.2)

for any deterministic and smooth matrix function B(s) ∈ R4×4, where ai(d) denotes the
junction displacement of a discretised rod configuration as defined in (3.3.4). A similar
approach has been used in [Panyukov and Rabin, 2000] for a specific case of the rod
energy E[g]. The precise entries of the matrix A(s) depend on the details of the rod
constitution. We will show however, that some general behaviour of the first moment
〈g(s′, s)〉 can be stated, similarly to the rigid body chain case (2.4.1). More generally,
the relation in (3.4.1) gives 〈

g(s′′, s)
〉

=
〈
g(s′′, s′)

〉 〈
g(s′, s)

〉
(3.4.3)

for all 0 < s′′ < s′ < s < L, analogously to (3.1.11).
In terms of the moment 〈R(s′, s)〉 and 〈r(s′, s)〉 the ODE (3.4.1) then reads

∂s
〈
R(s′, s)

〉
=
〈
R(s′, s)

〉
AR(s) (3.4.4a)
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∂s
〈
r(s′, s)

〉
=
〈
R(s′, s)

〉
Ar(s) (3.4.4b)

where AR(s) ∈ R3×3 and Ar(s) ∈ R3 denote the corresponding blocks of the matrix
A(s), i.e.

A(s) =

(
AR(s) Ar(s)

0 0

)
. (3.4.5)

for 0 < s′ < s < L. Observe that the expressions in (3.4.1) and (3.4.22) are the continuum
analogue of the matrix multiplication method in (2.4.1) and (2.4.5), as originally proposed
in [Flory and Jernigan, 1965, Flory and Miller, 1966]. They are also a generalisation of
the similar expression appearing in [Panyukov and Rabin, 2000].

Similarly to chains, we conclude that the key step for understanding the features of
the observables listed in (a) to (e) above in the case of rods with a local internal energy
is the explicit knowledge of the coefficient matrix A(s) in (3.4.1b) [Panyukov and Rabin,
2000, Becker and Everaers, 2007]. It would then be valuable to know the relation between
the rod configurational distribution in (3.2.5) and the entries in A(s). However an exact
and analytic computation for most realistic rod distributions is not available. We will
however show in section 3.4.2 that an approximation can be provided for general local rod
configurational distributions in the semi-flexible regime. Observe that the argument to
deduce the ODE (3.4.1a) fails for a non-local rod energy, or even for a general local birod
distribution dρ[g,P], which emphasises the difficulty of studying the moment 〈g(s′, s)〉
for non idealised rod model.

3.4.2 Explicit expansion for semi-flexible rods

Analogously to the expansion made for rigid body chain first moment in section 2.4.2,
we need to introduce the particular rod configuration ḡ(s), called the expected rod con-
figuration. Its definition is strongly related to that of the expected chain configuration
ḡn.

Introduce a mesh of the interval ]0, L[ in the form (3.3.2) and for any continuous rod
configuration g(s) denote by g(d)(s) its interpolation on this mesh. Similarly to (2.4.7),
the chain junction displacement ai(d), as defined in (3.3.4), can be factorized in the form

ai
(d) = αi

(d)ā
(d)
i

(3.4.6a)

where

αi
(d) = exp

{
T Θi

(d)
}

(3.4.6b)

for some Θi
(d) ∈ R6 which is assumed to have the property that〈

Θi
(d)
〉(d)

= 0 (3.4.6c)
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where 〈 . 〉(d) denotes the finite dimensional expectation with respect to the finite di-
mensional rod marginal distribution dρ(d)(g(d))(x(d)) defined in (3.3.18). We recall that
the existence of ā(d)

i is guaranteed if the configurational distribution dρ(d)(g(d))(x(d)) is
sufficiently peaked [Kendall, 1990, Becker and Everaers, 2007, Chirikjian, 2011].

Using the property (3.3.14), the expected generator vector is defined as the triple
ξ̄(s) ∈ R3 which satisfies

lim
d→∞

1

hi
(d)

(
ā

(d)
i − Id4

)
= T ξ̄(s) for si(d) < s < si+1

(d) (3.4.7)

and the expected rod configuration ḡ(s) is defined as the solution of

d

ds
ḡ(s) = ḡ(s)T ξ̄(s) for s ∈]0, L[ (3.4.8)

with ḡ(0) = Id4, according to the definition (3.1.4). Observe that if ai(d)(s) and ā(d)
i (s)

denote the local interpolations from Id4 to ai(d) and ā(d)
i respectively, and if ξ(d)(s) and

ξ̄(d)(s) denote their associated interpolation generator vectors, then the definitions in
(3.4.6a) and (3.4.6b), lead to the relation

1

hi
(d)
T Θi

(d) = ā
(d)
i (s)T (ξ(d) − ξ̄(d))(s)(ā

(d)
i (s))−1 (3.4.9)

or equivalently to

1

hi
(d)

Θi
(d) = Ad

ā
(d)
i (s)

(
ξ(d)(s)− ξ̄(d)(s)

)
(3.4.10)

where the matrix Ad
ā
(d)
i (s)

is defined using (1.1.28). Interestingly, in contrast to the rigid

body chain case in (2.4.22), the expected generator vector ξ̄(s) is strongly related to the
first moment of the generator vector ξ(s). Precisely, for a given mesh of the interval ]0, L[
of the form in (3.3.2), if we take the expectation on both sides of (3.4.10) and if we use
the definitions (3.4.6c) and (3.3.39), we conclude that

〈ξ(s)〉 = lim
d→∞

〈
ξ(d)(s)

〉(d)
= ξ̄(s) (3.4.11)

which justifies the notation of the rod generator vector first moment in (3.3.48). More
generally, we can define the expected rod relative rigid body displacement ḡ(s′, s) by

∂sḡ(s′, s) = ḡ(s′, s)T ξ̄(s) with ḡ(s′, s′) = Id4 (3.4.12)

whose block structure is denoted

ḡ(s′, s) =

(
R̄(s′, s) r̄(s′, s)

0 1

)
(3.4.13)
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where R̄(s′, s) and r̄(s′, s) denote respectively the expected rod relative rotation and the
expected rod relative translation.

The local rod fluctuation matrix C(s) is defined as the limit

C(s) = lim
d→∞

1

hi
(d)

〈
Θi

(d) ⊗Θi
(d)
〉(d)

for si(d) < s < si+1
(d) (3.4.14)

when this limit exists in the sense of (3.3.39). Using the natural splitting of the vector
Θi

(d) = (ΘR
i

(d)
,Θr

i
(d)), as in (3.1.6) for instance, its block structure can be written as

C(s) =

(
CRR(s) CRr(s)

CRr(s)
T

Crr(s)

)
(3.4.15a)

with

CRR(s) = lim
d→∞

1

hi
(d)

〈
ΘR
i

(d) ⊗ΘR
i

(d)
〉(d)

CRr(s) = lim
d→∞

1

hi
(d)

〈
ΘR
i

(d) ⊗Θr
i

(d)
〉(d)

Crr(s) = lim
d→∞

1

hi
(d)

〈
Θr
i

(d) ⊗Θr
i

(d)
〉(d)

(3.4.15b)

where the equality is in the sense of (3.3.39). The fluctuation matrix C(s) is strongly
related to the second moment of the generator vector ξ(s). Precisely, for a configurational
distribution of the form (3.3.18) the centered second moment of ξ(s) can be shown, using
the identity (3.4.10) and the expression in (3.3.52), to satisfy〈(

〈ξ(s)〉 − ξ̄(s)
)
⊗
(
〈ξ(s)〉 − ξ̄(s)

)〉
= C(s)δs(s

′). (3.4.16)

Persevering with the similarity with the expansion made in the case of chains in
section 2.4.2, we introduce a formal definition of the idea of semi-flexible regime for
continuum rods. According to (3.4.6) the junction first moment of the discretised rod
configuration

〈
ai

(d)
〉(d) can be expanded as〈

ai
(d)
〉(d)

=
〈
αi

(d)
〉(d)

ā
(d)
i

(3.4.17a)

with 〈
αi

(d)
〉(d)

= Id4 +

〈(
T Θi

(d)
)2
〉(d)

+

〈
o
(∣∣∣Θi

(d)
∣∣∣2)〉(d)

. (3.4.17b)

A continuum rod is then said to be in the semi-flexible regime if there exists a small
parameter ε > 0 such that

lim
d→∞

1

hi
(d)

∣∣∣∣∣
〈(
T Θi

(d)
)2
〉(d)

∣∣∣∣∣ = O (ε) and lim
d→∞

1

hi
(d)

〈
o
(∣∣∣Θi

(d)
∣∣∣2)〉(d)

= o (ε) .

(3.4.18)
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Consequently, defining the matrix

L(s) =

(
LRR(s) LRr(s)

0 0

)
= lim

d→∞

−1

hi
(d)

〈(
T Θi

(d)
)2
〉(d)

(3.4.19a)

whose block structure is given, according to the identity in (2.4.15) and to the definition
of the rod fluctuation matrix in (3.4.15), by

LRR(s) = Tr
(
CRR(s)

)
Id3 − CRR(s) and LRr(s) = Vect

(
CRr(s)

)
(3.4.19b)

where the operator Vect ( . ) is defined in (1.1.13), shows that the coefficient matrix A(s),
as defined in (3.4.1b), can be approximated to first order by

A(s) = T ξ̄(s)− 1

2
L(s) + o (ε) (3.4.20)

for a semi-flexible continuum rod, according to (3.4.7) and (3.4.17). The rigid body
displacement first moment 〈g(s′, s)〉 therefore satisfies

∂s
〈
g(s′, s)

〉
=
〈
g(s′, s)

〉(
T ξ̄(s)− 1

2
L(s)

)
+ o (ε) with

〈
g(s′, s′)

〉
= Id4. (3.4.21)

In terms of the relative rotation R(s′, s) and translation r(s′, s), as defined in (3.1.9),
one has then

∂s
〈
R(s′, s)

〉
=
〈
R(s′, s)

〉([
Ū(s)×

]
− 1

2
LRR(s)

)
+ o (ε) with R(s′, s′) = Id3

(3.4.22a)

∂s
〈
r(s′, s)

〉
=
〈
R(s′, s)

〉(
V̄ (s)− 1

2
LRr(s)

)
+ o (ε) with r(s′, s′) = 0. (3.4.22b)

These expressions generalise the ones in [Yamakawa, 1997, Panyukov and Rabin,
2000] and a similar formulation can be found in [Becker, 2007] where they are deduced in
the context of Brownian dynamics on Lie groups. Relations (3.4.22) emphasize the equal
importance of the expected rod configuration ḡ(s′, s) and of the fluctuation matrix C(s)
in the behaviour of the rod first moment 〈g(s′, s)〉, similarly to the rigid body chain case
in (2.4.26). We observe that in the semi-flexible definition (3.4.18) the first estimate can
then be replaced by∣∣CRR(s)

∣∣
Sp = O (ε) and

∣∣Vect (CRr(s)
)∣∣ = O (ε) (3.4.23)

for all s ∈]0, L[ and where we recall that | . |Sp denotes the spectral norm, as defined in
(1.1.4), and, moreover, the value of the parameter ε can be estimated as

ε = max
0≤s≤L

{
2
∣∣CRR(s)

∣∣
Sp

π
,
2
∣∣Vect (CRr(s)

)∣∣
π

}
(3.4.24)
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where π
2 and 1 have been chosen as characteristic scales for angles and angular speed

respectively. We note that (3.4.20) implies that the first moment 〈g(s′, s)〉 does not
belong the group of rigid motions, as expected from the definition of the expectation 〈 . 〉.
Moreover, we want to stress the similarity between expressions (3.4.11) and (3.4.16) and
the one which appears in the theory of rigid body stochastic dynamics. In particular,
the matrix C(s) plays the role of diffusion tensor [Steele, 1963a, Steele, 1963b, Brenner,
1964, Brenner, 1965] and ξ̄(s) the role of intrinsic velocity [Zhou and Chirikjian, 2003,
Becker, 2007, Long et al., 2012]. It is finally interesting to observe that the relations
(3.4.22) constitute literally the continuum version of the ones deduces for semi-flexible
rigid body chains in (2.4.27).

3.4.3 General behavior of semi-flexible rod first moment

The expressions (3.4.22) show that the general behaviour of the first moment of a contin-
uum rod configuration can be very diverse and strongly dependent on the detailed consti-
tution of the rod. In particular, there is no reason to expect any monotone behaviour in
the entries of 〈R(s′, s)〉 nor 〈r(s′, s)〉, specifically because the expected generator vector
ξ̄(s) is generally relatively large, as in DNA models for instance. However, and similarly
to the rigid body chain case discussed in section 2.4.3, one can show some general features
for semi-flexible continuum rods.

Concerning the first moment of the relative rotation matrix R(s′, s), the relation
(3.4.22a) implies, at leading order, that

∂s
∣∣〈R(s′, s)

〉∣∣2
Sp ≤ −

∣∣LRR(s)
∣∣
Sp

∣∣〈R(s′, s)
〉∣∣2

Sp + o
(
ε2
)

(3.4.25)

for s′ ≤ s which then leads, using the Grönwall Inequality, to

∣∣〈R(s′, s)
〉∣∣

Sp ≤ exp
{
−(s− s′)λmin}+ o

(
exp

{
−(s− s′)λmin}
λmin ε

)
(3.4.26)

where λmin = mins′<t<s λ
min(t) and where λmin(t) stands for the minimum eigenvalue of

the matrix 1
2L

RR(t). Using the definition (3.4.19b), the value of λmin can be written as

λmin = min
s′<t<s

1

2
(γ1(t) + γ2(t)) (3.4.27)

where γ1(t) and γ2(t) denote the two smallest eigenvalues of CRR(t). As in the rigid
body chain case, the value of λmin vanishes if at least one of the matrices CRR(t) has two
zero eigenvalues. If λmin = 0 the rod is referred to as a degenerate rod. Consequently, if
the rod is non degenerate expression (3.4.26) shows that all frame cross-correlations, at
leading order, are asymptotically vanishing, i.e.〈

R(s′, s)
〉
→ 0 for s′ − s >> 1. (3.4.28)
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For the first moment of the translation vector 〈r(s′, s)〉, the relations (3.4.22) and
(3.4.26) lead, at leading order, to

∣∣∂s 〈r(s′, s)
〉∣∣ ≤ exp

{
−(s− s′)λmin} ∣∣∣∣V̄ − 1

2
LRr

∣∣∣∣ (3.4.29)

and ∣∣〈r(s′, s)
〉∣∣ ≤ 1

λmin

(
1− exp

{
−(s− s′)λmin}) ∣∣∣∣V̄ − 1

2
LRr

∣∣∣∣ (3.4.30)

where
∣∣V̄ − 1

2L
Rr
∣∣ = mins′<t<s

∣∣V̄ (t)− 1
2L

Rr(t)
∣∣. For a non-degenerate rod, the first

moment 〈r(s′, s)〉 is then bounded and convergent to a limiting value 〈r(s′,∞)〉 which
satisfies 〈

r(s′,∞)
〉
≤ 1

λmin

∣∣∣∣V̄ − 1

2
LRr

∣∣∣∣ . (3.4.31)

Statements (3.4.28) and (3.4.31) constitute general convergence results for non-degenerate
semi-flexible rods. They show that the larger the arc-length distance s′ − s, the more
uncorrelated is the relative orientation R(s) from R(s′) and, moreover, that the limiting
value of the Flory persistence vector is always finite. More informations about the spe-
cific physical constitution of the rod has to be known in order to obtain finer analytical
estimates.

Some particular cases of constitutively homogeneous rods are discussed in [Yamakawa,
1997, Panyukov and Rabin, 2000] and more generally in [Becker and Everaers, 2007]. In
particular, a closed form expression can be written for the first moments 〈R(s′, s)〉 and
〈r(s′, s)〉 in (3.4.22), i.e. 〈

R(s′, s)
〉

= exp
{

(s− s′)AR
}

(3.4.32a)

〈
r(s′, s)

〉
=
(
exp

{
(s− s′)AR

}
− Id3

) (
AR
)−1

Ar (3.4.32b)

where

AR =
[
Ū×
]
− 1

2
LRR (3.4.33a)

Ar = V̄ − 1

2
LRr (3.4.33b)

The limiting values of the Flory persistence vector is then,〈
r(s′,∞)

〉
= −

(
AR
)−1

Ar . (3.4.34)

We emphasize the analogy between these expressions and the ones obtained in (2.4.37)
and (2.4.39) for the rigid body chain first moments.
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3.4.4 Global factorization and the persistence matrix

The explicit ODE in (3.4.21) allows the study of the configurational first moment g(s′, s)
behaviour using numerical methods. However, clear and general relations between the
values of the expected rod generator vector ξ̄(s), the fluctuation matrix C(s) and the
behaviour of the entries in g(s′, s) are still missing. Using an analogous approach to the
one made for chains in section 2.4.4 provides key features of the statistical physics of
continuum rods.

In analogy to the rigid body chain case, we define the deformation matrix D(s′, s)
through the factorization

g(s′, s) = D(s′, s)ḡ(s′, s) (3.4.35)

where ḡ(s′, s) is given in (3.4.12). The first moment 〈g(s′, s)〉 then becomes〈
g(s′, s)

〉
=
〈
D(s′, s)

〉
ḡ(s′, s) (3.4.36)

or equivalently in terms of the relative rotation and translation〈
R(s′, s)

〉
=
〈
∆(s′, s)

〉
R̄(s′, s) (3.4.37a)〈

r(s′, s)
〉

=
〈
δ(s′, s)

〉
+
〈
∆(s′, s)

〉
r̄(s′, s) (3.4.37b)

where we have defined the block structure of 〈D(s′, s)〉 as〈
D(s′, s)

〉
=

(
〈∆(s′, s)〉 〈δ(s′, s)〉

0 1

)
(3.4.38)

and used the block structure of ḡ(s′, s) in (3.4.13).
Given the ODE deduced for the first moment 〈g(s′, s)〉 in (3.4.21), together with the

one for the expected rod configuration ḡ(s′, s) in (3.4.8), one can then show that the
deformation matrix first moment 〈D(s′, s)〉 is governed by the relation

∂s
〈
D(s′, s)

〉
=
〈
D(s′, s)

〉{
−1

2
ḡ(s′, s)L(s)ḡ−1(s′, s)

}
with

〈
D(s′, s′)

〉
= Id4 (3.4.39)

or equivalently

∂s
〈
∆(s′, s)

〉
=
〈
∆(s′, s)

〉{
−1

2
R̄(s′, s)LRR(s)R̄T (s′, s)

}
(3.4.40a)

∂s
〈
δ(s′, s)

〉
=
〈
∆(s′, s)

〉{1

2
R̄(s′, s)LRR(s)R̄T (s′, s)r̄(s′, s)− 1

2
R̄(s′, s)LRr(s)

}
(3.4.40b)

where LRR(s) and LRr(s) denote the blocks of L(s) defined in (3.4.19b). These rela-
tions imply that the entries in the block 〈∆(s′, s)〉 are asymptotically vanishing for non
degenerate rods since

exp
{
−(s− s′)λmax} ≤ ∣∣〈∆(s′, s)

〉∣∣
Sp ≤ exp

{
−(s− s′)λmin} (3.4.41)
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according to the Grönwall Inequality, where λmax = maxs′≤t≤s λ
max(t) with λmax(t) is the

maximum eigenvalue of 1
2L

RR(t) and is obtained similarly to λmin in (3.4.27). Moreover,
in contrast to the first moment of the relative rotation 〈R(s′, s)〉, the variation has to be
small since ∣∣∂s 〈∆(s′, s)

〉∣∣
Sp = O

(
exp

{
−(s− s′)λmin} ε) (3.4.42)

according to the semi-flexible hypothesis (3.4.23). Consequently, analogously to rigid
body chains, the relative rotation first moment 〈R(s′, s)〉 can be factorized, for non-
degenerate semi-flexible rods, into a fast and non-decaying rotation matrix R̄(s′, s) and
another slowly varying and strictly decaying matrix 〈∆(s′, s)〉.

The estimate in (3.4.41) and the expression (3.4.40b) show that the translation part
〈δ(s′, s)〉 also has a slow variation since

∣∣∂s 〈δ(s′, s)
〉∣∣ = O

(
ε exp

{
−(s− s′)λmin} (∣∣r̄(s′, s)

∣∣+ 1
))

(3.4.43)

and is bounded using the estimate

∣∣〈δ(s′, s)
〉∣∣ ≤ 1

λmin

(
1− exp

{
−(s− s′)λmin})(λmax

λmin

∣∣V̄ ∣∣+
∣∣LRr

∣∣)
−λ

max

λmin

∣∣V̄ ∣∣ (1− exp
{
−(s− s′)λmin}) (s− s′).

(3.4.44)

Moreover using the definition (3.4.37b) one has that

〈
δ(s′,∞)

〉
=
〈
r(s′,∞)

〉
. (3.4.45)

We again emphasize the similarity between the estimates (3.4.41) and (3.4.44) and the
corresponding ones for the rigid body chain case in (2.4.47) and in (2.4.51).

The first moment of the translation vector 〈r(s′, s)〉 can then be decomposed into the
non-converging triple r̄(s′, s) damped by the matrix 〈∆(s′, s)〉 and by a convergent part
〈δ(s′, s)〉. Moreover, the triple 〈δ(s′, s)〉 is made by a damped integral of the expected
translation vector r̄(s′, s) according to its definition (3.4.40b), and has the same limiting
values as the vector 〈r(s′, s)〉.

Similarly to the rigid body chain case, the matrix 〈D(s′, s)〉 will be called the persis-
tence matrix. The block 〈∆(s′, s)〉 encodes how much of the expected rod configuration
ḡ(s′, s) persists in the value of the first moment of the configurational first moment
〈g(s′, s)〉 according to (3.4.37), and the limiting value of 〈δ(s′, s)〉 behaves like the Flory
persistence vector 〈r(s′, s)〉, as shown in (3.4.45). The proposed factorization can be seen
as a generalisation of the results in [Trifonov et al., 1988, Schellman and Harvey, 1995],
but in a continuum version, as a way to deconvolve the effect of local intrinsic bent and
thermal fluctuation on the behaviour of the first moment 〈g(s′, s)〉 for molecules.
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3.4.5 Short and long length behavior approximation

Similarly to the discussion made for chains in section 2.4.5, we describe here how analytic
solutions can be established in the case of continuum rods in the semi-flexible regime using
the persistence matrix factorization in (3.4.36) and an asymptotic development in the
rod reference length.

For s sufficiently close to s′, and using the semi-flexible hypothesis in (3.4.23) the
leading order term of the persistence matrix 〈D(s′, s)〉 solution of (3.4.39) can be shown
to be 〈

D(s′, s)
〉

= exp

{
−1

2

∫ s

s′
ḡ(s′, t)L(t)ḡ(s′, t)−1dt

}
+ o

(
(s− s′)ε

)
(3.4.46)

using the Magnus expansion for linear ODE systems.
A more explicit formulation is obtained by defining the matrices

Ω(s′, s) =
1

2

∫ s

s′
R̄(s′, t)LRR(t)R̄(s′, t)Tdt (3.4.47a)

and the triples

ω(s′, s) =(∫ s

s′
R̄(s′, t)LRR(t)R̄(s′, t)Tdt

)−1 [∫ s

s′
R̄(s′, t)LRR(t)R̄(s′, t)T r̄(s′, t)− R̄(s′, t)LRr(t)dt

]
(3.4.47b)

for each s ≥ s′. The blocks of the persistence matrix in (3.4.38) then read, according to
expression (3.4.46) and to the identity in (2.4.59),〈

∆(s′, s)
〉

= exp
{
−Ω(s′, s)

}
+ o

(
(s− s′)ε

)
(3.4.48a)〈

δ(s′, s)
〉

=
[
Id3 − exp

{
−Ω(s′, s)

}]
ω(s′, s) + o

(
(s− s′)ε

)
(3.4.48b)

Consequently, using the factorization in (3.4.37), the first moment of the relative
rotation R(s′, s) and of the relative translation r(s′, s) can respectively be approximated
as 〈

R(s′, s)
〉

= exp
{
−Ω(s′, s)

}
R̄(s′, s) + o

(
(s− s′)ε

)
(3.4.49a)〈

r(s, s′)
〉

=
[
Id3 − exp

{
−Ω(s′, s)

}]
ω(s′, s) + exp

{
−Ω(s′, s)

}
r̄(s′, s) + o

(
(s′ − s)ε

)
.

(3.4.49b)

for s sufficiently close to s′. The formulas in (3.4.49) comprises the short length asymptotic
behaviour for continuum rods. At first order, the direct dependence of the expected rod
configuration ḡ(s′, s) on the behaviour of first moment 〈gm,n〉 is then observed to be
exponentially damped at a rate controlled by the symmetric and positive definite matrix

Ω(s′, s) =
1

2

∫ s

s′
Tr
(
CRR(t)

)
Id3 − R̄(s′, t)CRR(t)R̄(s′, t)Tdt (3.4.50)
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according to the definition of LRR(s) in (3.4.19b).
Moreover, similarly to the case of rigid body chains, the persistence vector 〈r(s′, s)〉

is observed to be made of a convex sum of the vector ω(s′, s) and r̄(s′, s), and the vector
ω(s′, s) of a weighted average of the translation vector r̄(s′, s). In particular the following
estimates can be deduced for non-degenerate rods

(s− s′)λmin ≤
∣∣Ω(s′, s)

∣∣
Sp ≤ (s− s′)λmax (3.4.51a)

∣∣ω(s′, s)
∣∣ ≤ λmax

λmin
1

s− s′

∫ s

s′

∣∣r̄(s′, t)
∣∣ dt+

1

2

∣∣LRr
∣∣

λmin . (3.4.51b)

and they lead, for the first moments 〈R(s′, s)〉 and 〈r(s′, s)〉, to

exp
{
−(s− s′)λmax} ≤ ∣∣〈R(s′, s)

〉∣∣
Sp ≤ exp

{
−(s− s′)λmin} (3.4.52a)

∣∣〈r(s′, s)
〉∣∣ ≤ (1− exp

{
−(s− s′)λmax})

[
λmax

λmin
1

s− s′

∫ s

s′

∣∣r̄(s′, t)
∣∣ dt+

1

2

∣∣LRr
∣∣

λmin

]
+ exp

{
−(s− s′)λmin} ∣∣r̄(s′, s)

∣∣
(3.4.52b)

for s sufficiently close to s′.
In the opposite case, when the arc-length difference s − s′ is large, the behaviour of

the first moment 〈g(s′, s)〉 is dominated by the asymptotic values given by |s− s′| → ∞.
Using the ODE system in (3.4.22), together with the estimates (3.4.26) and (3.4.30), we
conclude that for non-degenerate semi-flexible rods

〈
R(s′, s)

〉
= 0 + O

(
exp

{
−(s− s′)λmin}
λmin

)
(3.4.53a)

〈
r(s′, s)

〉
=
〈
r(s′,∞)

〉
+ O

(
exp

{
−(s− s′)λmin}
λmin

)
(3.4.53b)

for s >> s′. The associated first order correction requires a more detailed analysis and
is left as an open topic.
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4. Bridging the Scales from Chain to Rod
Mechanics

Mathematically, there is some subtlety in going from discrete n to continuous n, but for
the present purpose it is sufficient to understand that eqn (...) is a formal rewriting of

eqn (...). In this book we use the discrete n and continuous n interchangeably.

M. Doi & S. F Edwards, 1986.

This fourth chapter presents both general principles and explicit methods to bridge
the scales from chain to rod mechanics. In section 4.1 we discuss how the original
Cauchy-Born rule, introduced to provide continuum modelling of crystal deformations,
can be adapted to the context of chains and rods. Inspired by the work of [Arroyo
and Belytschko, 2004] on the application of such rules for configuration space with an
intrinsically non-flat geometry, we also refer to exponential Cauchy-Born rules, even if
our context is different. Local interpolation rules for chains and bichains are presented
and lead to the definition of consistent discrete and continuum energies and stationary
configurations. We briefly expose why, under specific hypotheses, continuum equilibrium
configurations can provide approximations of the discrete equilibrium configurations.
The discussion is then extended to the notion of consistent observable and configura-
tional distributions, and it is noticed that in general the definition of a deterministic
Cauchy-Born rule does not imply a stochastic Cauchy-Born rule. Section 4.2 presents an
explicit definition of a deterministic Cauchy-Born rule between bichains and birods with
quadratic energy. This rule is obtained by matching the first and second order terms in
an expansion of the bichain energy and provides then only consistency at leading orders.
Similarly, we discuss in section 4.3 the construction of an explicit stochastic Cauchy-Born
rule. However, this rule is only for a single chain and a single rod which admit normal
configurational distributions and which are in a semi-flexible regime. We deduce the rule
by matching the first and second moments of the chain internal coordinates.
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Chapter 4. Bridging the Scales from Chain to Rod Mechanics

4.1 On Exponential Cauchy-Born Rules for Rigid Body Chains
and Bichains

We discuss in this section general principles in the scale bridging between chain and rod
mechanics, and more precisely, in which sense a continuum rod model can be thought
of as an approximation of a chain model. Originally the Cauchy-Born rule was used to
approximate a potential energy for continuum deformable bodies configurations given the
analogous all atom energy and configurations, see for instance [E and Ming, 2006, Tadmor
and Miller, 2011]. For rodlike objects similar Cauchy-Born rules have been proposed in
the context of carbon nanotube modelling [Arroyo and Belytschko, 2004, Yang and E,
2006] or precisely in the context of Cosserat rods [Yang and E, 2006, Hakobyan et al.,
2012, Kumar et al., 2015]. In particular in [Arroyo and Belytschko, 2004] they define
the notion of exponential Cauchy-Born rule which is the direct analogue of the classical
Cauchy-Born rule but for a configuration space with an intrinsic non-flat geometry. In the
context of continuum rod approximation of rigid body chain mechanics, these Cauchy-
Born rules have to be modified since the configuration space of the original discrete system
is different than the one appearing in atomic representations. In other words, we have
not to work with groups of atoms but directly with rigid bodies. The constructions are
also referred to as exponential Cauchy-Born rules, even if they are different from the one
in [Arroyo and Belytschko, 2004], since they significantly use the underlying geometric
structure of chain and rod configurations. Moreover, we need to discuss separately a rule
based on the chain internal energy, which we call a deterministic exponential Cauchy-
Born rule, and a rule based on the chain configurational distribution, which we call a
stochastic exponential Cauchy-Born rule. In order to provide a precise discussion, we
define chain, and respectively bichain, local interpolation rules. The notion of consistent
discrete and continuum energies is then introduced which leads naturally to notion of
consistent discrete and continuum stationary configurations. We briefly discuss why,
under specific hypotheses, continuum equilibrium configurations can be expected to be
close to the equilibrium configurations of the original problem. Similarly, we present the
definition of consistent discrete and continuum observables and stationary configurational
distributions. We finally conclude that in general deterministic exponential Cauchy-Born
rules do not lead to stochastic exponential Cauchy-Born rules.
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Figure 4.1: Sketch of a chain interpolation
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Chapter 4. Bridging the Scales from Chain to Rod Mechanics

4.1.1 Interpolation rules for chains and bichains

In section (3.3.1), we discussed how the discretisation of a set of continuum rod con-
figurations can naturally be interpreted as a set of rigid body chain configurations, and
similarly for discretised birods and bichains. The inverse procedure, based on a given
chain or bichain interpolation rule, allows consideration of a set of rigid body chain, or
rigid body bichains configurations, as a particular subset of continuum rods, or respec-
tively birod, configurations.

Precisely, for a chain configuration g = (g1, ..., gN ), as defined in (2.1.1), we introduce
a reference length L and a set of N nodes, denoted respectively by sn(N), such that

0 = s1
(N) < s2

(N) < ... < sN
(N) = L. (4.1.1)

We can then introduce a continuous local rod interpolation, denoted by g(N)(s) which is
of the form

g(N)(s) = g(N)(a; s) for s ∈]0, L[ (4.1.2)

where a = (a1, ..., aN−1) denote the set of local junction displacement in the chain asso-
ciated to the chain configuration g, as defined in (2.1.4), and which have the properties
that

g(N)(a; sn
(N)) = gn (4.1.3)

and

g(N)(s) = g(N)(an; s) for sn(N) < s < sn+1
(N) (4.1.4)

for all n = 1, ..., N . Note that we have used a similar notation to (3.3.7) and (3.3.8). The
rod interpolation generator vector ξ(N)(s) is then defined by the relation

d

ds
g(N)(s) = g(N)(s)T ξ(N)(s) (4.1.5)

and we observe that, according to the assumption (4.1.4), the dependence of the generator
vector ξ(N)(s) on the chain configuration g is local in the sense that

ξ(N)(s) = ξ(N)(an; s) for sn(N) < s < sn+1
(N) (4.1.6)

for all n = 1, ..., N . Consequently, if we denote by Γ(N) the set of rigid body chain
configurations satisfying one of the conditions in (2.2.3) and by Γ the set of continuous
rod configurations satisfying the analogous condition in (3.2.3), one has formally the
embedding

Γ(N) ⊂ Γ (4.1.7)
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4.1. On Exponential Cauchy-Born Rules for Rigid Body Chains and Bichains

using the interpolation rule (4.1.2). A sketch of an interpolated rod configuration is
drawn in figure 4.1.

For a bichain configuration (g,P) = (g1,P1, ..., gN ,PN ) and a mesh of the form
(4.1.1) the local birod interpolation (g(N)(s),P(N)(s)) is defined similarly to that for
single chains, i.e. with

g(N)(s) = g(N)(a; s) and P(N)(s) = P(N)(P; s) for s ∈]0, L[ (4.1.8)

where P = (P1, ...,PN ) denotes the bichain microstructure configuration, and with the
properties that

g(N)(a; sn
(N)) = gn and P(N)(P; sn

(N)) = Pn (4.1.9)

and

g(N)(s) = g(N)(an; s) and P(N)(s) = P(N)(Pn,Pn+1; s) for sn(N) < s < sn+1
(N)

(4.1.10)

for all n = 1, .., N . The associated macrostructure and microstructure birod interpolations
generator vectors are then of the form

d

ds
g(N)(s) = g(N)(s)T ξ(N)(s) and

d

ds
P(N)(s) = T PξP (N)

(s) (4.1.11)

for all s ∈]0, L[ and with

ξ(N)(s) = ξ(N)(an; s) and ξP (N)
(s) = ξP

(N)
(Pn,Pn+1; s) for sn(N) < s < sn+1

(N).

(4.1.12)

Denoting, similarly as for single chain configurations, by Γ(N) the set of rigid body bichain
configurations satisfying one of the conditions in (2.2.42) and by Γ the set of continuous
birod configuration satisfying the analogous condition in (3.2.51), one also obtains a
formal embedding of the form (4.1.7). A sketch of an interpolated rod configuration is
drawn in figure 4.2.

4.1.2 On the consistency of energies and stationary configurations

The interpolations rules presented in the previous section allow a representation of rigid
body chains and bichains as well defined continuum objects and this idea leads naturally
to the notion of consistent energy.

For a given set of interpolated chain configuration Γ(N) and a set of continuum
configurations Γ satisfying (4.1.7), a continuum rod energy E(N) is said to be consistent
with the chain energy E if

E(N)[g(N)] = E(g) for all g(N) ∈ Γ(N). (4.1.13)
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Chapter 4. Bridging the Scales from Chain to Rod Mechanics

Figure 4.2: Sketch of a bichain interpolation
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4.1. On Exponential Cauchy-Born Rules for Rigid Body Chains and Bichains

In the case of chain and rod internal energies defined respectively in (2.2.5) and (3.2.5),
the internal energies are consistent if∫ sn+1

sn

W(ξ(N)(s); s) = wn(an) for all g(N) ∈ Γ(N) (4.1.14)

for all nodes sn in the interpolation mesh (3.3.2), according to the assumption (4.1.6).
The explicit construction of a consistent continuum rod energy E(N)[g(N)] for a given
interpolation rule of the form in (4.1.6) and given chain energy E(g) is said to be a
deterministic exponential Cauchy-Born rule for chains.

Similarly, a bichain energy E and a continuum birod energy E(N) are then said to be
consistent energies if

E(N)[g(N),P(N)] = E(g,P) for all (g(N),P(N)) ∈ Γ(N) (4.1.15)

where Γ(N) denotes the set of interpolated bichain configurations according to the rules
in (4.1.8). When both the bichain and the birod energy are local, as defined respectively
in (2.2.32) and (3.2.42), then the internal energies are consistent if∫ sn+1

sn

W(P(N)(s), ξP
(N)

(s), ξ(N)(s); s) = wn(Pn, an,Pn+1) for all (g(N),P(N)) ∈ Γ(N)

(4.1.16)

and for all nodes sn in the interpolation mesh (3.3.2), according to the assumptions
(4.1.10) and (4.1.12). The construction of a consistent continuum birod energy
E(N)[g(N),P(N)] for a given bichain energy E(g,P) is called a deterministic exponential
Cauchy-Born rule for bichains.

A fundamental question arising from the definition of discrete and continuum consis-
tent energies, either of the form (4.1.13) or (4.1.15), is whether their respective stationary
configuration, in the sense of (2.2.7) and (3.2.7) for instance, or even minimum energy
configuration have any chance to be consistent, in the sense that one is the exact in-
terpolation of the other. Of course, the answer is in general no, since the definition of
consistency only involves information on the subset of interpolations, a detailed analy-
sis is required in particular cases to prove if that happens or not, see for instance the
inspiring papers [Friesecke and Theil, 2002, E and Ming, 2006] in the context of the
Cauchy-Born rule for crystals.

However, the formulations of the bichain and birod equilibrium conditions in terms
of Lagrange multipliers, presented respectively in section 2.2.6 and 3.2.9, allows us to
state an estimate of the difference between bichain and birod stationary configurations,
which, even if it has to be regarded as very coarse, is instructive.

In the case of bichains, we assume that there exists a unique configuration denoted by
(ĝ , P̂) which makes the internal energy E stationary with respect to unstressed bound-
ary conditions presented in (2.2.40b). The configuration (ĝ , P̂) is then called the bichain
ground state configuration. Using the expressions in (2.2.53) we deduce that consequently
the configuration (ĝ , P̂) makes the Lagrangian function L, defined in (2.2.55), station-
ary with the Lagrange multipliers all vanishing identically, i.e. λ = 0, for the Dirichlet
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conditions (g1
∗,P1

∗) = (ĝ1, P̂1) and (gN
∗,PN ∗) = (ĝN , P̂N ). Moreover, we shall assume

that there exists a value λc > 0 such that for all λ with |λ| < λc one can find Dirich-
let conditions (g1

∗,P1
∗)(λ) and (gN

∗,PN ∗)(λ) such that there exists a unique bichain
configuration solution of the stationary conditions (2.2.35) or, equivalently, of (2.2.53).
Formally, one obtains a mapping

λ 7→ (g,P)(λ) for all λ with |λ| < λc (4.1.17a)

with

(g,P)(0) = (ĝ , P̂) (4.1.17b)

which satisfies by definition

δL ((g,P)(λ),λ) (δg, δP, δλ) = 0 for all λ with |λ| < λc (4.1.17c)

and for any perturbation (δg, δP, δλ).
Similarly, if there exists a unique birod configuration which makes stationary the in-

ternal birod energy with respect to unstressed boundary conditions presented in (2.2.40b),
it is called the birod ground state configuration. For a birod internal energy E(N) consis-
tent with the bichain energy E in the sense of (4.1.15), one can show that the stationary
birod configuration (g,P) respecting the Dirichlet conditions (g(0),P(0)) = (g1

∗,P1
∗)

and (g(L),P(L)) = (gN
∗,PN ∗) are unconstrained stationary birod configurations of a

functional of the form

L(N)[g,P,λ] = E(N)[g,P]− λ · Φ (P(0), g(L),P(L);P1
∗, gN

∗,PN ∗) (4.1.18)

according to (3.2.80). Assuming that the continuum energy E(N) admits an unstressed
configuration and, moreover, that it is given by the interpolation in the sense of (4.1.9) of
the bichain unstressed configuration in (4.1.17b), i.e. by (ĝ(N), P̂(N)

), then it makes the
functional L(N) defined in (4.1.18) stationary with the Lagrange multipliers all identically
vanishing, i.e. λ = 0.

Furthermore, analogously to (4.1.17), we make the hypothesis that for all λ with |λ| <
λc there exist Dirichlet conditions (g0

∗,P0
∗)(λ) and (gL

∗,PL∗)(λ) such the stationary
conditions (3.2.45) admit a unique birod configuration solution. Formally, this can be
expressed by the mapping

λ 7→ (g,P)[λ] for all λ with |λ| < λc (4.1.19a)

with

(g,P)[0] = (ĝ, P̂) (4.1.19b)

and which satisfies by definition

δL(N) [(g,P)[λ],λ] (δg, δP, δλ) = 0 for all λ with |λ| < λc (4.1.19c)
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and for any perturbation (δg, δP, δλ).
In such circumstances, for given Dirichlet conditions

(g1
∗,P1

∗) and (gN
∗,PN ∗) (4.1.20)

and for a given bichain energy E and an associated consistent birod energy E(N) satisfying
(4.1.17) and (4.1.19) respectively, we denote by (g,P)(λ1) and (g,P)[λ2] the bichain
and birod configuration which satisfies (4.1.17c) and (4.1.19c) respectively. Then, using
expansions around λ = 0, one deduces the following estimates∣∣∣E ((g,P)(λ1),λ1)− E(N) [(g,P)[λ2],λ2]

∣∣∣ = O
(
λ2
c

)
(4.1.21a)

|(g,P)(λ1))− (g,P)[λ2]| = O (λc) (4.1.21b)

if the expressions in (4.1.17a) and (4.1.19a) are smooth enough. The optimality of these
approximations as well as the statement of finer estimates are left as open topics.

4.1.3 On the consistency of observables and configurational distribu-
tions

Another natural question which appears in the definition of continuum models as a
representation of discrete systems is comparing their statistical physics properties. To
assess this point we need to introduce the notion of consistent observable and the notion
of consistent configurational distribution.

Let the rigid body chain configuration set Γ(N) and a set of continuous rod interpo-
lations Γ satisfying (4.1.7), where both stand for unstressed configurations, as defined in
(2.2.2b) and (3.2.2b). We say then that the continuum rod observable A(N) is consistent
with the chain observable A if

A(N)[g(N)] = A(g) for all g(N) ∈ Γ(N). (4.1.22)

Similarly, a birod observable A(N) and a bichain observable A are consistent if

A(N)[g(N),P(N)] = A(g,P) for all (g(N),P(N)) ∈ Γ(N) (4.1.23)

where the set Γ(N) denotes unstressed configurations, as defined in (2.2.40b) and (3.2.50b).
We note that the definition of consistent observables (4.1.22) is analogous to the one made
for consistent internal energies in (4.1.13) and (4.1.15).

A chain configurational distribution dρ(g) and a rod configurational distribution
dρ(N)[g] are said to be consistent if the expectation value of any consistent observable A
and A(N) coincides, i.e. if 〈

A(N)[g(N)]
〉(N)

= 〈A(g)〉 (4.1.24)
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where 〈 . 〉(N) and 〈 . 〉 stand for the expectation with respect to the rod distribution
dρ(N)[g] and the chain distribution dρ(g), as defined in (2.3.10) and in (3.3.35) respec-
tively. The construction of a consistent continuum rod configuration distribution dρ(N)[g]
for a given chain interpolation rule and a given chain distribution dρ(g) is said to be a
stochastic exponential Cauchy-Born rule for chains. Similarly, a bichain distribution
dρ(g,P) and a birod distribution dρ(N)[g,P] are said to be consistent if〈

A(N)[g(N),P(N)]
〉(N)

= 〈A(g,P)〉 (4.1.25)

for any consistent bichain observables A and birod observables A(N). The construction of
a birod distribution dρ(N)[g,P] satisfying (4.1.25) for a given bichain distribution and a
given interpolation rule is called a stochastic exponential Cauchy-Born rule for bichains.

We would like to observe, without providing any rigorous examples, that in general
deterministic Cauchy-Born rules, in the sense of (4.1.13) or (4.1.15), do not provide
stochastic Cauchy-Born rules, in the sense of (4.1.24) or (4.1.25). This statement is
motivated by the idea that deterministic Cauchy-Born rules are consistent on the set
of chain, or respectively bichain, interpolations and this condition is not strong enough
to imply the consistency of the associated configurational distributions. The required
mathematical analysis goes beyond the present thesis and is left as an open topic.
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energies

4.2 A Deterministic Exponential Cauchy-Born Rule for Quadratic
Bichain Internal energies

The general idea of deterministic Cauchy-Born rules in the context of chains has been
discussed in section (4.1.2). We now would like to concentrate on the particular cases of
quadratic internal energies. As anticipated, we are mainly interested in the application of
chain and rod theory in the context of sequence dependent DNA modelling. In particular,
a quadratic internal bichain energy of the form

E(g(x),P(y)) =
N−1∑
n=1

1

2

 yn − ŷαβn
xn − x̂αβn

yn+1 − ŷαβn+1

 ·Kαβ
n

 yn − ŷαβn
xn − x̂αβn

yn+1 − ŷαβn+1

+
N∑
n=1

1

2
(yn − ŷαn) ·Kα

n (yn − ŷαn)

(4.2.1)

has been proposed in [Petkeviciute, 2012, Gonzalez et al., 2013, Petkeviciute et al., 2014]
where the bichain internal coordinates (x, y) are defined in (2.1.31) and where the sub-
scripts αβ and α refer to the physical constitution of the bichain. This model corresponds
to a nearest neighbor quadratic rigid base energy. Precisely we have x̂αβn , ŷαβn ∈ R6,
Kαβ
n ∈ R18×18 and Kα

n ∈ R6×6. This quadratic form can then be written as

E(g(x),P(y)) =
1

2


y1 − ŷ1

x1 − x̂1

...
xN−1 − x̂N−1

yN − ŷN

 ·K


y1 − ŷ1

x1 − x̂1

...
xN−1 − x̂N−1

yN − ŷN

 (4.2.2)

where K ∈ R(12N−6)×(12N−6) is called the bichain stiffness matrix and (x̂, ŷ) ∈ R12N−6

the bichain ground state internal coordinates. We underline in particular that the en-
tries (x̂n, ŷn) do not correspond to (x̂αβn , ŷαβn ), since one needs to complete the square
to obtain (4.2.2) from (4.2.1), which is a non-local computation. More details on the
rigid base model are provided in section 5.2.2. We observe that the bichain configura-
tion (ĝ , P̂), defined by the internal coordinates (x̂, ŷ), is a called ground state since it is
the global minimiser of the function E(g(x),P(y)). The construction of a deterministic
Cauchy-Born rule for the rigid base model is of interest since it allows the approxima-
tion of stationary configurations of the energy E(g(x),P(y)) for prescribed bichain end
conditions, such as in (4.1.20) for instance, using a continuum birod model. Numerical
examples are discussed in the context of sequence dependent DNA modelling in chapter
6.

According to the discussion made in section (4.1.2), the strategy is to define a
quadratic internal birod energy Ê(N)[g,P(y)] which has the property to be consistent
for a given interpolation rule, in the sense of (4.1.15), to the quadratic bichain energy
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E(g(x),P(y)) in (4.2.2). Precisely, we assume a birod energy of the form

Ê(N)[g,P(y)] =

∫ L

0

1

2

 y(s)− ŷ(s)
d
dsy(s)− d

ds ŷ(s)

ξ(s)− ξ̂(s)

 ·K(s)

 y(s)− ŷ(s)
d
dsy(s)− d

ds ŷ(s)

ξ(s)− ξ̂(s)

 ds

+
1

2
(y(0)− ŷ(0)) ·K0 (y(0)− ŷ(0)) +

1

2
(y(L)− ŷ(L)) ·KL (y(L)− ŷ(L))

(4.2.3)

where the macrostructure generator vector ξ(s) and the microstructure internal coordi-
nates y(s) are presented in (3.2.57), K(s) ∈ R18×18 is the interior birod stiffness matrix,
K0 ∈ R6×6 and KL ∈ R6×6 are boundary intra stiffness matrices, and (ξ̂(s), ŷ(s)) the
birod ground state internal variables, similarly to bichains.

Before presenting how to construct a birod internal energy of the form (4.2.3) given
a quadratic bichain energy of the form (4.2.1), we need to remark that one cannot ask
simultaneously to define an exact consistent energy and that both discrete and continuum
energy formulations are quadratic. The reason is that the dependence of the birod
macrostructure generator ξ(s) vector on the bichain macrostructure coordinates x is
non-linear. However, to pursue the goal of parametrizing a continuum birod model with
a realistic bichain model we will conserve the bichain coordinates used in [Gonzalez
et al., 2013], and, to achieve all the future necessary analytical computations, we will
also conserve the quadratic birod energy formulation (4.2.3). The compromise is then to
only look for an approximate consistency of the discrete and continuum energies. More
precisely we will only ask for consistency at the leading orders through quadratic terms.

In order to show how such a continuum energy can be defined, we first need to intro-
duce a specific birod interpolation rule for bichain configurations. Let ĝ = (ĝ1, ..., ĝN )
be the macrostructure ground state associated to the internal coordinates (x̂1, ..., x̂N−1)
in (4.2.2), the reference length L is defined as the sum of all the junction lengths hn(N)

which are chosen to be exactly the lengths of each local helical interpolation between
the rigid body configuration ĝn and ĝn+1. The interpolation of the macrostructure con-
figuration ĝ is then defined as a piecewise helical interpolation ĝ(N)(s). Formally, the
reference length L together with the nodes sn(N) ∈]0, L[, and the interpolation ĝ(N)(s)
are defined by the relations

s1
(N) = 0, sn+1

(N) = sn
(N) + hn

(N) and sN (N) = L for all n = 1, ..., N − 1 (4.2.4a)

d

ds
ĝ(N)(s) = ĝ(N)(s)T ξ̂(N)(s) for all s ∈]0, L[ (4.2.4b)

ĝ(N)(sn
(N)) = ĝn for all n = 1, ..., N (4.2.4c)

T ξ̂(N)(s) =
1

hn
(N)

ln {a(x̂n)} for sn(N) < s < sn+1
(N) (4.2.4d)∣∣∣V̂ (N)(s)

∣∣∣ = 1 for all s ∈]0, L[ (4.2.4e)

where we recall that a(xn) = g−1
n gn+1 denotes the local junction displacement and

V̂ (N)(s) ∈ R3 the translational part of the macrostructure generator vector ξ̂(N)(s), as
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presented in (3.1.5). Observe that a piecewise helical interpolation of chain configu-
ration is characterised by the fact the generator vector ξ̂(N)(s) is piece wise constant
on the interval ]0, L[. A tempting choice would be to define the interpolation of any
bichain macrostructure configuration g as piecewise helices, similarly to the ground state
macrostructure configuration ĝ . However this choice is not the most convenient to use
and, in contrast, we propose to make piecewise helical interpolations of the deformations
from the ground state instead of the actual configurations. This leads to the definition
of the interpolation g(N)(s) of the bichain macrostructure configuration g = (g1, ..., gN )
by

d

ds
g(N)(s) = g(N)(s)T ξ(N)(s) for all s ∈]0, L[ (4.2.5a)

with

T ξ(N)(s) = T ξ̂(N)(s) +
1

hn
(N)

[
ĝ−1
n ĝ

(N)(s)
]−1

ln
{
a(xn)a−1(x̂n)

} [
ĝ−1
n ĝ

(N)(s)
]

(4.2.5b)

for sn(N) < s < sn+1
(N), where we recall that hn(N) = sn+1

(N) − sn(N) denotes the local
junction length. The main interest in this choice of interpolation is that it directly allows
to deduce the following expansion for s ∈]sn

(N), sn+1
(N)[

ξ(N)(s) = ξ̂(N)(s) +
1

hn
(N)

Ad−1
ĝ−1
n ĝ(N)(s)

L(1)
x̂n

(xn − x̂n) + O
(
|xn − x̂n|2

)
(4.2.6)

according to the identity1 in (2.2.18), and where the operator Ad and the matrix L(1)
x̂n

are defined in (2.2.14) and in (2.2.18) respectively. Note that the matrix L(1)
x̂n

is explicitly
given in (2.2.20) for the internal coordinates xn used in [Petkeviciute, 2012, Gonzalez
et al., 2013, Petkeviciute et al., 2014].

In contrast, it is possible to use a piecewise linear interpolation for internal bichain
microstructure coordinates y = (y1, ..., yN ) since the internal variables for the birod
microstructure, defined in (3.1.28), are chosen consistently with the bichain internal
variables defined in (2.1.33). Precisely, we define the interpolation y(N)(s) using the rule

y(N)(s) = yn +
s− sn(N)

hn
(N)

(yn+1 − yn) for s ∈]sn
(N), sn+1

(N)[ (4.2.7)

which gives(
y(N)(s)
d
dsy

(N)(s)

)
=

(
(1− s−sn(N)

hn
(N) )Id6

s−sn(N)

hn
(N) Id6

− 1
hn

(N) Id6
1

hn
(N) Id6

)(
yn
yn+1

)
for s ∈]sn

(N), sn+1
(N)[.

(4.2.8)

The interpolated microstructure variables ŷ(N)(s) are defined using the rule in (4.2.7).
1See section 1.3 for more detail on matrix expansion with respect to coordinate systems.
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We then have the following expansion of the birod variables around the bichain ground
state (x̂, ŷ) for s ∈]sn

(N), sn+1
(N)[ y(N)(s)− ŷ(N)(s)

d
dsy

(N)(s)− d
ds ŷ

(N)(s)

ξ(N)(s)− ξ̂(N)(s)

 = Lx̂n(s)

 yn − ŷn
xn − x̂n

yn+1 − ŷn+1

+ O
(
|xn − x̂n|2

)
(4.2.9)

with

Lx̂n(s) =


(1− s−sn(N)

hn
(N) )Id6 0 s−sn(N)

hn
(N) Id6

− 1
hn

(N) Id6 0 1
hn

(N) Id6

0 1
hn

(N)Ad
−1
ĝ−1
n ĝ(N)(s)

L(1)
x̂n

0

 (4.2.10)

according to (4.2.6) and (4.2.8). Consequently, defining the birod ground state internal
variables (ξ̂(s), ŷ(s)) in (4.2.3) to be the interpolation of the bichain ground state using
the rules proposed in (4.2.5) and in (4.2.7), i.e. by

ξ̂(s) = ξ̂(N)(s) and ŷ(s) = ŷ(N)(s) (4.2.11)

and using the local expansion in (4.2.10), we have that the quadratic bichain and birod
energy satisfy for all the bichain interpolated configurations (g(N)(s), y(N)(s))

E(g(x),P(y)) = Ê(N)[g(N),P(y(N))] + O
(
N |x− x̂|3

)
(4.2.12)

where |x− x̂| = max1≤n≤N−1 |xn − x̂n|, if

N−1∑
n=1

1

2

 yn − ŷαβn
xn − x̂αβn

yn+1 − ŷαβn+1

 ·Kαβ
n

 yn − ŷαβn
xn − x̂αβn

yn+1 − ŷαβn+1

+
N∑
n=1

1

2
(yn − ŷαn) ·Kα

n (yn − ŷαn)

=

N−1∑
n=1

1

2

 yn − ŷn
xn − x̂n

yn+1 − ŷn+1

 · [∫ sn+1
(N)

sn(N)

LTx̂n(s)K(s)Lx̂n(s)ds

] yn − ŷn
xn − x̂n

yn+1 − ŷn+1



+
1

2
(y1 − ŷ1) ·K0 (y1 − ŷ1) +

1

2
(yN − ŷN ) ·KL (yN − ŷN )

(4.2.13)

for all internal bichain coordinates (x, y). Comparing the pure quadratic terms we deduce
that one possible definition of the birod stiffness matrix K(s), and of the two boundary
intra stiffness matrices K0 and KL is then

K(s) =
1

hn
(N)

L−Tx̂n (s)

Kαβ
n +

1

2

Kα
n 0 0

0 0 0

0 0 Kβ
n+1

L−1
x̂n

(s) (4.2.14a)
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for s ∈]sn
(N), sn+1

(N)[ and

K0 =
1

2
Kα

1 and KL =
1

2
Kα
N (4.2.14b)

in order to ensure the relation in (4.2.12). We should remark that the weight 1
2 in the

expression (4.2.14a) splits the local contribution of each quadratic form associated to
the matrices Kα

n in (4.2.13) into equal contributions to the birod energy in the interval
]sn−1

(N), sn
(N)[ and ]sn

(N), sn+1
(N)[ respectively. Any unequal splitting also provides a

consistent quadratic birod model of the form (4.2.12), but none of them respect a simple
transformation rule under the reading symmetry presented in (3.1.38). Moreover we
observe that any matrix of the form K(s) + K′(s) also satisfy the condition in (4.2.13)
if
∫ sn+1

(N)

sn(N) LTx̂n(s)K′(s)Lx̂n(s)ds = 0. The complete description of the freedom in the
definition of the continuum birod parameters need require more investigations.

The deterministic exponential Cauchy-Born rule for bichains is then defined by the
relations in (4.2.11) and in (4.2.14) and has been deduced by matching the quadratic
terms in an expansion of the bichain energy around its ground state. Numerical applica-
tions of this construction are presented in chapter 6 in the context of sequence dependent
DNA modelling.

Finally, we would like to stress that the above result admits as a particular case a
deterministic exponential Cauchy-Born rule for chains which appears naturally when
the macrostructure and microstructure internal coordinates x and y are not coupled by
the quadratic form in (4.2.2). For an internal chain energy of the form

E(g) =
N−1∑
n=1

1

2
(xn − x̂n) ·Kn (xn − x̂n) (4.2.15)

one obtains a rod internal energy of the form

Ê(N)[g] =

∫ L

0

1

2

(
ξ(s)− ξ̂(N)(s)

)
·K(s)

(
ξ(s)− ξ̂(N)(s)

)
ds (4.2.16)

where the reference length L and the generator vector ξ̂(N)(s) are defined in (4.2.4) and
where

K(s) = hn
(N)
(
Ad−1

ĝ−1
n ĝ(N)(s)

L(1)
x̂n

)−T
Kn

(
Ad−1

ĝ−1
n ĝ(N)(s)

L(1)
x̂n

)−1
(4.2.17)

for s ∈]sn, sn+1[, according to the expression in (4.2.14).
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4.3 A Stochastic Exponential Cauchy-Born Rule for Normal
Configurational Chain Distributions

As discussed in section (4.1.3), stochastic Cauchy-Born rules are designed to deliver
continuum models which respect the statistical properties of a given discrete stochastic
physical model and deterministic Cauchy-Born rules do not always possess this feature.
In contrast to the discussion made for quadratic bichain energies, we present here an
explicit construction for normal configurational distributions. However, the definition
of a proper stochastic Cauchy-Born rule for bichain configurational distributions is still
under investigation and we shall, therefore, restrict the discussion here to the case of a
single chain in a semi-flexible regime.

Having still DNA modelling in mind, we consider a chain normal configurational
distribution

dρ(g)(x) =
N∏
n=1

√
det

(
1

2π
Kn

)
exp

{
−1

2
(xn − x̂n) ·Kn(xn − x̂n)

}
dxn (4.3.1)

where the matrix Kn ∈ R6×6 and the vector x̂n ∈ R6 appear in (4.2.15). This model
refers typically to quadratic rigid base pair models in the context of DNA modelling, as
presented in section 5.2.1. The goal here is to use a stochastic Cauchy-Born rule to design
a normal distribution for continuum rod configurations consistent with the bichain dis-
tribution dρ(g)(x), in the sense of (4.1.24). Numerical examples of this construction are
presented in chapter 7. They illustrate its application to the study of the configurational
first moment in the context of DNA modelling. We say that dρ(N) [g[ξ]] is a rod normal
configurational distribution if it is of the form

dρ(N) [g[ξ]] ∼ exp
{
−Ē(N)[g]

}
D[ξ] (4.3.2a)

with

Ē(N)[g] =

∫ L

0

1

2

(
ξ(s)− ξ̄(s)

)
· K̄(s)

(
ξ(s)− ξ̄(s)

)
ds. (4.3.2b)

We recall that the rod configurational distributions of the form in (4.3.2a) are discussed
in (3.3.1). Similarly to finite dimensional normal distribution, a rod normal distributions
is fully determined by prescribing the first and second moment of the variable ξ(s) in the
sense of (3.3.39). Using an argument very similar to the one used in (3.3.50), it can be
shown that we have the the following identities

〈ξ(s)〉(N) = ξ̄(s) (4.3.3a)〈(
ξ(s)− ξ̄(s)

)
⊗
(
ξ(s′)− ξ̄(s′)

)〉(N)
= K̄−1(s)δs(s

′) (4.3.3b)

for s ∈]0, L[, where 〈 . 〉(N) stands for the expectation with respect to the distribution
dρ(N) [g[ξ]] in (4.3.2) and where δs(s′) denotes the Dirac function as in (3.3.52).
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As in the case of the deterministic Cauchy-Born rule, we have to emphasise that it is
incompatible to look for a rod configurational distribution which is consistent with the
chain distribution in (4.3.1), in the sense of (4.1.24), and which is normal, i.e. of the form
(4.3.2). The cause is again that the mapping between the internal chain coordinates x
and the rod generator vector ξ(s) in non-linear. Since we want to keep both the chain
stochastic model in (4.3.1), because it allows realistic sequence dependent modelling for
DNA molecules, and the rod distribution (4.3.2b), because it allows analytical predic-
tions, we need to make a compromise here as well. It is given by constructing a stochastic
Cauchy-Born rule which only respects the moments to leading order through the second
moment.

In order to construct the desired rule, we need to assume that the chain configura-
tional distribution is concentrated enough such that it admits a unique expected chain
configuration ḡ = (ḡ1, ..., ḡN ), as defined in (2.4.12), and we denote ḡ(N)(s) its piecewise
helical interpolation. We recall that an explicit approximation of the expected configu-
ration is derived in appendix A.5 for chains in a semi-flexible regime and governed by a
normal distribution. In a similar way to the deterministic Cauchy-Born rule in (4.2.4),
we define formally the reference length L, the nodes sn(N) ∈]0, L[ and the interpolation
ḡ(N)(s) by the relations

s1
(N) = 0, sn+1

(N) = sn
(N) + hn

(N) and sN (N) = L for all n = 1, ..., N − 1 (4.3.4a)

d

ds
ḡ(N)(s) = ḡ(N)(s)T ξ̄(N)(s) for all s ∈]0, L[ (4.3.4b)

ḡ(N)(sn
(N)) = ḡn for all n = 1, ..., N (4.3.4c)

T ξ̄(N)(s) =
1

hn
(N)

ln {ān} for sn(N) < s < sn+1
(N) (4.3.4d)

∣∣∣V̄ (N)(s)
∣∣∣ = 1 for all s ∈]0, L[ (4.3.4e)

where ān = ḡ−1
n ḡn+1 and where V̄ (N)(s) ∈ R3 denotes the translational part of the rod

generator vector ξ̄(N)(s), as presented in (3.1.5). The interpolation g(N)(s) of the chain
configuration g = (g1, ..., gN ) is then defined as

d

ds
g(N)(s) = g(N)(s)T ξ(N)(s) for all s ∈]0, L[ (4.3.5a)

with

T ξ(N)(s) = T ξ̄(N)(s) +
1

hn
(N)

[
ḡ−1
n ḡ

(N)(s)
]−1

ln
{
a(xn)ā−1

n

} [
ḡ−1
n ḡ

(N)(s)
]

(4.3.5b)

for sn(N) < s < sn+1
(N) and where we recall that hn(N) = sn+1

(N) − sn(N) denotes the
local junction length, similarly to (4.2.5).
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Given the described interpolation rules and according to the definition in (4.1.24),
a necessary condition for the chain and rod configurational distribution dρ(g)(x) and
dρ(N) [g[ξ]] to be consistent is that the first moments satisfy〈∫ sn+1

(N)

sn(N)

ξ(N)(s) · b(s)ds

〉(N)

=

〈∫ sn+1
(N)

sn(N)

ξ(N)(xn; s) · b(s)ds

〉
(4.3.6)

for any deterministic function b(s) ∈ R6 and for all sn(N) in the interpolation mesh
in (4.3.4a), and where 〈 . 〉(N) and 〈 . 〉 stand for the expectation with respect to the
distribution dρ(g)(x) and dρ(N) [g[ξ]] respectively. The notation ξ(N)(xn; s)(s) on the
right hand side of (4.3.6) is meant to emphasise that the rod generator vector ξ(N)(s)
is seen as an explicit function of the internal chain coordinates xn according to the
interpolation rule (4.3.5b). Using the specific form of the distributions in (4.3.1) and in
(4.3.2) leads then to the equality

ξ̄(s) = ξ̄(N)(s) (4.3.7)

where we have used the identity in (4.3.3a) and, according to its definition in (2.4.10), that
the expected chain junction displacement ān has the property that

〈
ln
{
a(xn)ā−1

n

}〉
= 0.

A second other necessary conditions for the chain and rod distribution to be consistent
is then that the second moments satisfy〈∫ sn+1

(N)

sn(N)

∫ sm+1
(N)

sm(N)

(
ξ(N)(s)− ξ̄(N)(s)

)
⊗
(
ξ(N)(s′)− ξ̄(N)(s′)

)
: B(s′, s)ds′ds

〉(N)

=

〈∫ sn+1
(N)

sn(N)

∫ sm+1
(N)

sm(N)

(
ξ(N)(xn; s)− ξ̄(N)(s)

)
⊗
(
ξ(N)(xm; s′)− ξ̄(N)(s′)

)
: B(s′, s)ds′ds

〉
(4.3.8)

for any deterministic function B(s′, s) ∈ R6×6 and for all sn(N) in the interpolation mesh
(4.3.4a), and where 〈 . 〉(N) and 〈 . 〉 stand for expectation with respect to the distribution
dρ(g)(x) and dρ(N) [g[ξ]] respectively.

Denoting by x̄n ∈ R6 the local chain coordinates which satisfy ān = a(x̄n) in (4.3.5b)
and using the expansion of the generator vector ξ(N)(xn; s) around x̄n in (4.2.6), gives
then for s ∈]sn

(N), sn+1
(N)[

K̄−1(s) =
1

hn
(N)

(
Ad−1

ḡ−1
n ḡ(N)(s)

L(1)
x̄n

)
〈(xn − x̄n)⊗ (xn − x̄n)〉

(
Ad−1

ḡ−1
n ḡ(N)(s)

L(1)
x̄n

)T
+
〈
O
(
|xn − x̄n|3

)〉
(4.3.9)

according to the identity (4.3.3b). Moreover, using that the chain is in a semi-flexible
regime, as defined in (2.4.14), leads to

K̄−1(s) =
1

hn
(N)

(
Ad−1

ḡ−1
n ḡ(N)(s)

L(1)
x̄n

)
K−1
n

(
Ad−1

ḡ−1
n ḡ(N)(s)

L(1)
x̄n

)T
+ o (ε) (4.3.10)
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since x̄n = x̂n + O (ε) as presented in appendix A.5.
Consequently, for a given normal chain configuration dρ(g)(x) in (4.3.1) and for a

given interpolation, we can define a normal rod configurational distribution dρ(N) [g[ξ]]
using the expression (4.3.7) and (4.3.10) with the property that the first and second
moment are consistent at the leading order. This construction constitutes a stochastic
Cauchy-Born rule for chains. A method to parametrize a stochastic continuum rod model
from quadratic rigid body chains is also discussed in [Becker, 2007]. It is however based
on analogy with the Brownian dynamics of a rigid body and is greatly simplified by the
fact that he uses an appropriate set of exponential coordinates to describe the discrete
chain configuration.

We should observe that the quadratic form obtained for continuum rods in the case of
the deterministic Cauchy-Born rule and of the stochastic Cauchy-Born rule are different.
More precisely, in the deterministic case we obtain the ground state interpolation ξ̂(N)

and, in contrast, the expected chain interpolation ξ̄(N) for the stochastic case. This
distinction can be intuitively explained by the fact that the expected chain configuration
represents in some sense the mean of the configurational distribution whereas the ground
state configuration is its peak, and in general they simply do not coincide. Similarly, we
obtain the matrixK(s) for the deterministic case, which corresponds to an approximation
of the chain internal energy landscape around the ground state configuration and in the
stochastic case we obtain the matrix K̄(s) which is interpreted as an approximation of
the centered second moment around the expected chain. An explicit example of these
differences appears in appendix A.5.
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Part II

On the Multi-scale and
Sequence Dependent

Statistical Physics of B-DNA
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5. On the Multi-scale Modelling of Sequence
Dependent DNA Mechanics

No single model explains the entire body of experimental data. [...] An improved
explanation of solution properties should include sequence-dependent variations

of local flexibility as well as differences in local chain structure.

R. C. Maroun & W. K. Olson, 1998.

This fifth chapter discusses discrete and continuum sequence dependent mechanical
models for DNA molecules. We recall briefly in section 5.1 experimental evidence for
the importance of understanding sequence dependence in DNA physical properties. We
then present some historically important models, most of which cannot describe properly
the sequence dependence. In section 5.2, we describe the sequence dependent rigid base
pair and rigid base models, which are both coarse grain models but at different levels,
which allow a DNA molecule to be described either as a single chain or as a bichain
configuration. Three different sequences, denoted by λ , CF and TL respectively, that
will be repeatedly used as examples in the two following chapters are introduced. Se-
quence dependent rod and birod models are proposed in section 5.3 using the exponential
Cauchy-Born rules presented in chapter 4. The associated constitutive coefficients are
observed to be discontinuous at each base pair and to have a manifestly heterogeneous
character at the scale of hundreds of base pairs. We conclude however that the deter-
ministic exponential Cauchy-Born rule applied to the rigid base model is satisfactory
since for instance the continuum birod and the original bichain energy agree to less than
0.5% for random bichain configurations. These rules relating discrete and continuum
models are consequently believed to constitute significant progress towards a multi-scale
approach of sequence dependent DNA mechanics.
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5.1 Modelling Sequence Dependent DNA Mechanics

As has been discussed in the introduction, the objective of understanding the physical
properties of DNA has become increasingly important since the second half of the last
century, after a succession of discoveries on the crucial role of this macromolecule in cells
of living organism. In particular, a fundamental question is the relation between the
DNA sequence of a fragment ant its mechanical properties. On the experimental side, it
has been proposed that particular fragments contain regions that are intrinsically bent
[Marini et al., 1982, Kabsch et al., 1982, Kitchin et al., 1986, Levene et al., 1986, Bednar
et al., 1995, Vologodskaia and Vologodskii, 2002] and that the local DNA stiffness may
substantially vary with the sequence [Théveny et al., 1988, Olson et al., 1998, Virstedt
et al., 2004]. These special regions are thought to be important in biological processes
involved in the cells, see for instance [Hagerman, 1990], and more particularly to be
related to DNA-protein recognition, see for instance [Matthews, 1988, Koudelka et al.,
2006], and to nucleosome positioning in eukaryotic cells, as discussed for instance in
[Thåström et al., 1999, Virstedt et al., 2004, Segal and Widom, 2009, Meyer and Everaers,
2015]. Originally proposed in [Porod, 1948, Krakty and Porod, 1949], the idea of Kratky-
Porod persistence length allows the characterisation of some statistical properties1 of
DNA at intermediate scales (say from 103 to 105 base pairs). This quantity is shown
to be related to a bending stiffness parameter in the so-called Wormlike chain model,
either in its continuum formulation, see for instance [Landau and Lifshitz, 1959, Doi and
Edwards, 1986], or in its discrete version [Schellman, 1974], which in both cases describe
DNA as a uniform and intrinsically straight material which only responds to bending
deformation. Even if this model is quite idealised, it has led to remarkably good results
in average DNA properties modelling. In order to account for local intrinsic bends in the
DNA structure, which is not possible in the Wormlike chain models, the idea of a set static
wedges has been proposed in discrete representations of DNA configurations, see [Trifonov
and Sussman, 1980, Trifonov et al., 1988, Crothers et al., 1990, Schellman and Harvey,
1995] for instance. For continuum formulations, substantial improvements have been
made in the Helical Wormlike chain model, see [Bugl, 1969, Yamakawa, 1976, Benham,
1977, Benham, 1979, Yamakawa, 1997] for instance, which have taken more and more
sophisticated forms [Marko and Siggia, 1994, Shi et al., 1996, Manning et al., 1996,
Marko, 1997, Becker, 2007]. Available realistic sequence dependent DNA mechanical
models can be divided into two classes: atomistic models and coarse grain models.
Atomistic DNA models aim for a very fine description of molecule, namely at the level of
atoms, see for instance [Lavery and Hartmann, 1994, Lankaš et al., 2000, Lankaš et al.,
2003, Lavery et al., 2009, Lavery et al., 2014, Pasi et al., 2014]. The main issues with this
approach are first that these models need a very large set parameters which are difficult
to get since they have to come from ab initio principle, such as quantum chemistry,
and second that they requires intensive computer resources. Even if the predictions of
these models are definitely improving, their accuracy is still questionable. Coarse grain
DNA models describe the molecule as a set of units which contain several atoms, and,

1See sections 2.3.2 and 3.3.2 for a more detailed discussion on chain and rod observables.
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keeping the objective of modelling the sequence dependence mechanics of DNA, the two
cases of interest here are rigid base and rigid base pair coarse graining descriptions,
see for instance [Olson et al., 1993, Marky and Olson, 1994, Olson, 1996, Olson et al.,
1998, Gonzalez and Maddocks, 2001, Olson et al., 2001, Lankaš et al., 2003, Lankaš et al.,
2009, Becker and Everaers, 2009, Gonzalez et al., 2013]. Even if these models contain
less information than atomistic models, they are expected to provide an appropriate
description of sequence dependent mechanical features of DNA molecules at the scale of
several bases, and in a efficient way since the number of degree of freedom together with
the number of parameters have substantially decreased. The two models are described
in section 5.2.

Modelling the sequence dependent statistical physics of DNA molecule is a challenging
objective. First, because most of the classical results in polymer mechanics do not apply
to heterogenous chains, and, second, most of the biological phenomena of interest require
at least some hundreds of base pairs to be described and need therefore an understanding
of the sequence dependent large scale behaviour. We believe however that the definition
of the chain models in 5.2 and their associated rod ones in 5.3 constitute a significant
progress towards a multi-scale approach of sequence dependent DNA mechanics.

5.2 On Rigid Base and Rigid Base Pair DNA Models

We present in this section two discrete models used to study the sequence dependence of
DNA statistical physics. The rigid base pair model describes DNA molecules as a single
rigid body chain, where each rigid body characterises an individual base pair configura-
tion. The configuration is made of the product of local and sequence dependent normal
distributions. There exist several different versions of this model, based on different data
and different internal chain coordinates. In contrast, the rigid base model describes each
individual base as a rigid body and consequently each DNA fragment as a bichain con-
figuration. The configurational distribution is also normal but, even though it has a very
specific nearest neighbour structure, it no longer factorizes into local distributions. We
introduce in particular three chosen sequences, denoted by λ , CF and TL respectively,
that will be used as illustrations in the following applications.

5.2.1 Sequence Dependent Rigid Base Pair Model

In order to describe the sequence dependent mechanical properties of DNA in term of a
coarse grain model, a first approach is to represent each base pair as a single rigid body.
A rigid base pair model describes a DNA fragment as a rigid body chain configuration g =
(g1, ..., gN ), as defined in (2.1.1), where N denotes the number of pairs of nucleotides and
where gn ∈ SE(3) denotes the rigid body configuration of the nth rigid body in the chain,
see for instance [Olson, 1996, Olson et al., 1998, Gonzalez and Maddocks, 2001, Olson
et al., 2001, Lankaš et al., 2003]. The junction displacement an = g−1

n gn+1 is the rigid
body displacement between two consecutive elements in the chain and the local internal
coordinates xn ∈ R6 parametrize the junction displacement in the form an = a(xn). The
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internal chain coordinates are then denoted by x = (x1, .., xN−1) ∈ R6(N−1). Several
different choices of internal chain coordinates have been introduced in in the literature
[Olson et al., 1998, Becker and Everaers, 2007, Gonzalez et al., 2013]. More detail about
rigid body chains configurations and the internal chain coordinates is discussed in section
2.1.1.

Following the pioneering work of Wilma K. Olson, see for instance [Olson et al., 1998],
the sequence dependent rigid base pair model configurational distribution is assumed to
be of the factorized form in (2.3.4) for any DNA fragment. More details on stationary
configurational distribution for rigid body chains are discussed in section 2.3.1. The
sequence variation in the molecule constitution is then encoded through a set of sequence
dependent chain local configurational distribution dρn(an) defined as

dρn(an) =

√
det

(
1

2π
Kxx
n

)
exp

{
−1

2
(xn − x̂n) ·Kxx

n (xn − x̂n)

}
dxn (5.2.1)

where x̂n are called the ground state internal coordinates and the matrix Kxx
n ∈ R6×6

the local stiffness matrix in analogy to linear elasticity theory. Practically, given a set of
data from DNA fragments with known sequences, one first converts them into a set of
rigid body configurations g in order to extract statistics for the local internal coordinates
xn. Then, the expectation x̂n and the matrix Kxx

n can be estimated, according to the
relations in (2.3.20) and in (2.3.21), using the empirical first and second moments of the
internal coordinate xn on the set of data, see for instance [Olson et al., 1998, Becker and
Everaers, 2007, Gonzalez and Maddocks, 2001, Lankaš et al., 2009, Becker and Everaers,
2009]. Observe that neither the bath temperature kBT nor the Jacobian factor Jn(xn),
as defined in (2.3.1), appear in the distribution (5.2.1) since it is seen as the best normal
approximation in the internal chain coordinates x. Figure 5.1 a sketch of the coarse
graining process between an all atom and a rigid base, or rigid base pair, representation.

Figure 5.1: Sketch of the coarse graining process between an all atom and a rigid base, or rigid
base pair, representation.
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The main difference between the models in [Olson et al., 1998, Becker and Everaers,
2007, Lankaš et al., 2009] are the definition of the internal coordinate x and the data
ensemble as well as the method used to obtain the distribution in (5.2.1). In particular,
the parameter estimation in [Olson et al., 1998] is based on crystal structure data, whereas
[Lankaš et al., 2009] is based on molecular dynamic simulations.

A crucial point made in [Lankaš et al., 2009] is that the locality assumption in the
functional form of the configurational distribution in (5.2.1) can be assessed by evaluating
the cross covariances matrices cxxm,n for m 6= n, since they should vanish according to the
expression in (2.3.22). Interestingly enough, based on time series trajectories coming from
all atom molecular dynamic simulations, it has been emphasised that the assumption
that the configurational distribution for the rigid base pair model factorizes into local
distribution is not very accurate since the cross covariances cxxm,n can be quite large even
for substantial differences of index |m − n| [Lankaš et al., 2009, Gonzalez et al., 2013].
This observation motivated the introduction of the rigid base model.

5.2.2 Sequence Dependent Rigid Base Model

A slightly less coarse grained description of a DNA fragment is to represent the configu-
ration of each individual base as a rigid body configuration, instead of the complete base
pair, or, using the definition of section 2.1.2, as a rigid body double chain configuration
(g+, g−) = (g+

1 , g
−
1 , ..., g

+
N , g

−
N ) where N denotes the number of pair of nucleotides and

where g±n denotes the rigid body configuration of the nth base on the strand referred to
as + or − respectively. However, following prior work on DNA modelling [Olson et al.,
2001, Lankaš et al., 2009, Gonzalez et al., 2013], it is more convenient to describe a
DNA molecule coarse grained at the level of bases as a rigid body bichain configuration
(g,P) = (g1,P1, ..., gN ,PN ), which is called the rigid base model. The rigid body chain
configuration g defines the bichain macrostructure and represents the set of rigid base
pair configurations, whereas P defines the bichain microstructure and each element Pn
describes the relative rigid body motion between the two bases in the same base pair
indexed by n. The detailed transformation rule between double chain configurations
(g+, g−) and the bichain configurations (g,P) is presented in (2.1.25) and in (2.1.27).
The bichain internal coordinates (x, y) = (y1, x1, y2, ..., xN−1, yN ) ∈ R12N−6 are defined
such that an = a(xn) and Pn = P(yn), where an denotes the local junction displacement.
The choice proposed in [Lankaš et al., 2009, Gonzalez et al., 2013] is observed to be par-
ticularly convenient and is presented in more detail in (2.1.18) and in (2.1.33). More
detail on the bichain configuration and the bichain internal coordinates is discussed in
section 2.1.3.

As a generalisation of the sequence dependent rigid base pair model presented in
section 5.2.1, and as discussed in detail in [Lankaš et al., 2009, Gonzalez et al., 2013], the
sequence dependent rigid base model comprises a set of bichain coordinates (x, y) together
with a sequence dependent configurational distribution dρ(g,P)(x, y) of the form

dρ(g,P)(x, y) =

√
det

(
1

2π
K

)
exp

{
−1

2

(
x− x̂
y − ŷ

)
·K

(
x− x̂
y − ŷ

)}
dxdy (5.2.2)
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Figure 5.2: Example of a bichain ground state configuration for a DNA fragment made of 150
selected base pairs in the sequence CF .

where (x̂, ŷ) are called the bichain ground state internal coordinates and the matrix
K ∈ R(12N−6)×(12N−6) the bichain stiffness matrix, similarly to (5.2.1), and where the
ordering of the coordinate vector (x, y) and of the entries in the matrix K is defined in
(2.1.31). More detail about bichain configurational distribution can be found in section
2.3.1. Note that, as for the rigid base pair configurational distribution, the temperature
kBT and the Jacobian factor J(x, y), defined in (2.3.6), do not explicitly appear since the
distribution (5.2.2) is a normal approximation in the bichain coordinates (x, y). Let us
define E(g(x),P(y)) to be the quadratic internal bichain energy in the internal bichain
coordinates (x, y)

E(g(x),P(y)) =
1

2


y1 − ŷ1

x1 − x̂1

...
xN−1 − x̂N−1

yN − ŷN

 ·K


y1 − ŷ1

x1 − x̂1

...
xN−1 − x̂N−1

yN − ŷN

 (5.2.3)

where the internal coordinates (x̂, ŷ) as well as the matrix K are the ones in the dis-
tribution (5.2.2). We should stress that, according to the results on stationary bichain
configurational distribution in section 2.3.1, the function E(g(x),P(y)) is not rigorously
the bichain energy appearing in (2.3.6) because of the necessary presence of the associ-
ated Jacobian factor. We shall however make this abuse of nomenclature for convenience
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of the discussion. The bichain configuration corresponding to the ground state internal
coordinates (x̂, ŷ) is then called the bichain ground state configuration and is denoted by
(ĝ , P̂). It is formally defined as

ĝn+1 = ĝna(x̂n) and P̂n = P(ŷn) (5.2.4)

for all n = 1, ..., N − 1, where the first rigid body configuration ĝ1 is given. An example
of a three dimensional bichain ground state configuration is drawn in figure 5.2.

In the sequence dependent rigid base model developed in [Petkeviciute, 2012, Gonza-
lez et al., 2013, Petkeviciute et al., 2014], one of the key hypotheses is that the quadratic
bichain internal energy is local, in the sense of (2.2.46), and that it can be written as a
sum of local nearest neighbor contributions, i.e. of the form

E(g(x),P(y)) =
N−1∑
n=1

1

2

 yn − ŷαβn
xn − x̂αβn

yn+1 − ŷαβn+1

 ·Kαβ
n

 yn − ŷαβn
xn − x̂αβn

yn+1 − ŷαβn+1

+
N∑
n=1

1

2
(yn − ŷαn) ·Kα

n (yn − ŷαn)

(5.2.5)

where the subscripts αβ and α refer respectively to the base pair sequence of the
macrostructure junction between the base pairs indexed by n and n + 1, and to the
base composition of the microstructure indexed by n. This decomposition allows the
deconvolution of the sequence dependent parameters appearing in the configurational
distribution dρ(g,P)(x, y). In particular the bichain stiffness matrix K in (5.2.2) has
then the very specific nearest neighbor pattern drawn in figure 5.3. One of the important
properties of this model is that the ground state internal coordinates (x̂, ŷ) are predicted
to have a non local dependence in sequence even if the constitutive parameters are locally
defined, as discussed in [Gonzalez et al., 2013].

With a parameter set estimated from the all-atom simulations, reported in [Lavery
et al., 2009, Pasi et al., 2014], of approximately forty B-DNA fragments each of eigh-
teen base pairs length in explicit solvent, and using the decomposition (5.2.5), a very
fast numerical procedure allows to approximate the sequence dependent configurational
distribution dρ(g,P)(x, y) in (5.2.2) for any B-DNA sequence. This procedure is auto-
mated using the freely available package cgDNA described in [Petkeviciute et al., 2014].
Moreover, the obtained distributions are shown to be in a very good agreement with
the original atomic simulations after the coarse grained procedure, and with independent
simulations as well [Petkeviciute, 2012, Gonzalez et al., 2013, Petkeviciute et al., 2014],
which attests that the rigid base model has to be preferred to the rigid base pair model
to study DNA statistical physics properties at relatively short scales.

To illustrate the results of this thesis on the application of chain and rod theory to
the modelling of DNA statistical physics properties, we have chosen three sequences that
we shall repeatedly use in most of the following examples. The first one is denoted by λ
and is a fragment of the virus genome Lambda phage which infects the E. Coli bacterium.
This virus has been extensively studied and the relatively short sequence λ that we have
chosen serves as a reference sequence since it has a roughly intrinsically straight ground
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Figure 5.3: Sketch of a nearest neighbor bichain stiffness matrix: the green blocks represents the
position of the blocks Kαβ

n , the orange ones are the superposition of the blocks Kαβ
n , Kα

n and
Kαβ
n+1 and the white ones have zero as entries. The size of mesh indicates 6× 6 blocks.

state, as drawn in figure 5.4a, and no exceptional region expected. The second one is a
section of the genome of the Crithidia fasciculata, which is a mosquito parasite, and is
here denoted by CF . It has also been well studied because it has the particularity to
contain a large intrinsic bend as proposed in [Kitchin et al., 1986] and as it is observed
in its cgDNA ground state shown in figure 5.4b. Finally, the third sequence has been
artificially designed to have an pronounced intrinsic super-helical structure which is left-
handed, as drawn in 5.4c. It is denoted by TL and is made of repeats of the sequence
(CATGGTTAAC)p. Such helical repeats have been used in [Dubochet et al., 1994] for
instance and a review on their role in genomics can be found in [Padeken et al., 2015].
Entries in the associated stiffness matrices given in the cgDNA model are respectively
shown in figures 5.5a, 5.5b, 5.5c. The precise sequences λ and CF here are listed in
appendix A.6.

Figure 5.6 shows the full nearest neighbor stiffness matrix for the sequence λ as
computed in the cgDNA model. Even if at the scale of a few base pairs this matrix is
locally dense, as shown in figure 5.5a, the bandwidth looks tiny at the scale of a few
hundred base pairs.
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(a) λ (b) CF (c) TL

Figure 5.4: Bichain ground state configuration for three different sequences as predicted by the
cgDNA model. The figures show base pairs 1 to 240.
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Figure 5.5: Zoom on the bichain stiffness matrices predicted by the cgDNA model for three
different sequences. The plots shows the entries from the 50th to 56th base pairs
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Figure 5.6: Bichain stiffness matrix for the sequence λ (240 first base pairs).

5.3 On Rod and Birod DNA Models

This section presents the continuum analogue of the rigid base pair and rigid base model,
which are the sequence dependent rod and birod models respectively. There exist many
continuum rod models that have been proposed to model the large scale behaviour of
DNA molecules. However all of them are homogeneous, with only a few exceptions.
We first propose a sequence dependent quadratic rod model based on the stochastic
exponential Cauchy-Born rule discussed in section 4.3. It is interesting to note that
the obtained continuum coefficients are only continuous between two consecutive base
pairs and that their heterogeneous character is manifest at the scale of hundreds of base
pairs. Then, a sequence dependent quadratic birod model built using the deterministic
exponential Cauchy-Born rule discussed in section 4.2 is studied. The stiffness coefficient
are also noticed to be discontinuous at each base pair position and have an obvious
heterogeneous character. However, this deterministic Cauchy-Born rule is concluded to
be quite satisfactory by comparing numerically the energy value for the rigid base and
for the associated birod energies. In particular an error of less than 0.5% is observed
for 2500 random bichain configurations sampled from its corresponding configurational
distribution.
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5.3.1 Sequence Dependent Rod Model

As originally proposed in [Porod, 1948, Krakty and Porod, 1949], even if the natural
characterisation of polymers is through discrete models, an intermediate scale description
should be made in terms of a continuum. In particular, a quadratic continuum rod energy
has been proposed in [Landau and Lifshitz, 1959, Bugl, 1969] to model the behaviour of
long linear polymers, which has lead to the idea of theHelical Wormlike chain [Yamakawa,
1976, Yamakawa, 1997] which uses bending and twisting stiffness parameters and an
intrinsically helical geometry. Specifically in the context of DNA, equilibrium conditions,
with idealised linear constitutive relations are introduced in [Benham, 1977, Benham,
1979] and special solutions are studied. The energy functional is then generalised in
[Marko and Siggia, 1994, R.S. Manning, 1996, Shi et al., 1996]. As mentioned in section
3.1.1, all these models belong to a general class of hyper-elastic rod models calledCosserat
rod models [Cosserat and Cosserat, 1909].

Concerning models with explicit sequence dependence, a rod model similar to the one
in [Benham, 1977, Benham, 1979] is parametrized in [R.S. Manning, 1996] to study se-
quence dependence in the intrinsic shape, although the stiffness parameters are sequence
independent however. They also introduce a Hamiltonian form of the equilibrium condi-
tions using a quaternion formulation, which is used to compute equilibrium configurations
of closed loops by applying a numerical continuation method provided by the package
AUTO, see for instance [Doedel et al., 2009]. In [Becker, 2007] a general quadratic
continuum rod model of the form 4.3.2 is introduced in the context of DNA modelling
and then, in [Becker, 2007, Becker and Everaers, 2007], they discuss how, based on a
local sequence dependent rigid base pair model expressed through exponential coordi-
nates, an effective homogeneous wormlike chain can be deduced though some averaging
processes. They also emphasize the obvious limitation of such models for relatively short
DNA fragments.

Based on the theory of Cosserat rods presented in section 3.2.2, the continuum ana-
log of the rigid base pair model in (5.2.1) is given by a sequence dependent rod local
configurational distribution dρ [g[ξ]]

dρ [g[ξ]] ∼ exp

{
−
∫ L

0

1

2

(
ξ(s)− ξ̄(s)

)
· K̄(s)

(
ξ(s)− ξ̄(s)

)
ds

}
D[ξ] (5.3.1)

where ξ(s) ∈ R6 is the generator vector of the rod configuration g(s) ∈ SE(3), as defined
in (3.1.4), where ξ̄(s) ∈ R6 denotes the generator vector of the expected rod configuration
ḡ(s) ∈ SE(3), and the matrix K̄(s) ∈ R6×6 the rod local stiffness matrix analogously to
the rigid base pair case in section 5.2.1. The length L denotes a reference length, typi-
cally chosen as the length of the expected rod configuration. The non-uniformity of the
constitutive parameters ξ̄(s) and K̄(s) is supposed to encode the sequence dependence.
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Figure 5.7: Sketch of the expected chain configuration interpolation

The rod configurational distribution dρ [g[ξ]] in (5.3.1) can be defined for instance
directly from the rigid base pair distribution dρ(g)(x) in (5.2.1) using the exponential
stochastic Cauchy-Born rule for chains proposed in section 4.3. A sketch of the interpo-
lated rigid base pair configuration is drawn in figure 5.7, it illustrates the scale bridging
between a rigid base pair and a continuum rod description. The expected rod configura-
tions ḡ(s), deduced using the rule in (4.3.7), are presented in figure 5.8 for the sequence
λ , CF and TL . It is interesting to note that for these three sequences it is difficult to
see the difference between the base pair positions in the expected configuration and in
the ground state configuration drawn in 5.4. However, according to the discussion made
in A.5.3, each junction displacement differs slightly and a deviation may appear for long
enough fragments.

For these three sequences the coefficient in the matrix K̄(s) obtained using (4.3.10)
are illustrated in figures 5.9, 5.10a and 5.10b respectively. In each figure, the top left
plot shows the entries in the symmetric block KRR(s) ∈ R6×6, the top right the entries
of KRr(s) ∈ R6×6 and the bottom left the symmetric block Krr(s) ∈ R6×6 where by
definition

K(s) =

(
KRR(s) KRr(s)

(KRr)T (s) Krr(s)

)
. (5.3.2)

It is interesting to observe that the exponential stochastic Cauchy-Born rule delivers
coefficients which reflect the DNA sequence, and that they are not globally continuous.
We note that the discontinuity is exactly at the base pair level. In contrast, at the scale
of a few hundred base pairs, the entries of the matrix K̄(s) take a more heterogeneous
character. Figure 5.11 shows the coefficient associated to the first 240 base pairs of the
sequence λ . We note that a possible way to parametrize the rod distribution in (5.3.1),
using a given sequence dependent rigid base pair model of the form (5.2.1), in terms of
appropriate exponential coordinates, is mentioned in [Becker, 2007].
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(a) λ (b) CF (c) TL

Figure 5.8: Rod expected configuration for three different sequences of length 240 base pairs, as
used in the stochastic Cauchy-Born rule for chains.

178



5.3. On Rod and Birod DNA Models

165.3 172.4 179 185.8
−500

0

500

1000

1500

arc−length distance (Angstroms) 

165.3 172.4 179 185.8
−150

−100

−50

0

50

100

150

arc−length distance (Angstroms) 

165.3 172.4 179 185.8
−20

0

20

40

60

80

arc−length distance (Angstroms) 

Figure 5.9: Zoom on the entries of the rod stiffness matrices predicted by the stochastic Cauchy-
Born rule for the sequence λ . The plots shows the entries from the 50th to 56th base pair. A
more detailed description is provided in the text.

However, as reported in section 5.2.1, the local rigid base pair model does not provide
a very accurate description of coarse grained DNA statistical physics, whereas the local
rigid base model, described in section 5.2.2, is shown to be able to reproduce a much more
rich and reliable behaviour [Lankaš et al., 2009, Gonzalez et al., 2013]. This statement is
then contradictory with a local rod model of the form in (5.3.1), or even more generally
in (3.2.5), principally because of the non-local sparsity pattern involved in the definition
of the nearest neighbor rigid base energy, as shown in figure 5.3. There are two main
solutions to face this issue and persist in continuum modelling of DNA molecules. The
first possibility is going towards non-local rod models. We believe however that this
route is not promising to allow a better understanding of coarse grained DNA fragments
since non-local theories in continuum mechanics are themselves still at an early stage
of development. The other possibility is to abandon a rod theory in favour of a birod
theory.
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(b) TL

Figure 5.10: Zoom on the entries of the rod stiffness matrices predicted by the exponential
stochastic Cauchy-Born rule for the sequence CF and TL . See caption of figure 5.9.
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Figure 5.11: Entries of the rod stiffness matrices predicted by the exponential stochastic Cauchy-
Born rule for the sequence λ . The plots shows the entries from the 1st to 240th base pair. A
more detailed description is provided in the text.
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5.3.2 Sequence Dependent Birod Model

The deterministic continuum birod model was first introduced in [Moakher and Mad-
docks, 2005] in order to deliver a mechanical theory for two rods interacting together,
and especially for coarse grained DNA molecules, even if no realistic constitutive relations
were available at that time. In order to make this connection, the birod theory has been
adapted as described in sections 3.1.3 and 3.2.7. However, the theory of stochastic birod
models is still under investigation, and we will only discuss the deterministic formulation
in this thesis.

Figure 5.12: Sketch of the bichain ground state configuration interpolation

Motivated by the discussion made in section 4.2 on the continuum formulation of a
quadratic bichain internal energy of the form (5.2.3), we define the sequence dependent
quadratic birod energy in terms of the internal birod variables (ξ, y) to be of the form

Ê[g,P(y)] =

∫ L

0

1

2

 y(s)− ŷ(s)
d
dsy(s)− d

ds ŷ(s)

ξ(s)− ξ̂(s)

 ·K(s)

 y(s)− ŷ(s)
d
dsy(s)− d

ds ŷ(s)

ξ(s)− ξ̂(s)

 ds

+
1

2
(y(0)− ŷ(0)) ·K0 (y(0)− ŷ(0)) +

1

2
(y(L)− ŷ(L)) ·KL (y(L)− ŷ(L))

(5.3.3)

where ξ(s) denotes the generator vector of the birod macrostructure and y(s) the inter-
nal coordinates for the microstructure, as presented respectively in (3.1.23) and (3.1.28)
and where the notion of birod internal energy has been discussed in (3.2.57). Similarly
to bichains, the matrix K(s) ∈ R18×18 is called the birod stiffness matrix and the con-
figuration associated with the variables (ξ̂(s), ŷ(s)) the birod ground state configuration
(ĝ(s), P̂(s)).

In order to define a quadratic birod energy in (5.3.3) consistent, in the sense of
(4.2.12), with the sequence dependent bichain energy in (5.2.3) we propose to use the
deterministic exponential Cauchy-Born rule described in section 4.2. Precisely, the birod
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5.3. On Rod and Birod DNA Models

(a) λ (b) CF (c) TL

Figure 5.13: Birod ground state configuration for three different sequences of length 240 base
pairs, as used in the deterministic exponential Cauchy-Born rule for bichains.
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ground state is obtained using the expression in (4.2.11) and the birod stiffness matrix
using (4.2.14). Figures 5.13a, 5.13b and 5.13c show the ground state configuration for
the sequence λ , CF and TL . We note that they look very similar to the bichain ones in
5.4a, 5.4b and 5.4c since they are birod interpolations.
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Figure 5.14: Zoom on the entries of the birod stiffness matrices predicted by the deterministic
exponential Cauchy-Born rule for the sequence λ . The plots shows the entries from the 50th to
56th base pair. More details are discussed in the text.

The stiffness matrix is illustrated for the sequence λ in figure 5.14 on the scale of
a few base pairs and in figure 5.15 on the scale of hundreds of base pairs. Similarly to
the coefficients shown in figures 5.9 and 5.11 obtained using a stochastic Cauchy-Born
rule for chains, the entries in the stiffness matrix are observed to be only piece wise
continuous between each base pair and a strong heterogenous character appears at larger
scales. Each subfigure in 5.14 and 5.15 shows the entries in a 6 × 6 sub-block of the
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5.3. On Rod and Birod DNA Models

matrix K(s). This 6 × 6 sub-block structure is the one corresponding to the natural
decomposition into the variables y(s) ∈ R6, d

dsy(s) ∈ R6 and ξ(s) ∈ R6 in 5.3.3.
We should remark that the energy formulation in (5.3.3) differs slightly from the

more general one in (3.2.57) because of the presence of the two pointwise energy terms
associated respectively to the pointwise stiffness matrices K0 and KL at the two ends.
These terms have been added to make the construction of a consistent continuum energy
for the nearest-neighbor bichain energy in (5.2.5) more symmetric. They also emphasize
the particular mechanical behaviour of the last and first microstructure configuration in
a bichain as has been observed in DNA modelling [Gonzalez et al., 2013].
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Figure 5.15: Entries of the birod stiffness matrix predicted by the deterministic exponential
Cauchy-Born rule for the sequence λ . The plots shows the entries from the 1st to 240th base
pair. More details are discussed in the text.

Another point to make concerns the assumption made in the formulation (5.3.3)
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Chapter 5. On the Multi-scale Modelling of Sequence Dependent DNA Mechanics

that the shift in the quadratic contribution of the derivative d
dsy(s) is the derivative of

the shift in the contribution of the variable y(s). In general, this assumption is very
restrictive since otherwise one cannot ensure that the energy density can be pointwise
minimised. However, in the quadratic case it can be shown that one can always transform
the energy into this particular form, with (ξ̂(s), ŷ(s)) being the birod variables associated
to the absolute minimiser of E, since it can be proven that any other equivalent quadratic
energy differs from this one by a null Lagrangian. More details about this transformation
can be found in appendix A.4.
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Figure 5.16: Energy Comparison between the deterministic exponential Cauchy-Born rule (−)
and the bichain energy (◦) for the sequence λ . More details are discussed in the text.

The main value of the local birod energy in (5.3.3) is that, in contrast to the local
rod energy, it can be seen as a continuum version of the rigid base energy in (5.2.3) and
therefore has some chance to provide a realistic continuum description of DNA physics.
In order to quantify the quality of the deterministic exponential Cauchy-Born rule used to
define the ground state configuration (ĝ(s), P̂(s)), drawn in figure 5.13a for instance, and
the entries in the stiffness matrix, drawn in figure 5.15 for instance, appearing in the birod
energy (5.3.3), we have computed the energy E given by the original discrete model of
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5.3. On Rod and Birod DNA Models

[Gonzalez et al., 2013, Petkeviciute et al., 2014] in (5.2.5) for a family of deformed bichain
configuration and the analogous energy given by the continuum model in (5.3.3). More
precisely, we have compared these two energy definitions for the sequence λ and for ten
sets of deformations which are built by marching along the eigenvectors of the bichain
stiffness matrix K in (5.2.3), chosen to correspond to the ten deciles of its eigenvalue
spectrum. Figure 5.16 shows the values obtained for the discrete, using the symbol
◦, and continuum description, using a continuous line, as a function of the norm of
the difference in internal coordinates |(x, y)− (x̂, ŷ)|. It is not easy to define a way to
measure whether a deformation between a given configuration and the bichain ground
state is large or not, but energies of order of 70 kBT are thought to be large for a DNA
fragment.
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Figure 5.17: Estimation of the truncation error for the deterministic exponential Cauchy-Born
rule for the sequence λ . More details are discussed in the text.

As presented in section 4.2, the deterministic exponential Cauchy-Born rule has been
built by keeping the quadratic terms in an expansion of the birod continuum energy
in terms of the bichain internal coordinates. The numerical evaluation of the discrete
and continuum energy then allows estimation of the truncation error between these two
definitions. According to the expression (4.2.12), we expect the difference to grow like
O
(
N |(x, y)− (x̂, ŷ)|3

)
, or perhaps more intelligibly, that

E(g(x),P(y))− Ê[g(N),P(y(N))]

|(x, y)− (x̂, ŷ)|2
= O (N |x− x̂|) . (5.3.4)
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Figure 5.17 shows the value of the left hand side of (5.3.4) for the ten sets of de-
formations used in figure 5.16 as a function on the norm |(x, y)− (x̂, ŷ)|. Finally, to
provide a more global picture of the accuracy of the proposed deterministic exponential
Cauchy-Born rule for bichains, we have computed the relative error between discrete
and continuum definitions for 2500 random configurations sampled from the distribution
corresponding to the sequence λ in (5.2.2). Figure 5.18 shows a histogram of the relative
errors that are obtained. Even if it is quite satisfactory that they are all less than 0.5%
in absolute value, a finer understanding of this deterministic exponential Cauchy-Born
would be of interest.
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Figure 5.18: Histogram of relative errors associated to the deterministic exponential Cauchy-
Born rule for the 2500 random configurations of the sequence λ . More details are discussed in
the text.
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6. On the Multi-scale Modelling of Most Prob-
able DNA Configurations

The calculations of energy and molecular dynamics go beyond the present work and
will hopefully lead to an evaluation of the potential function for local conformational

distortions of DNA so that the isotropic model can be supplanted.

J. A. Schellman & S. C. Harvey, 1995.

This sixth chapter discusses the computation of most probable configurations re-
specting end conditions in the sequence dependent rigid base model. In section 6.1, we
present why such configurations are believed to be an interesting first step in the char-
acterization of the sequence dependent statistical physics properties of a DNA fragment.
However, since the second variation still requires further investigations, we shall restrict
the discussion to stationary configurations. In order to demonstrate that the sequence
dependent continuum birod model provides accurate approximations of the stationary
bichain configurations, we first present the numerical solutions of the continuum equilib-
rium conditions and then use them in an optimization method to compute the solution of
the discrete equilibrium conditions. In section 6.2, we present the Hamiltonian formula-
tion of the birod equilibrium conditions and discuss the sequence dependent coefficients
obtained by the deterministic exponential Cauchy-Born rule for bichains. We then il-
lustrate the equilibrium configurations for the first 240 base pairs of the sequences λ
, CF and TL for under and over twisted end conditions, corresponding respectively to
−300pNÅ and +300pNÅ, computed using the software bBDNA. The different mechanical
response corresponding to different sequences is significant and, even if a more detailed
analysis is required, the effect of the ground state geometry appear to be important in
each case. The results are then compared to their discrete analogues in section 6.3. We
present the sequence dependent bichain equilibrium conditions numerically obtained for
the rigid base model. Although the comparison of the discrete and continuum solution
is satisfactory, these results are only preliminary and a finer analysis of the ability of
the continuum solutions to reproduce bichain stationary configurations remains to be
investigated.

189



Chapter 6. On the Multi-scale Modelling of Most Probable DNA Configurations

6.1 Computing Most Probable DNA Configurations

Understanding general properties of the bichain configurational distribution in (5.2.2)
as a function of the DNA sequence is a difficult task because the configuration space is
large and the relation between the bichain internal coordinates (x, y) and the associated
bichain configuration (g,P) is non-linear. In particular, in the case of lengths of biological
interest i.e. a few hundreds of base pairs, the dimension of the configuration space is of
order 103.

A first approach of interest to characterise potential physical differences between dif-
ferent sequences, or to recognise special sequences with special mechanical properties,
is to study the most probable configuration achieved subject to prescribed end condi-
tions. This approach has been mentioned previously in the context of DNA in [Olson,
1996, Becker, 2007] and is applied using numerical methods to idealised DNA models
in [Manning et al., 1996, Zhang and Crothers, 2003, Cotta-Ramusino and Maddocks,
2010] in order to study cyclisation j-factor values for instance. We propose in particu-
lar to discuss the case where the first and last rigid body configuration in the bichain
macrostructure g are prescribed, but where the end microstructure configurations P1 and
PN are free. This set of boundary conditions is thought to provide a reasonable com-
promise between the detailed end values needed to describe mathematically a deformed
DNA configuration and the lack of physical knowledge on what are interesting values
for the microstructure end conditions. According to the specific functional form of the
bichain configurational distribution in (5.2.2), we observe that the most probable config-
urations respecting given boundary conditions are necessarily minimisers of the function
E(g(x),P(y)) in (5.2.3) and, consequently, they have to solve stationary conditions of
the form (2.2.45). The computation of such stationary configurations for a realistic se-
quence dependent model, such as in [Gonzalez et al., 2013, Petkeviciute et al., 2014], has
to help in the understanding of the DNA molecule physical properties and, even if not all
stationary configurations are minimisers, constitutes a necessary first step. The second
variation of the bichain energy is not discussed in this thesis and is left as a future work.

As originally proposed in [Manning et al., 1996], an efficient way to compute numer-
ically stationary configurations of realistic DNA fragments, whose length goes naturally
from of a few hundred to several thousand base pairs, is to work with a model where
the numerical degrees of freedom can be chosen to be considerably less than the physical
ones which typically grow linearly with the number of base pairs. This requirement is at
the heart of the objective to design accurate continuum description of DNA molecules.
Continuing this work, we propose to solve continuum birod stationary configurations
using the Hamiltonian formulation in (3.2.76) parametrized using the sequence depen-
dent coefficients, as described in (5.3.3), coming from the deterministic Cauchy-Born rule
proposed in section 4.2. These results are then compared with solutions of the original
discrete system by using a root solving method which takes as initial guess the continuum
birod configuration sampled at the base positions.
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6.2 A Birod Model Formulation

As anticipated, we are interested in the use of a continuum birod model to approxi-
mate sequence dependent stationary bichain configurations. More precisely, we are inter-
ested in the computation of stationary birod configurations (g,P(y)) with prescribed end
macrostructure configurations g(0) = Id4 and g(L) = g∗N but with free end microstruc-
ture configurations. Formally, these conditions can be stated as

δE[g,P(y)]δ(g, y) = 0 (6.2.1a)

for any smooth birod perturbations δ(g, y)(s) satisfying

δg(0) = 0 and δg(L) = 0. (6.2.1b)

In section 4.1.2, we discussed briefly why for a consistent birod internal energy, in the
sense of (4.1.15), and for Dirichlet conditions sufficiently close to the ground state end
configuration, the continuum stationary configuration is expected to provide an approx-
imation to the desired bichain configuration. A similar argument can be made for the
mixed end conditions used in this case. We recall that the quality of the consistency
between the discrete and continuum energy definition in the context of DNA modelling
is illustrated in figure 5.18.

As discussed in more detail in sections 3.2.7 and 3.2.8, the birod configuration (g,P(y))
making stationary an internal energy of the form (5.3.3) with respect to some prescribed
end configurations, can be written in a Hamiltonian form. More precisely, we first intro-
duce the compact notation

z(s) = (ζ(s), g(s), ζPy (s), y(s)) (6.2.2)

where ζ(s) = (m(s), n(s)) ∈ R6 stands for the local torque and stress acting on the
birod macrostructure and is the conjugate variable to the macrostructure configuration
g(s) = (R(s), r(s)) ∈ SE(3), and similarly ζPy (s) = (mP(s), nP(s)) ∈ R6 is the conjugate
to the birod microstructure coordinates y(s) = (η(s),w(s)) ∈ R6. It yields the following
sequence dependent birod Hamiltonian system

d

ds
z(s) = J (z(s)) ∂zH(z(s); s) (6.2.3a)

g(0) = Id4, g(L) = gN
∗

K0(y(0)− ŷ(0))− ζPy (0) = 0 and KL(y(L)− ŷ(L)) + ζPy (L) = 0
(6.2.3b)

with

J (z(s)) =

Jg (ζ(s), g(s)) 0

0

(
0 −Id6

Id6 0

) (6.2.3c)
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where the operator Jg ( . ) is defined in (3.2.25), the boundary conditions (6.2.3b) have
been chosen consistently with (6.2.1b) and the matrices K0 and KL come from the point
wise energy terms in (5.3.3). The function H denotes the sequence dependent birod
Hamiltonian. Moreover, since the internal energy in (5.3.3) is quadratic, and according
to the definition of the Legendre transform in (3.2.73), the birod Hamiltonian can easily
be shown to be of the form

H(y, ζPy , ζ; s) =
1

2

y − ŷ(s)
ζPy
ζ

 ·H(s)

y − ŷ(s)
ζPy
ζ

+

(
ζPy
ζ

)
·
( d
ds ŷ(s)

ξ̂(s)

)
(6.2.4a)

where the matrix H(s) ∈ R18×18 is explicitly given as a function of the birod stiffness
matrix K(s) in (5.3.3) as

H =

(
K2K

−1
3 KT

2 −K1 −K2K
−1
3

−K−1
3 KT

2 K−1
3

)
(6.2.4b)

where we have introduced the block structure

K =

(
K1 K2

KT
2 K3

)
(6.2.5)

with K1 ∈ R6×6, K2 ∈ R6×12 and K3 ∈ R12×12. Consequently, a sequence dependent
birod Hamiltonian, together with its symplectic structure in (6.2.3a) can be analytically
deduced from the sequence dependent rigid base model in [Gonzalez et al., 2013, Petke-
viciute et al., 2014] using the determinist Cauchy-Born rule presented in section 4.2. We
recall that sequence dependent birod ground state configurations (ĝ(s),P(ŷ(s))) and the
corresponding birod stiffness matrix K(s) are illustrated for the sequence λ in figure 5.13
and 5.15 respectively. The entries in the matrix H(s), as defined in (6.2.4b), are shown
in figure 6.1 using an analogous 6×6 block decomposition to figure 5.15 but with respect
to the variables y, ζPy and ζ.

The implementation of an efficient numerical method to solve the Hamiltonian system
in (6.2.3), as well as a general discussion of some solution sets for different given DNA
sequences, requires a further significant investment of effort and constitutes a large part
of the doctoral thesis1 of J. Glowacki. Based on the work of [Manning et al., 1996], an
equivalent system to (6.2.3) involving a quaternion parametrization of the rotation matrix
R(s) has been derived and a continuation method is used to produce sets of stationary
sequence dependent birod configurations. Moreover, significant effort has been invested in
the design of interactive software tools allowing useful representations of these solutions
sets. The resulting software bBDNA allows the computation and the visualisation of
solutions to the equilibrium birod conditions for several end conditions.2 Figure 6.2 shows
solutions computed for the first 240 base pairs of the sequence λ using this software and

1in preparation
2This software should be available for free downloading very soon. The interested reader should

contact his author Jaroslaw Glowacki for more information.
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6.2. A Birod Model Formulation

the Hamiltonian matrix illustrated in figure 6.1. The middle configuration is obtained by
the application of a pure extension load on the ground state configuration and correspond
to a force of 0.75 picoNewton (pN). We have then applied pure twist loads corresponding
respectively to −300pNÅ and +300pNÅ. The left configuration is then under twisted,
with respect to intrinsic right handedness of B-DNA fragments, and the right one is over
twisted. The colour map along the strands shows the norm of the local total couple |m| (s)
around the birod macrostructure position r(s). Figures 6.3 and 6.4 show analogous
configurations (same loading values) for the sequence CF and TL respectively. The
sequences λ , CF and TL were detailed in section 5.2.2.
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Figure 6.1: Entries of the birod Hamiltonian matrix predicted by the deterministic Cauchy-Born
rule for the sequence λ . The plots shows the entries from the 1st to 240th base pair. More detail
is discussed in the text.
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Figure 6.2: Deformed continuum birod configurations for the sequence λ . The left configuration
has been under twisted, the middle one is slightly pulled and the right one has been over twisted.
The colour map along the strands shows the norm of the local total couple around the base pair
position. More detail is discussed in the text.

In all three cases, the difference in the mechanical response between under and over
twisting is evident. We observe, according to the colour map along the strands, that
the local couple seems to be reach higher values for the under twisted λ fragment, in
figure 6.2, whereas the converse situation appears for the TL fragment, in figure 6.4.
This could be explained by the fact that the λ unstressed configuration, drawn in figure
5.13a, is roughly straight and it is then its intrinsic right handedness which is deformed.
In contrast the TL unstressed configuration has been designed to have a pronounced left
handed super-helix, as drawn in figure 5.13c, and it consequently seems that it is its super-
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6.2. A Birod Model Formulation

Figure 6.3: Deformed continuum birod configurations for the sequence CF . The left configuration
has been under twisted, the middle one is slightly pulled and the right one has been over twisted.
The colour map along the strands shows the norm of the local total couple around the base pair
position. More detail is discussed in the text.

helical structure which reacts the most to the applied deformation. The sequence CF ,
even if it not completely clear from the figure 6.3, has very interesting three dimensional
structures when it has been under and over twisted. They are probably due the interplay
between the large intrinsic bends in its unstressed configuration, drawn in figure 5.13b,
and the applied external couples. A more detailed analysis on the sequence dependent
mechanical response is not pursued here and is left for a future work. We merely remark
that these examples illustrate that different sequences respond in markedly different ways.
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Figure 6.4: Deformed continuum birod configurations for the sequence TL . The left configuration
has been under twisted, the middle one is slightly pulled and the right one has been over twisted.
The colour map along the strands shows the norm of the local total couple around the base pair
position. More detail is discussed in the text.

196



6.3. A Rigid Base Model Formulation

6.3 A Rigid Base Model Formulation

We would like now to assess whether the sequence dependent birod equilibrium config-
urations, computed using the software bBDNA, provide accurate approximations of the
analogous bichain equilibrium configurations for the rigid base model. One approach
is to solve numerically the bichain sequence dependent equilibrium conditions, and to
compare the resulting solution with the corresponding birod configuration evaluated at
base pair positions.

A discussion on this problem has been made in section 2.2.6 and stationary conditions
have been deduced for a general energy bichain E. However, in the specific case of the
quadratic energy appearing in (5.2.3) and for the specific end conditions used in the
continuum computation, i.e. prescribed end macrostructure configurations to be Id4 and
gN
∗ respectively and free microstructure configurations, we obtain explicitly

K
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0
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T
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(
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)
...
0

L(1)
xN−1

T
AdTgN−1

(
λR

λr

)
0



= 0 (6.3.1a)

g1 = Id4, gN =

N−1∏
n=1

a(xn) = gN
∗. (6.3.1b)

where we have used the expressions in (2.2.51) and (2.2.53) together with the identities
in (2.2.49) and where the matrix L(1)

xn is explicitly given in (2.2.20) for the bichain coordi-
nates used in [Gonzalez et al., 2013, Petkeviciute et al., 2014]. The system (6.3.1) is then
made up of 12N equations and unknowns, which are the 12N − 6 bichain internal coor-
dinates (x, y) plus 6 Lagrange multipliers (λR ,λr). Note that the Lagrange multipliers
can be interpreted as the couple and force needed to enforce the Dirichlet conditions
according to (2.2.58), and that all the non-linear dependencies are in the matrices Adgn
which come from the geometric constraints, induced by the Dirichlet conditions, on the
internal coordinates.

Numerical solutions of these bichain equilibrium conditions have been computed by
A. Patelli using the function fsolve provided by the software matlab. This method is
based on a Newton algorithm and therefore requires an initial approximation of internal
coordinates and Lagrange multipliers. According to the discussion made in section 4.1.2
about the consistency of discrete and continuum stationary configurations, natural initial
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approximations are given by the evaluation of the associated birod continuum configura-
tion at base pair positions and by the associated external couple and force, as described
in ( 3.2.83a). Figure 6.5 shows the bichain internal coordinates for the under twisted
sequence dependent birod solution, using the symbol −, appearing in figure 6.2 and the
corresponding solution of the bichain system (6.3.1), using the symbol ◦. The first two
plots show respectively the components of the intra bichain coordinates yn = (ηn,wn) as
a function of the base pair distance, and the two others shows respectively the entry of
the inter bichain coordinates xn = (un, vn). The analogous bichain internal coordinates
for the over twisted configuration are shown in figure 6.6. We also present in figures 6.7
and 6.8 the corresponding plots for the under twisted configuration of the sequence CF
and TL respectively3. We note that the characteristic periodicity in figure 6.8 reflects
the 10 base pairs periodicity of the sequence TL . Their associated three dimensional
birod configurations are shown in figure 6.3 and 6.4 respectively. Even if these results
are satisfactory, they are, unfortunately, only preliminary. A finer analysis of the abil-
ity of the continuum solutions to reproduce bichain stationary configurations has to be
investigated.

An important remark is the following. To solve the Hamiltonian system in 6.2.3 a very
dense mesh is needed because of the strong heterogeneous character of the coefficients
matrix illustrated in figure 6.1. More precisely, the number of nodes used in the numerical
discretization is considerably higher than the number of base pairs. Consequently, even if
these continuum computations are very fast and moreover provide an initial configuration
for the discrete system, the interest of the continuum model is then questionable. We
believe however the definition of this sequence dependent continuum model to be valuable
since it provides the necessary first step in the definition of rigorous large scale DNA
models, and, consequently, in the construction of the multi-scale modelling of DNA
statistical physics. We are confident that homogenisation techniques, such as the one
presented in section 7.3.2, will allow this issue to be overcame and to define an sequence
dependent continuum model with more slowly varying coefficients.

3The analogous figures for the over twisted configurations are omitted for compactness.
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Figure 6.5: Comparison of the bichain internal coordinates of an under twisted configuration for
the sequence λ computed with the discrete (◦) and continuum (-) equilibrium conditions. Each
plot shows from top to bottom the entries of the triple η, w, u and v as a function of base pair
distance.

199



Chapter 6. On the Multi-scale Modelling of Most Probable DNA Configurations

0 45 90 135 180 225
−0.4

−0.2

0

0.2

0.4

base pair distance

0 45 90 135 180 225
−0.4

−0.2

0

0.2

0.4

base pair distance

A
n
g
s
tr

o
m

s

0 45 90 135 180 225
−0.2

0

0.2

0.4

0.6

0.8

base pair distance

0 45 90 135 180 225
−1

0

1

2

3

4

base pair distance

A
n

g
s
tr

o
m

s

Figure 6.6: Comparison of the bichain internal coordinates of an over twisted configuration for
the sequence λ computed with the discrete (◦) and continuum (-) equilibrium conditions. Each
plot shows from top to bottom the entries of the triple η, w, u and v as a function of base pair
distance.
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Figure 6.7: Comparison of the bichain internal coordinates of an under twisted configuration
for the sequence CF computed with the discrete (◦) and continuum (-) equilibrium conditions.
Each plot shows from top to bottom the entries of the triple η, w, u and v as a function of base
pair distance.
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Figure 6.8: Comparison of the bichain internal coordinate of an under twisted configuration for
the sequence TL computed with the discrete (◦) and continuum (-) equilibrium conditions. Each
plot shows from top to bottom the entries of the triple η, w, u and v as a function of base pair
distance.
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7. On the Multi-scale Modelling of DNA con-
figurational first moment

The local structure of the DNA double helix was assumed to be that
of idealised B-DNA, with the helix axis following a straight line.

It is now known that this latter assumption is an over simplification.

E. N. Trifonov, R. K.-Z. Tan & S. C. Harvey, 1988.

This last chapter discusses the features of the configurational first moment for the
sequence dependent rigid base pair model as well as its approximation in a continuum
description. In section 7.1 we recall the importance of this chain observable since it com-
prises the frame correlation matrix and the Flory persistence vector which are both of
interest to characterise the possible constitutive anisotropy and possible non-trivial in-
trinsic geometry of the DNA molecule. We discuss the limitation of the existing models,
in particular of the isotropic Wormlike chain, to describe sequence dependent properties.
The value of the explicit approximations for the configurational first moment of hetero-
geneous chains and rods is then emphasised and, to quantify their accuracy, we compare
numerically their predictions with results obtained by a Monte Carlo simulation. How-
ever, these results are only valid for local chains and local rod, so that we only use the
rigid base pair model for the discussion. In section 7.2, we concentrate on the chain for-
mulation and the results of the recurrence relation for the configurational first moment
deduced in section 2.4 are compared with Monte Carlo simulations for the sequences λ
, CF and TL . In each case the differences are hardly perceptible, even after 500 base
pairs, and the explicit formula are consequently very satisfactory. The factorization into
the expected chain and the persistence matrix is then illustrated. Remarkably, it shows
that the fast variations in the configurational first moment reflect the expected chain
configuration whereas the slow convergence of the entries is due to the persistence ma-
trix. This factorization is then, in a mathematical sense, a generalisation of the studies
in [Trifonov et al., 1988, Schellman and Harvey, 1995] of the effect of localised intrinsic
bends in chain statistics. We present also the results of the short length expansion, which
is a closed form expression and which is observed to be valid until a distance of about
135 base pairs. In section 7.3 we apply the exponential stochastic Cauchy-Born rule
to discuss the continuum approximations of the configurational first moment of chains.
We describe the sequence dependent continuum rod parameters, obtained from the rigid
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base pair model, and the ODE governing the rod configurational first moment, deduced
in section 3.4. The numerical solutions of this ODE are compared with the results of
Monte Carlo simulations obtained for the sequence λ and, as for the discrete approxima-
tion, the difference between the values is hardly perceptible. The exponential stochastic
Cauchy-Born rule for chains, together with the proposed ODE, are then thought to be
very satisfactory and to constitute a significant step towards the multi-scale modelling of
DNA statistical physics properties. However, the strong heterogeneous character of this
formulation forces the number of mesh point of the numerical discretization used to solve
the ODE, to be significantly larger than the actual of number of base pairs which lead
to a pragmatic objection to the use of the continuum model. In order to overcome this
fundamental issue, we propose the application of a homogenisation technique for ODE
systems which possess two distinct characteristic scales. Since the coefficients do not
exhibit any of the classical hypotheses, such as periodicity or ergodicity, we only obtain a
local averaging principle. Even if the optimal size of the window used to average should
be investigated more, the choice of about 30Å is observed to deliver very smooth and
slowly varying coefficients. The solution of the homogenised system is then compared
to the Monte Carlo simulation for the sequence λ . Not only is the difference is hardly
perceptible but also the number of numerical mesh points are now significantly less than
the number of base pairs of the original chain. The results, even if they require a more
detailed analysis, are believed to be encouraging in the multi-scale modelling of DNA
statistical physics and in the definition of sequence dependent large scale models.
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7.1. On the configurational first moment in DNA mechanics

7.1 On the configurational first moment in DNA mechanics

In both discrete and continuum modelling of DNA molecules, the first moment of some
configurational observables has been intensively studied and has been used to describe
their general statistical properties and to discuss the existence of exceptional sequences.
A brief presentation of these observables has been made in section 2.4 for the discrete
approach and in section 3.4 for the continuum one. In the following discussion we will
focus on the Flory persistence vector and on the frame correlation matrix.

The Flory persistence vector, which is denoted 〈rm,n〉 ∈ R3 or 〈r(s′, s)〉 ∈ R3, is
defined as the expectation of the relative position of two sites in the molecule, indexed
by m and n in the discrete setting and by s′ and s in the continuum one. It gener-
alises the Kratky-Porod persistence length [Porod, 1948, Krakty and Porod, 1949, Flory,
1973, Schellman and Harvey, 1995]. Analogously, the frame correlation matrix is denoted
as 〈Rm,n〉 ∈ R3×3 or 〈R(s′, s)〉 ∈ R3×3 and is defined as the expectation of the relative
rotation between two elements in the molecule which generalises the tangent-tangent
correlation [Landau and Lifshitz, 1959, Schellman, 1974, Maroun and Olson, 1988, Pa-
nyukov and Rabin, 2000]. Using the definitions presented in sections 2.4 and 3.4, the
study of the Flory persistence vector and of the frame cross-correlations is then encom-
passed in the analysis of the first moment of the relative rigid body displacement, or
configurational first moment, denoted by 〈gm,n〉 ∈ R4×4 or 〈g(s′, s)〉 ∈ R4×4. This point
of view has been used already in [Becker, 2007].

The main interest of these two observables is that they encode the possible constitu-
tive anisotropy as well as the possible non-trivial intrinsic geometry of the molecule. A
large confusion is, however, still observed today about the notion of persistence length
and tangent-tangent correlation and it is important for us to make here a very clear
point. The most popular model used to describe the discrete or continuum DNA statis-
tical physics is with no doubt the Wormlike chain model. This model is defined by a
quadratic energy density with only one bending stiffness parameter and where the min-
imum energy configuration is straight. In such circumstances, it can be shown that the
Kratky-Porod persistence length and the tangent-tangent correlation are simple func-
tions of the bending parameter [Landau and Lifshitz, 1959, Doi and Edwards, 1986].
The application of this model on a large ensemble of long (a few kilo base pairs) DNA
molecules to discuss large scale effective properties can be justified arguing that the
fine details of each fragment constitution is, somehow, averaged. The confusion starts
when the Wormlike chain is applied to an ensemble of reasonably short fragments and
of similar constitutions because, in this situation, both the hypotheses of uniform stiff-
ness distribution and of intrinsically straight ground state are strongly violated. For
instance, it has been observed experimentally that some regions of specific sequences are
intrinsically bent [Marini et al., 1982, Kabsch et al., 1982, Kitchin et al., 1986, Levene
et al., 1986, Bednar et al., 1995, Vologodskaia and Vologodskii, 2002]. In such cases,
since the Wormlike chain model no longer applies, the values of the Kratky-Porod per-
sistence length and the tangent-tangent correlation can be very different, as it is shown
in the Helical hinge model [Schellman, 1980] or in the Helical Wormlike chain model
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for instance [Yamakawa, 1997]. In order to take into account the possible existence of
local bends in the minimum energy shape of the molecule, the wedge model has been
presented [Trifonov and Sussman, 1980] which allows the introduction of the notion of
static persistence length and dynamic persistence length [Trifonov et al., 1988] which
are designed to reflect the contributions of the intrinsic geometry of the molecule and of
the thermal fluctuation on the total statistical persistence length. A finer mathematical
analysis on the influence of localised bends in the ground state configuration as well as
the sequence dependent molecule composition has been done in [Schellman and Harvey,
1995], they show how the tangent-tangent correlation can be factorized into a static part
and a dynamic part under specific material symmetries.

Nowadays, we believe that realistic DNA models, at the scale of hundreds of base
pairs, are given by a sequence dependent rigid base model and, to some extent, by a
sequence dependent rigid base pair model. These models are described in sections 5.2.2
and 5.2.1 respectively. The Flory persistence vector 〈rm,n〉 and the frame correlation
matrix 〈Rm,n〉 have already been studied in [Maroun and Olson, 1988] using Monte Carlo
simulations on a sequence dependent rigid base pair model. Using a DNA sequence made
of periodic repeats of A5G5, which has the property to have a superhelical structure in its
ground state, they show that the three components of the persistence vector reflect the
superhelical periodicity and converge to different and non-zero values, and that diagonal
entries in the frame correlation matrix also indicates the intrinsic superhelical structure
and are asymptotically vanishing.

In sections 2.4 and 3.4 it has been shown how in both rigid body chain and contin-
uum rod models explicit analytical expansions for the entries in the Flory persistence
vector and in the frame correlation matrix can be built in the semi-flexible regime and,
moreover, how this leads to the definition of the persistence matrix. In order to assess
the accuracy of these expansions in the case of DNA modelling we would like to com-
pare them to the results obtained using Monte Carlo simulations for realistic sequence
dependent parameters. However, one of the key simplifying assumptions needed to apply
the theory that we have developed is that the first moment 〈gm,n〉 satisfies (2.4.1) in the
discrete setting, and that 〈g(s′, s)〉 satisfies (3.4.1a) in the continuum formulation, and
this is not verified for the rigid base model in [Gonzalez et al., 2013, Petkeviciute et al.,
2014], as presented in (5.2.5) because of its 18×18 overlapping blocks structure depicted
in figure 5.3. For illustration purpose, we will present a best-fit sequence dependent
rigid base pair model derived from the rigid base model and use it to demonstrate the
quality of the expansions which have been deduced. We should emphasize that even if a
rigid base pair model does not reproduce all the complexity of the sequence dependent
DNA statistical physics as well as the rigid base model, the rigorous conclusions that it
implies allow an original and valuable viewpoint on the rich spectrum of behaviours that
a semi-flexible heterogeneous polymer can have.
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7.2 A Rigid Base Pair Formulation

At the level of base pairs, a DNA molecule can be described as a rigid body chain
configuration g = (g1, ..., gN ) where N denotes the number of base pairs. As discussed
in more detail in section 5.2.1, we assume the existence of a stationary configurational
distribution dρ(g) of the form

dρ(g) =
∏

1≤n≤N
dρn(an) (7.2.1a)

with

dρn(an) =

√
det

(
1

2π
Kxx
n

)
exp

{
−1

2
(xn − x̂n) ·Kxx

n (xn − x̂n)

}
dxn (7.2.1b)

where xn ∈ R6 stands for local internal chain coordinates which parametrize the local
junction displacement in the form an = a(xn) according to the definition in (2.1.18). In
order to define a realistic sequence dependent rigid base pair model of the form in (7.2.1),
we use the parameter set and the method presented in [Gonzalez et al., 2013, Petkeviciute
et al., 2014] to build a rigid base model of the form in (5.2.3) and we define, for each
n = 1, ..., N , the triple x̂n to be the corresponding macrostructure internal coordinates
in the first moment (x̂, ŷ), as in (2.3.18b), and the matrix Kxx

n by

Kxx
n =

(
cxxn,n

)−1 (7.2.2)

where cxxn,n denotes the local covariance matrices of the macrostructure internal coordi-
nates as defined in (2.3.19b). This construction can be motivated by a maximum entropy
principle subject to a given block diagonal sparsity pattern on the sequence dependent
rigid base distribution in [Gonzalez et al., 2013, Petkeviciute et al., 2014].

Consequently, the analytic relation for the relative rigid body displacement gm,n =
g−1
m gn for a chain in a semi-flexible regime, presented in section (2.4.2), can be stated as

〈gm,n+1〉 = 〈gm,n〉
(
Id4 −

1

2
Λn

)
ān + o (ε) with gm,m = Id4 (7.2.3a)

with

Λn =

(
Tr
(
CRR
n

)
Id3 − CRR

n Vect
(
CRr
n

)
0 0

)
(7.2.3b)

and where the matrix ān denotes the expected junction displacement, defined in (2.4.6),
and CRR

n and CRr
n denote blocks of the local fluctuation matrix Cn, defined in (2.4.16).

For a given distribution of the form in (7.2.1) no analytical expression for ān and Cn is
available and numerical methods have been proposed [Becker, 2007, Becker and Everaers,
2007, Long et al., 2012]. However, using again the semi-flexible hypothesis we have
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deduced explicit first order approximations for these matrices as a function of the triple
x̂n and the matrix Kxx

n . For compactness these expansions are presented in the appendix
A.5. We should also observe that we have

ε ∼ 0.01 (7.2.4)

for the parameters in [Gonzalez et al., 2013, Petkeviciute et al., 2014] according to the
expression in (2.4.28).

Figure 7.1: Sketch of three dimensional configurations for 250 Monte Carlo samples (in blue)
and for the expected chain configuration (in red) for the sequence λ (first 220 base pairs).
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7.2.1 Comparison between the analytic recurrence relations and Monte
Carlo simulations

We would like to assess the quality of the proposed recurrence relation for the first
moment 〈gm,n〉 = (〈Rm,n〉 , 〈rm,n〉) in (7.2.3) in the case of the rigid base pair coarse
grain DNA distribution dρ(g) in (7.2.1). In order to have quantitative estimates we
propose to compare numerically the results obtained using the analytic formulas with
the analogous ones obtained using a Monte Carlo method. More precisely, on one hand,
the recurrence relation (7.2.3) can be explicitly evaluated for a given DNA sequence, and,
on the other hand, the normal configurational distribution dρ(g) can be densely sampled
in order to approximate the entries of 〈gm,n〉 by an arithmetic average. Figures 7.1 depict
in blue the three dimensional shape of 250 Monte Carlo samples and in red the expected
chain configuration ḡ1,n.

Figures 7.2 shows the first column of the frame correlation matrix 〈R1,n〉 as a function
of the base pair index n for the sequence1 λ . The first line shows the values of the three
components [〈R1,n〉]11, [〈R1,n〉]21 and [〈R1,n〉]31 at the scale of 50 base pairs. The second
and third line show the same components but at the scale of 150 and 450 base pairs
respectively. The analogous entries of second and third columns of the frame correlation
matrix 〈R1,n〉 are drawn in figures 7.3 and 7.4. In all of these plots the results of the
Monte Carlo simulation is denoted by the symbol ◦ and the results of the recurrence
relation in (7.2.3) by ∗ and connected by dashed lines. Similarly, figure 7.5 shows the
components of the Flory persistence vector 〈r1,n〉 using the same illustration choices.

The difference between the Monte Carlo simulations and the prediction of the re-
currence relation is hardly perceptible. Relative errors are reported in figure 7.6 for the
frame correlation matrix 〈R1,n〉 and for the Flory persistence vector 〈r1,n〉 respectively.
The difference for the relative rotation first moment 〈R1,n〉 reaches approximatively 8%
around n = 500, however the actual values of the entries are around 10−2 which explains
why this error is not apparent in figures 7.2, 7.3 and 7.4. In contrast, even if the values of
the component in 〈r1,n〉 can become relatively large, the error stays less than 1%. Con-
sequently, we believe the recurrence relation (7.2.3) to be a very accurate approximation
of the chain first moment 〈g1,n〉. As discussed in section 2.4.3, we observe that the en-
tries in the frame correlation matrix in 〈R1,n〉 are all asymptotically vanishing but in a
non-monotonic fashion for a sufficiently long base pair distance, and that the component
of the Flory persistence vector 〈r1,n〉 are similarly converging to finite values. Moreover
the frame correlation matrix demonstrates oscillations with a relatively small period of
about 11 base pairs, which corresponds to the intrinsic helical twist in B-DNA.

1More detail about this sequence is discussed in section 5.2.2.
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Figure 7.2: First column of the frame correlation matrix 〈R1,n〉 for the sequence λ and for three
different molecule lengths. Monte Carlo simulations (◦) versus the analytical predictions (∗).
More detail is given in the text.
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Figure 7.3: Second column of the frame correlation matrix 〈R1,n〉 for the sequence λ and for
three different molecule lengths. Monte Carlo simulations (◦) versus the analytical predictions
(∗). More detail is given in the text.

210



7.2. A Rigid Base Pair Formulation

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

base pair distance

0 15 30 45 60 75 90 105 120 135 150
−1

0

1

base pair distance

0 45 90 135 180 225 270 315 360 405 450
−1

0

1

base pair distance

Figure 7.4: Third column of the frame correlation matrix 〈R1,n〉 for the sequence λ and for three
different molecule lengths. Monte Carlo simulations (◦) versus the analytical predictions (∗).
More detail is given in the text.
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Figure 7.5: Components of the Flory persistence vector 〈r1,n〉 for the sequence λ and for three
different molecule lengths. Monte Carlo simulations (◦) versus the analytical predictions (∗).
More detail is given in the text.
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Figure 7.6: Relative errors between Monte Carlo simulations and analytical predictions for
the frame correlation matrix 〈R1,n〉 (blue) and for the Flory persistence vector 〈r1,n〉 (green)
associated to the sequence λ as a function of the molecule length. More detail is given in the
text.

Interestingly, for different sequences we actually observe different behaviours of the
configurational first moment 〈g1,n〉. The figures 7.7a and 7.7b depict in blue the three
dimensional shape of 250 Monte Carlo samples and in red the expected chain configura-
tion for the sequences CF and TL respectively. We recall the sequences λ , CF and TL
are discussed in section 5.2.2. It is interesting to observe the qualitative organisation of
the Monte Carlo samples and how this correlates with the expected chain configuration.
More precisely, the detailed decay of the frame correlation matrix 〈R1,n〉 is for instance
very different for the sequence λ , CF and TL . Figure 7.8 shows the third column of
the frame correlation matrix 〈R1,n〉 for the fragments CF and TL . We note that the
component [〈R1,n〉]33 is decaying faster for the sequence CF and even becomes slightly
negative around n = 225, which is intuitively explained by the presence of a large intrin-
sic bend in this fragment as drawn in figure 5.4b. In contrast, the analogous component
for the fragment TL exhibits oscillations with two distinct periods, the shorter one is
about 11 base pairs, and corresponds to the intrinsic B-DNA helicity, and the longer one
is about 90 base pairs, and corresponds to the super-helical structure that this particular
sequence has in its ground state configuration as shown in figure 5.4c. Concerning the
Flory persistence vector 〈r1,n〉, even if the detailed behaviour differs for each distinct
sequences λ , CF and TL , we mainly would like to underline that the limiting values are
different, as presented in table 7.1. The ordering of the values for the components 〈r3,500〉
can be intuitively understood from the respective ground state configurations in 5.4, but
it is difficult to give to the rest of the table such a naive interpretation. The different
limits in these Flory persistence vectors are of importance because they supports the idea
that realistic sequence dependent DNA models have to allow physical features that the
wormlike chain, for instance, cannot describe, such as anisotropy of the ground state.

Table 7.1: Limiting values of the Flory Persistence vector

λ CF TL
〈r1,500〉 [Å] -55.71 116.25 168.69
〈r2,500〉 [Å] 5.72 98.03 -28.97
〈r3,500〉 [Å] 403.05 338.62 362.68
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(a) CF

(b) TL

Figure 7.7: Sketch of three dimensional configuration of 250 Monte Carlo samples (in blue) and
of the expected chain configuration (in red) for the sequences CF (a) and TL (b) (first 220 base
pairs)
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Figure 7.8: Third column of the frame correlation matrix 〈R1,n〉 for the sequences CF (a) and TL
(b) and for three different molecule lengths. Monte Carlo simulations (◦) versus the analytical
predictions (∗). More detail is given in the text.

214



7.2. A Rigid Base Pair Formulation

0 5 10 15 20 25 30 35 40 45 50
−100

0

100

200

base pair distance

A
n
g
s
tr

o
m

s

0 15 30 45 60 75 90 105 120 135 150
−200

0

200

400

base pair distance

A
n
g
s
tr

o
m

s

0 45 90 135 180 225 270 315 360 405 450
−200

0

200

400

base pair distance

A
n
g
s
tr

o
m

s

(a) CF

0 5 10 15 20 25 30 35 40 45 50
−100

0

100

200

base pair distance

A
n
g
s
tr

o
m

s

0 15 30 45 60 75 90 105 120 135 150
−200

0

200

400

base pair distance

A
n
g
s
tr

o
m

s

0 45 90 135 180 225 270 315 360 405 450
−200

0

200

400

base pair distance

A
n
g
s
tr

o
m

s

(b) TL

Figure 7.9: Components of the Flory persistence vector 〈r1,n〉 for the sequences CF (a) and TL
(b) and for three different molecule lengths. Monte Carlo simulations (◦) versus the analytical
predictions (∗). More detail is given in the text.
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7.2.2 Factorization into the persistence matrix and the expected chain
configuration

As presented in section 2.4.4, the factorization of the configurational first moment 〈g1,n〉 =
(〈R1,n〉 , 〈r1,n〉) into the expected chain configuration ḡ1,n = (R̄1,n, r̄1,n) and the persis-
tence matrix 〈D1,n〉 = (〈∆1,n〉 , 〈δ1,n〉) allows a decomposition of the frame correlation
and of the Flory persistence vector in an interesting way. Precisely, for chains in a
semi-flexible regime, we have shown that they can be written as

〈R1,n〉 = 〈∆1,n〉 R̄1,n (7.2.5a)

〈r1,n〉 = 〈δ1,n〉+ 〈∆1,n〉 r̄1,n (7.2.5b)

with the property that the entries in the matrix 〈∆1,n〉 are slowly decaying as a function
of n and the components of 〈δ1,n〉 are converging to the same limiting values as the Flory
persistence vector 〈r1,n〉.

The factorization of the matrix 〈R1,n〉 in (7.2.5a) is illustrated in figure 7.10 for the
sequence λ . The three plots in the top line show respectively the three components of
the three columns of the matrix 〈R1,n〉 a as function of the base pair index n, from left
to right. This first line is essentially a summary of plots 7.2, 7.3 and 7.4. The second and
the bottom lines present the components of the three columns of the rotation R̄1,n and
of the matrix 〈∆1,n〉 respectively, following the same ordering as for 〈R1,n〉. Remarkably,
it shows that all the fast variations in the frame correlation 〈R1,n〉 are encoded in the
expected orientation configuration R̄1,n, drawn in red in figure 7.10, whereas the slow
decay is entirely due to the entries of the matrix 〈∆1,n〉. Moreover, this matrix is almost
diagonal since the diagonal entries exhibit a kind of polynomial decay and the others
stay close to zero as a function of n.

The expression for the Flory persistence vector 〈r1,n〉 in (7.2.5b) suggests, as discussed
in section 2.4.4, that it can be seen as being made up of the damped part 〈∆1,n〉 r̄1,n

and the part 〈δ1,n〉. Figure 7.11 illustrates this decomposition for the sequence λ . The
three first plots show the three components of 〈r1,n〉 in green. The components of the
triples 〈∆1,n〉 r̄1,n and 〈δ1,n〉 are drawn in orange and red respectively. The bottom line
represents the relative contribution in euclidean norm of 〈∆1,n〉 r̄1,n, drawn in orange,
and 〈δ1,n〉, drawn in red, of the triple 〈r1,n〉. We observe that for a length shorter than
roughly 45 base pairs the Flory persistence vector 〈r1,n〉 is strongly dominated by the
expected chain position r̄1,n, whereas the triple 〈δ1,n〉 is the only remaining contribution
for lengths significantly larger than roughly 400 base pairs.

The analogous factorization of the configurational first moment into the expected
chain configuration and the persistence matrix of the form 〈g1,n〉 =

〈
ḡ1,n

〉
〈D1,n〉, or

equivalently in (7.2.5), is presented in figure 7.12a and 7.12b and for the sequences CF
and TL respectively.
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Figure 7.10: The three plots in the top line show respectively the components of the three
columns of the matrix 〈R1,n〉 (in blue) for the sequence λ . The second and bottom lines present
the matrix factors R̄1,n (in purple) and 〈∆1,n〉 (in red) respectively using the same ordering.
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Figure 7.11: The three first plots show the three components of the triples 〈r1,n〉 (in green),
〈∆1,n〉 r̄1,n (in orange) and 〈δ1,n〉 (in red) for the sequence λ . The bottom panel represents the
relative contribution in euclidean norm of 〈∆1,n〉 r̄1,n (in orange) and 〈δ1,n〉 (in red) of the Flory
persistence vector 〈r1,n〉.
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Figure 7.12: In each subfigure, the three plots in the top line show respectively the components
of the three columns of the matrix 〈R1,n〉 (in blue) for the sequences CF (a) and TL (b). The
second and bottom lines represent the matrix R̄1,n (in purple) and 〈∆1,n〉 (in red) respectively
using the same ordering.
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(b) TL

Figure 7.13: In each subfigure, the three first plots show the three components of the triples
〈r1,n〉 (in green), 〈∆1,n〉 r̄1,n (in orange) and 〈δ1,n〉 (in red) for the sequences CF (a) and TL
(b) respectively. The bottom panels represent the relative contribution in euclidean norm of
〈∆1,n〉 r̄1,n (in orange) and 〈δ1,n〉 (in red) in the Flory persistence vector 〈r1,n〉.
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The proposed factorization of the configurational first moment 〈g1,n〉 has interesting
properties when applied to the sequence dependent rigid base pair model described in
section 7.2.1. We observe that most of the characteristic and fast variations appearing
in component of the first moment 〈R1,n〉 and 〈r1,n〉 can be mainly attributed to the
analogous variations in the expected chain configuration ḡ1,n = (R̄1,n, r̄1,n), such as
the B-DNA intrinsic twist or the super-helical structure in the case of the sequence TL
illustrated in figures 7.12b and 7.13b.

Table 7.2: Characteristic inverse decays (in base pairs) of the matrix 〈∆1,n〉

λ CF TL

ϑ
(bp)
1 126.93 129.69 124.19
ϑ

(bp)
2 124.38 126.84 122.10
ϑ

(bp)
3 131.05 130.61 128.39

The behaviour of the entries in the block 〈∆1,n〉 of the persistence matrix 〈D1,n〉
looks similar for the three sequences λ , CF and TL presented in figures 7.10, 7.12a and
7.12b. In order to quantify how close these decays are, we simply propose to fit these
matrices by matrices of the form

exp

{
−n diag

(
1

ϑ
(bp)
1

,
1

ϑ
(bp)
2

,
1

ϑ
(bp)
3

)}
. (7.2.6)

The values of the constants ϑ(bp)
1 ,ϑ(bp)

2 and ϑ(bp)
3 are thought to be characteristic inverse

decays since they roughly quantify the memory lost of the expected chain configuration
ḡ1,n in the configurational first moment 〈g1,n〉 according to the factorization (7.2.5).
These values (measured in base pairs) are reported in table 7.2.

We conclude this section with a short digression. We recall that, as discussed briefly
in section 2.4.4, the factorization of the configurational first moment into the persistence
matrix 〈D1,n〉 and the expected chain configuration ḡ1,n can be seen as a generalisation
of the expressions proposed in [Trifonov et al., 1988, Schellman and Harvey, 1995]. In
these studies, based on (very) simple polymer models they discuss how the presence of
localised static curvature decreases the apparent inverse decay rate of the tangent-tangent
correlation. Moreover, in the DNA literature the value of 150 base pairs is the accepted
characteristic value for the decay of the entries [〈R1,n〉]33. Therefore, even if the rigid base
pair model proposed in 7.2.1 is itself an approximation of the more accurate rigid base
model in [Gonzalez et al., 2013, Petkeviciute et al., 2014], which is itself parametrized
from molecular dynamic, we are satisfied to observe that the proposed analytical theory
delivers results, which are consistent with the DNA literature, but considerably more
detailed.
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7.2.3 On the short length approximation

In section 2.4.5 we have shown that very explicit approximation formulas can be stated
for sufficiently short semi-flexible rigid body chains. In particular we have deduced the
following asymptotic behaviour

〈R1,n〉 = exp {−Ω1,n} R̄1,n (7.2.7a)

〈r1,n〉 = [Id3 − exp {−Ω1,n}]ω1,n + exp {−Ω1,n} r̄1,n (7.2.7b)

for a molecular length n small compared to 1
ε and with the definitions

Ω1,n =
1

2

n−1∑
k=1

R̄1,kΛ
RR
k R̄

T
1,k (7.2.8a)

ω1,n =

(
n−1∑
k=1

R̄1,kΛ
RR
k R̄

T
1,k

)−1 [n−1∑
k=1

R̄1,kΛ
RR
k R̄

T
1,kr̄1,k − R̄1,kΛ

Rr
k

]
(7.2.8b)

and where we recall that by convention

ΛRR
k = Tr

(
CRR
k

)
Id3 − CRR

k and ΛRr
k = Vect

(
CRr
k

)
(7.2.9)

with CRR
k and CRr

k denoting blocks of the local fluctuation matrix Ck, defined in (2.4.16),
and that ε ∼ 0.01 for the rigid base pair model parametrised as proposed in section 7.2.1.

The main interest of the factorization (7.2.7) with respect to the more general one
proposed in (7.2.5), is that it is now in closed form, even if that is only the leading
order terms in an expansion in length. In other words the expression (7.2.7) literally
allows to read off the values of the entries of the configurational first moment 〈g1,n〉 =
(〈R1,n〉 , 〈r1,n〉) as a function of the set of fluctuation matrices Cn and the expected chain
rigid body configurations ḡ1,n = (R̄1,n, r̄1,n). The accuracy of the expansion for the frame
correlation matrix in (7.2.7a) can be appreciated from figure 7.14. The components of the
three columns of the matrix 〈R1,n〉 computed using a Monte Carlo simulation are drawn
in blue in the three first plots. The analogous results obtained using the expansion are
shown in red. Similarly, figure 7.15 illustrates the short length expansion for the Flory
persistence vector in (7.2.7b). The three plots show in green the three components of
〈r1,n〉 computed using Monte Carlo sampling. The results of the expansion are drawn in
red. The grey horizontal lines illustrate the limiting values of the triple 〈r1,n〉 appearing
in table 7.1. It is interesting to observe that the short length expansion gives good results
for the frame correlation matrix for the entire molecular length, whereas it seems to be
acceptable until only roughly n = 135 for the Flory persistence vector. The relative
errors between the results obtained using the expansion and the Monte Carlo simulation
are reported in figure 7.16 as a function of the base pair length. The analogous short
length expansions for the sequences CF and TL are presented in figures 7.17 and 7.18.
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Figure 7.14: The three plots show respectively the components of the three columns of the
frame correlation matrix 〈R1,n〉 computed using a Monte Carlo simulation (in blue) and the
short length expansion (in red) for the sequence λ .
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Figure 7.15: The three plots show respectively the components of the Flory persistence vector
〈r1,n〉 computed using a Monte Carlo simulation (in green) and the short length expansion (in
red) for the sequence λ . The grey line representing the limiting values of the components of
〈r1,n〉.
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Figure 7.16: Relative errors between the short length expansion and a Monte Carlo simulation
for the frame correlation matrix (in blue) and the Flory persistence vector (in green) for the
sequence λ .

The quality of the short length expansion formulas in (7.2.7) is observed to be similar
for the three sequences λ , CF and TL . The frame correlation matrix 〈R1,n〉 can
reasonably be approximated irrespective of the base pair distance, whereas the length
of roughly 150 base pairs seems to be the threshold of applicability of the short length
approximation for the Flory persistence vector 〈r1,n〉.

Table 7.3: Characteristic decays (in base pairs) of the matrix exp {−Ω1,n}

λ CF TL

ϑ
(bp)
1 127.62 130.38 124.82
ϑ

(bp)
2 124.90 127.37 122.68
ϑ

(bp)
3 131.56 131.09 128.95

We conclude this section by noting that the entries of the matrix exp {−Ω1,n} in
(7.2.7a) are very close to the ones in the matrix 〈∆1,n〉 in (7.2.7a), as one can deduce
by comparing figures 7.10 and 7.14 for instance. To make the comparison more quanti-
tative we report in table 7.3 the characteristic inverse decay values ϑ(bp)

1 , ϑ(bp)
2 and ϑ(bp)

3

(measured in base pairs) obtained by a linear fit to the matrix Ω1,n. These values are
observed to be close but slightly above the analogous ones in table 7.2.
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Figure 7.17: In each subfigure, the three plots show respectively the components of the three
columns of the frame correlation matrix 〈R1,n〉 computed using a Monte Carlo simulation (in
blue) and the short length expansion (in red) for the sequence CF and TL respectively.
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Figure 7.18: In each subfigure, the three plots show respectively the components of the Flory per-
sistence vector 〈r1,n〉 computed using the Monte Carlo simulation (in green) and using the short
length expansion (in red) for the sequence CF and TL respectively. The grey line representing
the limiting values of the components of 〈r1,n〉.
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7.3 A Rod Formulation

As discussed in section 5.3.1, a continuum description of the rigid base pair model in
(7.2.1) is given by a rod stationary configurational distribution of the form

dρ [g[ξ]] ∼ exp

{
−
∫ L

0

1

2

(
ξ(s)− ξ̄(s)

)
· K̄(s)

(
ξ(s)− ξ̄(s)

)
ds

}
D[ξ] (7.3.1)

where ξ(s) ∈ R6 is the generator vector associated with the continuum rod configuration
g(s) ∈ SE(3).

The explicit approximation for the configurational first moment 〈g(s′, s)〉 =
〈
g(s′)−1g(s)

〉
proposed in section 3.4.2 then reads

∂s
〈
g(s′, s)

〉
=
〈
g(s′, s)

〉(
T ξ̄(s)− 1

2
L(s)

)
+ o (ε) with

〈
g(s′, s′)

〉
= Id4. (7.3.2a)

where

L(s) =

(
Tr
(
CRR(s)

)
Id3 − CRR(s) Vect

(
CRr(s)

)
0 0

)
. (7.3.2b)

The vector ξ̄(s) ∈ R6 denotes the generator vector of the expected rod configuration,
as defined in (3.4.12), and appears explicitly in the distribution dρ(N) [g[ξ]] in (7.3.1).
The matrices CRR(s) and CRr(s) stand for blocks of the rod fluctuation matrix C(s), as
defined in (3.4.15), and we have the relation C(s) = K̄−1(s) according to (4.3.3b).

In order to define a rod configurational distribution dρ [g[ξ]] of the form in (7.3.1)
consistent with the sequence dependent rigid base pair model discussed in (7.2.1) we use
the stochastic Cauchy-Born rule for chains presented in section 4.3 to have

ξ̄(s) = ξ̄(N)(s) (7.3.3a)

C(s) =
1

hn
(N)

(
Ad−1

ḡ−1
n ḡ(N)(s)

L(1)
x̄n

)
K−1
n

(
Ad−1

ḡ−1
n ḡ(N)(s)

L(1)
x̄n

)T
+ o (ε) (7.3.3b)

where ḡn and x̄n stand for the rigid body chain expected configuration and its local
internal coordinates, as discussed in (4.3.9), and where similarly ḡ(N)(s) and ξ̄(N)(s)
denote its interpolated configuration and its related generator vector, as defined in 4.3.4.
The entries of the matrix K̄(s) are drawn for a few base pairs for the sequences λ , CF
and TL in figures 5.9, 5.10a and 5.10b respectively, and in figure 5.11 for a few hundreds
of base pairs. We observe that if the original rigid body chain is in a semi-flexible regime,
in the sense of (2.4.20), then the induced continuum rod is also in a semi-flexible regime
in the sense of (3.4.23), according to the definition (7.3.3b).
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7.3.1 Comparison between the analytical ODE and Monte Carlo sim-
ulations

Similarly to the numerical comparisons made in section 7.2.1, we shall discuss the ac-
curacy of the sequence dependent ODE proposed in (7.3.2). The strategy is simply to
quantify the difference between a numerical solution 〈g(0, s)〉 = (〈R(0, s)〉 , 〈r(0, s)〉),
obtained using a standard ODE solver in matlab, with the associated Monte Carlo sim-
ulations used in section 7.2.1.

Analogously to figure 7.2, figure 7.20 shows the three components of the first column of
the continuum frame correlation matrix 〈R(0, s)〉 for the sequence λ , using a continuum
line, and the same components of the matrix 〈R1,n〉 obtained from Monte Carlo sampling
for the same sequence, using the symbol ◦, at the scale of 50, 150 and 450 base pairs.
Similarly figures 7.21 and 7.22 present the comparison for the second and third columns
respectively.

The components of the Flory persistent vector 〈r(0, s)〉 for the sequence λ , as pre-
dicted by the differential equation (7.3.2), together with the analogous ones 〈r1,n〉, com-
puted using the Monte Carlo simulation, are drawn in figure 7.23.

The relative error between the values of the continuum frame correlation matrix
〈R(0, s)〉 evaluated at base pair position, obtained by solving the ODE in (7.3.2), and its
discrete version 〈R1,n〉, obtained from the Monte Carlo simulation, and similarly relative
error between the continuum Flory persistence vector 〈r(0, s)〉 and its discrete analog
〈r1,n〉, are presented in figure 7.19 for the sequence λ . These plots look very similar to
the ones shown in figure 7.6 obtained by comparing the rigid base pair description analytic
relation with the Monte Carlo simulation. This is because the continuum solution and
the discrete one are very close one to the other. We conclude that the large relative errors
observed in the entries of the frame correlation matrix are due to the relatively small
size of their absolute values, and that the Flory persistence vector, which has relatively
large components, is approximated to within 1%. Consequently, the solution 〈g(0, s)〉 of
the sequence dependent ODE (7.3.2) is thought to give an accurate description of the
configurational first moment 〈g1,n〉. The exponential stochastic Cauchy-Born rule for
chains, together with the proposed ODE, are then consequently considered to be very
satisfactory.
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Figure 7.19: Relative errors between Monte Carlo simulations and analytic predictions for
the frame correlation matrix 〈R(0, s)〉 (blue) and for Flory persistence vector 〈r(0, s)〉 (green)
associated to the sequence λ as a function of the molecule length.
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Figure 7.20: First column of the frame correlation matrix 〈R(0, s)〉 for the sequence λ and for
three different molecule lengths. Monte Carlo simulation (◦) versus analytic predictions (−).
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Figure 7.21: Second column of the frame correlation matrix 〈R(0, s)〉 for the sequence λ and for
three different molecule lengths. Monte Carlo simulation (◦) versus analytic predictions (−).
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Figure 7.22: Third column of the frame correlation matrix 〈R(0, s)〉 for the sequence λ and for
three different molecule lengths. Monte Carlo simulation (◦) versus analytic predictions (−).
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Figure 7.23: Component of the Flory persistence vector 〈r(0, s)〉 for the sequence λ and for
three different molecule lengths. Monte Carlo simulation (◦) versus analytic predictions (−).
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The other results presented in section 3.4, such as the factorization using the persis-
tence matrix 〈D(0, s)〉 or the short length expansion, are not illustrated for reasons of
compactness of the discussion. The reader should however be assured that the results
are analogous to the ones shown in 7.10, 7.11, 7.14 and 7.15, since the configurational
first moment 〈g(0, s)〉 has been shown to be very similar to 〈g1,n〉 and, by definition, the
expected rod configuration ḡ(0, s) is an interpolation of the expected chain configuration
ḡ1,n. We do report in table 7.4 the continuum analog of the inverse characteristic decays

ϑ
(Å)
1 , ϑ(Å)

2 and ϑ
(Å)
3 measured in Ångström for the matrix 〈∆(0, s)〉 defined by the fit

using the expression

exp

{
−s diag

(
1

ϑ
(Å)
1

,
1

ϑ
(Å)
2

,
1

ϑ
(Å)
3

)}
. (7.3.4)

These values are slightly lower than the accepted value of 450Å for the characteristic
inverse decay usually found in the DNA literature. A discussion similar to the one made
for the analogous table 7.2 can be made.

Table 7.4: Characteristic inverse decays (in Ångström) of the matrix 〈∆(0, s)〉

λ CF TL

ϑ
(Å)
1 423.01 436.85 416.64
ϑ

(Å)
2 413.54 426.65 415.08
ϑ

(Å)
3 438.52 439.34 432.57

From the point of view of both analytical and numerical understanding of the be-
haviour of the frame correlation 〈R1,n〉 and of the Flory persistence vector 〈r1,n〉, it is not
clear that the continuum description formulated in (7.3.2) is of interest with respect to
its discrete analog in (7.2.3). The main reason is that the coefficients in the matrix K(s),
or equivalently in the fluctuation matrix C(s), are discontinuous and highly varying, as
drawn in figure 5.11 for instance, and consequently any accurate numerical implemen-
tation of such a continuum description has to be at least as intensive as the original
discrete system. However, the continuum formulation in (7.3.2) allows the possibility of
using homogenisation techniques coming from ODE analysis and, therefore, the chance of
delivering large scale behaviour of the configurational first moment 〈g1,n〉 deduced from
the large scale solution 〈g(0, s)〉.
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7.3.2 A large scale homogenization approach

As discussed in section 5.1, understanding the sequence dependent statistical physics
properties of DNA molecules involves the analysis of several phenomena taking place at
several length scales, ranging from the detailed local sequence of bases to the mechanical
properties of sites made of hundreds of base pairs. A valuable theory would then be
capable of describing and studying both short and long scales. However, short scale
theories quickly become intensive and confused at larger scale and, in contrast, large
scale theories only gives inaccurate and coarse results at shorter scales. Interestingly,
the continuum description of the configurational first moment g1,n through the sequence
dependent ODE (7.3.2) allows us to make a first step in the construction of a multi-scale
theory of DNA molecule statistical physics. More precisely, it allows to state a local
averaging principle for the expressions governing the behaviour of the rod persistence
matrix 〈D(0, s)〉, and consequently for the first moment 〈g(0, s)〉 through an analytic
transformation.

We first have to discuss the notion of scale separation for an ODE system. Let

d

ds
xε(s) = εf(xε(s), yε(s))

d

ds
yε(s) = g(xε(s), yε(s))

(7.3.5)

for s ∈]0, L[ and assume f, g = O (1). For 0 < ε << 1, the scale separation arises from
the fact that the variable yε exhibits strong variations with respect to the variable xε at
the length scale s = O (1). The variable xε is then called a slow variable while yε is called
a fast variable, see for instance the discussion in [Hartmann, 2007, Freidlin and Wentzell,
2012, Abdulle et al., 2012]. As discussed in more detail in appendix A.7, the behaviour
of the variable xε(s) can be approximated by the solution x(H)(s) of the following ODE

d

ds
x(H)(s) = f

(H)
∆s

(
x(H)(s)

)
(7.3.6a)

where by definition

f
(H)
∆s (x(s)) =

1

2∆s

∫ s+∆s

s−∆s
f(x(s), y0(s′; s))ds′ (7.3.6b)

for a given value of ∆s and for all function x(s) and where the variable y0(s; s0) is defined
by

d

ds
y0(s; s0) = g(x(H)(s0), y(s; s0)) with y0(s0; s0) = y(s0). (7.3.6c)

The system (7.3.6a) constitutes an averaging principle, or homogenised system, for
the ODE in (7.3.5) and has the property that its solutions x(H)(s) and y0(s; s0) provide,
in some sense, approximations of the original solution xε(s) and yε(s). The precise sense
of the convergence, as well as necessary hypotheses on the function f and g, require a
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7.3. A Rod Formulation

discussion which goes beyond this thesis, see for instance [Freidlin and Wentzell, 2012,
Abdulle et al., 2012]. Importantly, if ∆s is chosen such that ε∆s = o (1), we can expect
that the homogenised solution x(H)(s) of the system (7.3.6a) provides an approximation
of order O (ε∆s) of the variable xε(s) not only at the scale of s = O (1) but also for
s = O

(
1
ε

)
, and, moreover, the averaging procedure in (7.3.6b) delivers a function f (H)

∆s

which is better behaved than f . We note that this approach is more direct when the
function g does not depend explicitly on the variable xε(s) in (7.3.5), or even if the
variable yε(s) is explicitly known.

In the case of the configurational first moment 〈g(0, s)〉 for a rod in a semi-flexible
regime the governing ODE is given in (7.3.2). We note that in general the averaging
principle cannot be directly applied to this ODE system since, even if the semi-flexible
assumption implies L(s) = O (ε) according to (3.4.19b) and (3.4.23), the expected chain
generator vector ξ̄(s) is not always small, i.e. ξ̄(s) = O(1), as it is precisely the case for
B-DNA for instance. However, using the factorization 〈g(0, s)〉 = 〈D(0, s)〉 ḡ(0, s) with
the persistence matrix 〈D(0, s)〉 and the expected rod configuration ḡ(0, s) presented
in section 3.4.4, along with the fact that the variable ḡ(0, s) is an analytic interpola-
tion by definition in (7.3.3a), it is equivalent to study the configurational first moment
〈g(0, s)〉 or the persistent matrix 〈D(0, s)〉. More precisely, the ODE system governing
the persistence matrix in (3.4.39) can be written in the form

∂s 〈D(0, s)〉 = 〈D(0, s)〉
{
−1

2
ḡ(0, s)L(s)ḡ−1(0, s)

}
(7.3.7a)

∂s
{
ḡ(0, s)L(s)ḡ−1(0, s)

}
=
{
ḡ(0, s)L(s)ḡ−1(0, s)

}
B(s) (7.3.7b)

with

ḡ(0, s)L(s)ḡ−1(0, s) = O (ε) (7.3.7c)

B(s) = O (1) . (7.3.7d)

according to the semi-flexible hypothesis for rods. We note that for rod theories obtained
from the stochastic Cauchy-Born rule proposed in section 4.3, the hypothesis of the
semi-flexible regime is verified if the underlying chain has this property according to the
definition (7.3.3b). The second ODE (7.3.7b) is somehow artificial since the entries in
the matrix ḡ(0, s)L(s)ḡ−1(0, s) are explicitly known as a function of s. It emphasises
however the scale separation observed between the characteristic size of the entries in
this coefficient matrix, i.e. the characteristic size of the variation of the entries of the
persistence matrix 〈D(0, s)〉, and the characteristic size of their own variation, denoted
by the matrix B(s) ∈ R4×4, which is of order O (1).

Consequently, the configurational first moment 〈g(0, s)〉 can be approximated by

〈g(0, s)〉 ' 〈D(0, s)〉(H) ḡ(0, s) (7.3.8a)
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where the matrix 〈D(0, s)〉(H) is defined as the solution of the homogenised ODE

∂s 〈D(0, s)〉(H) = 〈D(0, s)〉(H)

{
−1

2
ḡ(0, s)L(s)ḡ−1(0, s)

}(H)

∆s

(7.3.8b)

with{
−1

2
ḡ(0, s)L(s)ḡ−1(0, s)

}(H)

∆s

=
1

2∆s

∫ s+∆s

s−∆s

{
−1

2
ḡ(0, s′)L(s′)ḡ−1(0, s′)

}
ds′ (7.3.8c)

for a fixed value of ∆s, according to the averaging principle in (7.3.6).
Equivalently, in terms of the frame correlation matrix 〈R(0, s)〉 and the Flory persis-

tence vector 〈r(0, s)〉 we have

〈R(0, s)〉 ' 〈∆(0, s)〉(H) R̄(0, s) (7.3.9a)

〈r(0, s)〉 ' 〈∆(0, s)〉(H) r̄(0, s) + 〈δ(0, s)〉(H) (7.3.9b)

where the matrix 〈∆(0, s)〉(H) and the triple 〈δ(0, s)〉(H) are defined as solutions of

∂s 〈∆(0, s)〉(H) = 〈∆(0, s)〉(H)

{
−1

2
R̄(0, s)LRR(s)R̄−1(0, s)

}(H)

∆s

(7.3.9c)

∂s 〈δ(0, s)〉(H) = 〈∆(0, s)〉(H)

{
1

2
R̄(0, s)LRR(s)R̄T (0, s)r̄(0, s)− 1

2
R̄(0, s)LRr(s)

}(H)

∆s

(7.3.9d)

where we have used the notation LRR(s) = Tr
(
CRR(s)

)
Id3 − CRR(s) and LRr(s) =

CRr(s), as in (3.4.40), and where { . }(H)
∆s has to be understood in the same way as in

(7.3.8c).
For the case of the stochastic Cauchy-Born rule presented in (7.3.3b), the optimal

choice of the value ∆s requires further investigations but for illustration of the proposed
averaging principle we use ∆s = 17Å, i.e. approximately 5 base pairs. Figure 7.24 shows
the coefficient matrices in (7.3.9c) in their original and in their homogenised version
for the sequence denoted by λ . Similarly, figure 7.25 shows the coefficients with and
without homogenisation for the ODE (7.3.9d). The original discontinuous coefficient are
shown in blue and green respectively, similarly to the ones of the rod stiffness matrix
K̄(s) shown in figures 5.9 and 5.11 for instance, and the homogenised coefficient are
shown in both figure in orange. Interestingly, the averaging principle for the choice
∆s = 17Å delivers very slowly varying coefficients. For the rotation part 〈∆(0, s)〉,
in figure 7.24, they are observed to stay at a constant magnitude with some local and
sequence dependent variations, and where the three curves with ordinate values between
−3 and −2 correspond to the diagonal entries in the homogenised coefficient matrix.
In contrast, the observed growth in figure 7.25 is explained by the terms r̄(0, s) in the
corresponding expression (7.3.9d).
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Figure 7.24: Original (blue) and homogenised (orange) coefficient in (7.3.9c) for the sequence λ
.
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Figure 7.25: Original (green) and homogenised (orange) coefficient in (7.3.9d) for the sequence
λ .
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In order to quantify the difference between the computation of the configurational first
moment 〈g(0, s)〉 using the original ODE in (7.3.2) and using the homogenised version
of the persistence matrix together with the relation (7.3.8a), we propose to use the same
numerical method2 as the one used to obtain the solutions shown in figure 7.20, 7.21,7.22
and 7.23 but now applied to the homogenised system. Figures 7.26, 7.27, 7.28 and 7.29
show, using a continuous line, the results for the configurational first moment 〈g(0, s)〉
of the sequence λ approximated numerically from the system in (7.3.8) evaluated at the
position of base pairs, and, using the symbol ◦, the analogous results obtained from
a Monte Carlo simulation. The relative error between the numerical solution obtained
for the original and for the homogenised system, expressed at the base pair position, is
presented in figure 7.30.

Since the coefficient obtained using the averaging principle are smooth and slowly
varying, the number of numerical steps needed to solve the associated ODE are con-
siderably less than for the original one for the same prescribed tolerance, specifically a
decrease by a factor of 102 is obtained. Table 7.5 summarises the number of steps needed
with and without homogenisation for the sequences λ , CF and TL respectively. We ob-
serve, moreover, that the number of steps for the homogenised system is approximately
a third of the actual number of base pairs in each case.

Table 7.5: Comparison between the number of reported steps to solve numerically the original
and the homogenised system

λ CF TL
Without homogenisation 14832 14863 14984
With homogenisation 169 169 134

Ratio 1.1% 1.1% 0.8 %

2 This method is ode45 provided by the software matlab
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Figure 7.26: First column of the frame correlation matrix 〈R(0, s)〉 for the sequence λ and for
three different molecule lengths. Monte Carlo simulations (◦) versus the analytical predictions
using the averaging principle (−).
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Figure 7.27: Second column of the frame correlation matrix 〈R(0, s)〉 for the sequence λ and for
three different molecule lengths. Monte Carlo simulations (◦) versus the analytical predictions
using the averaging principle (−).
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Figure 7.28: Third column of the frame correlation matrix 〈R(0, s)〉 for the sequence λ and for
three different molecule lengths. Monte Carlo simulations (◦) versus the analytical predictions
using the averaging principle (−).
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Figure 7.29: Component of the Flory persistence vector 〈r(0, s)〉 for the sequence λ and for
three different molecule lengths. Monte Carlo simulations (◦) versus the analytical predictions
using the averaging principle (−).
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Figure 7.30: Relative errors between the frame correlation matrix 〈R(0, s)〉 (blue) and for Flory
persistence vector 〈r(0, s)〉 (green) associated to the sequence λ computed using the original and
the homogenised system, as a function of the molecule length.

It is remarkable that the use of the persistence matrix factorization together with
the application of an averaging principle, as stated in (7.3.9), allows an accurate approx-
imation of the sequence dependent configurational first moment 〈g1,n〉, obtained using
a Monte Carlo simulation, by the solution 〈g(0, s)〉 of a homogenised ODE involving a
discretization strictly coarser than the original number of base pairs. The results, even if
they require a more detailed analysis, are believed to be encouraging in the multi-scale
modelling of DNA statistical physics and in the definition of sequence dependent large
scale models.
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Conclusions

In order to design a framework for the multi-scale modelling of the sequence dependent
physical properties of DNA molecules, we have proposed, in part I, a study of the prop-
erties of chains and rods in both the context of classical statics and statistical mechanics,
as well as a method to bridge these models. In part II, we have discussed the actual ap-
plication to sequence dependent DNA models to compute most probable configurations
satisfying prescribed end constraints and to approximate the value of configurational first
moment.

More precisely, in part I we presented a general discussion on the equilibrium condi-
tions and related variational principles, as well as on stationary configurational distribu-
tions and observables, for rigid body chains and bichains and continuum rods and birods.
We also explained in which sense continuum models can provide approximations of dis-
crete model properties. These results could be of potential interest in physical contexts
other than DNA, since they comprise general statements on the multi-scale modelling of
filamentary materials.

The second chapter has been concentrated on the rigid body chain and rigid body
bichain models. We discussed precisely the construction of the bichain model from a
double chain model and the statement of related equilibrium equations and variational
principles, which in particular apply directly to the sequence dependent rigid base model
in [Gonzalez et al., 2013]. For both chain and bichain equilibrium configurations the ex-
istence of six discrete first integrals is emphasised in (2.2.11) and in (2.2.43) respectively.
Moreover, the Lagrange multiplier formulation of the equilibrium conditions is shown
to precisely give multipliers corresponding to the external couple and force end loading
needed to realise the desired Dirichlet conditions, according to (2.2.53). An interesting
extension of these results would be to compute, in an analogous way, the second varia-
tion of the internal energy. The stationary configurational distributions for chains and
bichains has been presented following arguments proposed in [Walter et al., 2010]. In the
case of a single chain with a local deformation energy we have developed general analyt-
ical results on the configurational first moment which are of interest since it comprises
the frame correlation matrix and the Flory persistence vector. The expression in (2.4.26)
demonstrates the equal importance of the expected chain configuration ḡm,n and the
local fluctuation matrices in the behaviour of the first moment 〈gm,n〉. It generalises the
work in [Trifonov et al., 1988, Schellman and Harvey, 1995] on the notion of persistence
length in DNA since it supports the idea of contributions of a deterministic part and
of stochastic part to the local chain statistics, but it encodes it into two 4 × 4 matrices

241



Conclusion

instead of two scalar static and the dynamic persistence lengths. Moreover, this explicit
formula motivates a factorization of the configurational first moment into the persis-
tence matrix and the expected chain configuration, specifically 〈gm,n〉 = 〈Dm,n〉 ḡm,n.
The persistence matrix is shown to characterise the memory lost in the entries of the
configurational first moment 〈gm,n〉, according to (2.4.44), and leads to a closed form
expression in a short length expansion in (2.4.55). The extension of these discussions to
the configurational first moment to the case of bichains would be a mathematically, and
scientifically, important improvement in sequence dependent DNA modelling. However,
further investigations are needed to handle the extra couplings, illustrated in figure 5.3,
present in the bichain model.

The third chapter is dedicated to continuum rods and birods and shows that a com-
pletely analogous discussion to chains and bichains can be presented using continuum def-
initions. Following the original work in [Moakher and Maddocks, 2005], we defined birod
configurations, which are the continuum analogue of bichains. The variational principle
for rod equilibrium conditions, as originally discussed in [Cosserat and Cosserat, 1909], is
extended to birods and, in addition, a coordinate independent Hamiltonian formulation
is proposed in (3.2.71). The existence of six continuum first integrals is emphasised for
both rod and birod equilibrium configurations in (3.2.12) and in (3.2.52). Similarly to
chains, we present a Lagrange multiplier formulation of the equilibrium birod conditions
with prescribed end configurations, and the set of multipliers are shown in (3.2.83) to
correspond to external couple and force end loadings. It would be useful to study the
second variation of the birod internal energy in a future work. Statistical physics proper-
ties of rods and birods was then studied. The configurational distribution for rods, and
respectively birods, in the context of equilibrium statistical mechanics are introduced as
a path integral density, and we discussed how these infinite dimensional distributions
can be interpreted as the appropriate limit of a sequence of chain distributions for the
discretised rod configurations in (3.3.16), and for birods in (3.3.32). Interestingly the
effect of the Jacobian factor coming from the intrinsic geometry on the rotation group
SO(3) is observed to vanish when the rod limit is reached, while it stays for the birod
microstructure as discussed in (3.3.33). This development is then extended to observ-
ables and their expectations and, similarly to chains, we emphasize the special role of the
configurational first moment which comprise, here in a continuum version, the frame cor-
relation matrix and the Flory persistence vector. An explicit first order approximation is
then obtained in (3.4.21) for the configurational first moment for a single rod which has a
local internal energy and is assumed to be in a semi-flexible regime. A similar expression
has been discussed in [Becker, 2007] where it was deduced by analogy to the Brownian
dynamics of a rigid body. As in the case of chains, the analytical expressions show the
equal importance of the expected rod configuration and of the fluctuation matrix. They
also motivate the definition of the persistence matrix which is shown to characterise the
memory lost in the entries of the configurational first moment, according to (3.4.39) and
admit a closed form expression in a short length expansion (3.4.46). As in the case of
chains, the extension of the results for the configurational first moment for birods is
believed to be an important future objective.
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In chapters 2 and 3, the strong analytic parallel between chain and rod formulations
has been explicitly demonstrated. Many expressions, such as the equilibrium conditions
for bichains (2.2.53) and birods (3.2.83) and their associated set of discrete and continuum
first integrals (2.2.43) and (3.2.52), or the evolution equations for the configurational first
moment chains (2.4.26) and rods (3.4.21), are literally the respective discrete and contin-
uum analogues. The fundamental similarities between these two mechanical descriptions
is not only appreciable, but is also encouraging us in the definition of multi-scale mechan-
ical models of filamentary objects. One result which does not have its explicit discrete
analogue is the Hamiltonian formulation of rods and birod equilibrium conditions. The
missing step is the definition an appropriate of Legendre transform for the variational
form of the chain constitutive relation in (2.2.12).

The fourth chapter first discussed the mathematical framework in which we believe
that the mechanical results obtained for chains and rods in chapter 2 and 3 can be re-
lated. The underlying definitions to the idea of bridging the scales between chain and
rod mechanics are presented, from the point of view of statics in (4.1.15) and of equilib-
rium statistics in (4.1.25). The entire discussion is based on the notion of consistency.
We briefly discussed that in general deterministic exponential Cauchy-Born rules do not
provide stochastic exponential Cauchy-Born rules. A more detailed analysis of ques-
tions concerning the consistency of stationary configurations for consistent discrete and
continuum energies would be of great interest. The discussion of hypotheses leading to
the equivalence of the deterministic and stochastic exponential Cauchy-Born rules also
remains also to be considered. An explicit deterministic Cauchy-Born rule has been pro-
posed for quadratic bichains and birods models in (4.2.11) and (4.2.14) in order to build
a rigorous continuum analogue of the sequence dependent rigid base model in [Gonza-
lez et al., 2013]. As a corollary, the discussion made for bichains and birod provides
an original deterministic exponential Cauchy-Born rule for single chains and rods. We
then discussed the construction of an explicit stochastic Cauchy-Born rule (4.3.7) and in
(4.3.10) for single chains and rods governed by normal configurational distributions and
in a semi-flexible regime. The introduction of an explicit stochastic Cauchy-Born rule
for bichains would be of interest, but also requires a better understanding of the normal
distribution associated to the quadratic form (4.2.1) which has a banded, but non-local,
structure. In addition to the work on carbon nanotubes already discussed in section 4.1,
we note that continuum models for the macroscopic description of crystal lattices has
been intensively studied in the literature as a limit of particle systems, see for instance
[Askar, 1986, Triantafyllidis and Bardenhagen, 1993]. The appropriate notion of conver-
gence, called Γ−convergence, has been discussed3 in the limit when the lattice becomes
dense in the continuum media, see for instance [Braides and Maria, 2006, E and Ming,
2006, Braides and Truskinovsky, 2008]. In the context of chains and rods, or bichains
and birods, the macroscopic description requires an appropriate helical interpolation, as
described in 4.2.4 for instance, because of the specific geometric structure of the special

3These approaches to derive continuum from discrete models should not be confused with other
applications of the Γ−convergence in the derivation of rod models from three dimensional elasticity
[Friesecke et al., 2006].
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Euclidean group SE(3). The deterministic and stochastic exponential Cauchy-Born rules
define respectively a sequence of models indexed by the number of base pairs N that are
governed by an continuum internal energy of the form Ê(N), in the deterministic case,
or Ē(N), in the stochastic case. The discussion of an appropriate Γ−limit Ê(∞) or Ē(∞)

would then be an interesting extension of the analysis presented in this thesis. However,
in the context of DNA modelling, it is not clear that these Γ−limits will provide accurate
continuum models at the biologically important scale of a few hundreds of base pairs.

Even if the frontier between rigid body chain and continuum rod mechanical de-
scriptions remains to be further analysed, we believe that the discussion made in part
I provides original and interesting insights on the multi-scale modelling of filamentary
materials, including DNA molecules. An interesting extension would be to discuss the
construction of an effective rod model from a given birod model at long length scales in
order to complete the multi-scale picture presented in figure 1.

Part II of the thesis is dedicated to the application of chain and rod theories to the
multi-scale modelling of sequence dependent DNA mechanics. We presented a compu-
tation of the most probable bichain configuration using the sequence dependent birod
model and the approximation of the chain configurational first moment using a sequence
dependent rod model.

The fifth chapter discussed the sequence dependent rigid base pair and rigid base
model and the introduction of their continuum analogues as rod and birod models. More
precisely, the birod model has been parametrized using the deterministic exponential
Cauchy-Born rule for bichains since we were targeting the approximation in chapter 6
of stationary configurations in the rigid base model, according to the argument given
in section 4.1.2. Moreover, no definition of an explicit stochastic Cauchy-Born rule for
bichains is available. Conversely, the continuum rod model has been defined using the
stochastic Cauchy-Born rule for chains with the goal of approximating the configurational
first moment in chapter 7 according to the construction in section 4.3. In both cases, the
continuum constitutive coefficients are observed to be discontinuous at each base pair
position and to have a strongly heterogeneous character, as illustrated in figures 5.11
and 5.15. However, concerning the sequence dependent birod model we are very satisfied
with the results illustrated in figures 5.16 and 5.18 about consistency with the original
rigid base energy definition.

The sixth chapter presented the application of the sequence dependent birod model
to approximate the most probable configurations respecting end conditions in the rigid
base model. We have, however, only discussed stationary configurations since the the-
ory of the second variation is still under development. The Hamiltonian form of the
equilibrium conditions is presented in (6.2.3) and the coefficient matrix obtained using
the deterministic exponential Cauchy-Born rule corresponding to the sequence λ is illus-
trated in figure 6.1. The sequence dependence is reflected in the heterogeneous character
of these coefficients. The numerical solutions of the continuum equilibrium conditions
for the first 240 base pairs of the sequence λ , CF and TL for under and over twisted end
conditions, corresponding respectively to −300pNÅ and +300pNÅ, are then computed
using the software bBDNA developed by J. Glowacki. A significantly different mechan-
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ical response is observed both between different sequences and between under and over
twisted end conditions. A more detailed analysis of the effect of sequence on the birod
equilibrium configuration for prescribed end conditions remains to be carried out, but we
believe that the ground state geometry has an important interplay with the applied end
constraint. In order to assess the quality of these continuum approximations, we have
then discussed the discrete equilibrium conditions obtained for the sequence dependent
rigid base model in 6.3.1. Numerical solutions were computed by A. Patelli using the
iterative root finding algorithm fsolve from the matlab software library. Even though
comparison of the discrete and continuum solutions, as shown in figure 6.5 for instance,
is satisfactory, a more detailed analysis of the ability of the continuum solutions to re-
produce bichain stationary configurations remains to be investigated. The main negative
conclusion of this approach is that the number of nodes used in the numerical discretiza-
tion of the continuum model is considerably higher than the number of base pairs involved
in the discrete model, which is because of the heterogenous character of the sequence de-
pendent coefficients. Consequently, even if these continuum computations are very fast,
and moreover provides an initial configuration for the discrete system, the interest of
the continuum model is still questionable. We believe however that the definition of this
sequence dependent continuum model is valuable, at least mathematically, since it pro-
vides the necessary first step in the definition of rigorous large scale DNA models, and,
consequently, in the construction of the multi-scale modelling of DNA molecule statis-
tical physics. An implementation of the local averaging principle, presented in the last
chapter, has already been done and it allows the choice of different averaging window
sizes along the sequence which is an encouraging method to describe some region in a
very fine way and others more coarsely. Nevertheless, this is only a preliminary work. We
would also like to mention that the software bBDNA provides the possibility of comput-
ing equilibrium birod configuration with periodic boundary conditions which are closed,
and possibly knotted, loops. We believe this option to be interesting since circular DNA
arise frequently in Nature, as in bacterial chromosomes for instance, or are used in vitro
experiments. These special configurations are further discussed in the doctoral thesis4 of
J. Glowacki, an example of such a closed solution is shown in figure 7.31.

4in preparation
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Figure 7.31: A closed loop sequence dependent birod equilibrium configuration.

The last chapter presented a detailed study of the configurational first moment for
the sequence dependent rigid base pair model. We first discussed the application of the
explicit recurrence relation obtained in (2.4.26) using an expansion justified for a rigid
body chain in a semi-flexible regime and whose configurational distribution factorizes
into local contributions. This last hypothesis is not verified for the rigid base model in
[Gonzalez et al., 2013], but we proposed a modified version by an appropriate trunca-
tion of the covariance matrix, as described in (7.2.2), motivated by a maximum entropy
principle. The resulting model is a sequence dependent rigid base pair model and, even
if its constitutive parameters are believed to be less realistic than the original rigid base
model, it constitutes a serious example of the theory for heterogeneous chains developed
in section 2.4 since versions of this model are frequently used in the DNA literature. The
non-dimensional parameter ε measuring the semi-flexibility defined in (2.4.28) is found
to be of the order 10−2 in this model. The comparison between the numerical values ob-
tained for the frame correlation matrix and for the Flory persistence using the deduced
recurrence relation and a Monte Carlo simulation is illustrated in figures 7.2, 7.3, 7.4 and
7.5 for the sequence λ . The difference is hardly perceptible even after 500 base pairs
and the relative errors are presented in figure 7.6 as a function of the base pair distance.
While the actual behaviour of the entries of the configurational first moment g1,n varies
between the sequences λ , CF and TL , the similar notably good agreement is provided
by the explicit recurrence relation in each case. The proposed analytic expressions are
thus believed to provide an accurate approximation of the sequence dependent configu-
rational first moment g1,n. The factorization into the expected chain and the persistence
matrix is then presented. Figure 7.10 illustrates this factorization for the frame correla-
tion matrix associated to the sequence λ . Remarkably it shows that the fast variation
in the configurational first moment reflects the expected chain configuration whereas the
slow convergence of the entries is due to the persistence matrix. The analogous result
for the Flory persistence vector is presented in figure 7.11. This factorization supports
the idea, originally proposed in [Trifonov et al., 1988] and then discussed in a slightly
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more general context in [Schellman and Harvey, 1995], that the statistics of semi-flexible
chains have to be made in general of a deterministic part, reflecting the intrinsic ge-
ometry of the molecule, and of a stochastic part, reflecting thermal fluctuations. The
proposed expression constitutes, in a mathematical sense, a generalisation of the stud-
ies [Trifonov et al., 1988, Schellman and Harvey, 1995] where these two contributions,
also called static and dynamic parts, have been encoded through scalar values while here
they are 4×4 matrices, namely the expected chain configuration ḡ1,n and the persistence
matrix 〈D1,n〉. Moreover, this factorization allows, using properties of the persistence
matrix, the derivation of a closed form expression for the configurational first moment
in a short length expansion. It is observed to be valid until a distance of about 135
base pairs, as drawn in figures 7.14 and 7.15. We remark that all proposed analytic
results are only rigorously valid for configurational distributions which factorizes into
local contributions. In future work, it would be of interest, both mathematically and
physically, to extend this approach to the sequence dependent rigid base model, but the
objective requires a better understanding of the basic statistical properties of the normal
distribution associated to the banded quadratic form in (4.2.1). The sequence dependent
rod model, based on the application of the stochastic exponential Cauchy-Born rule, is
used to provide continuum approximations of the chain configurational first moment.
Based on the semi-flexible assumption for rods, we deduced in (3.4.21) a governing ODE
system for the continuum configurational first moment. Using the standard ode45 solver
in matlab, we have computed numerically the solution of these ODE for the sequence λ .
These results are compared with ones coming from a Monte Carlo simulation associated
to the original rigid base pair description. Remarkably, the difference between the values
is hardly perceptible, just as for the discrete approximation. The exponential stochastic
Cauchy-Born rule for chains is thus believed to deliver an accurate continuum description
of the sequence dependent rigid base pair model statistics and to comprise a significant
step towards the multi-scale modelling of DNA physical properties. However, since these
expressions are only valid for single chain models, the analogous results for bichains and
birods configurational distributions would be of great interest. Similarly to the com-
putation of continuum birod equilibrium configurations in chapter 6, the heterogeneous
character of the coefficient matrix forced the use of a very dense numerical discretization
to solve the configurational first moment ODE and consequently the continuum model
appears to be more expensive than the original rigid base pairs model. To overcome this
fundamental issue we proposed to use the homogenisation method in (7.3.6) based on a
local averaging principle, with an explicit window size since none of the classical hypothe-
sis, such as periodicity or ergodicity, are satisfied by the sequence dependent coefficients.
Interestingly, a rigorous and direct application of the averaging principle to the ODE
governing the configurational first moment is observed to not always be possible because
of the presence in the coefficient matrix of the expected configuration generator vector,
which is not always small as it is precisely the case for DNA continuum representations.
However, the equivalent persistence matrix ODE for semi-flexible rods in (7.3.7) is shown
to satisfy the appropriate hypotheses on scale separation. The definition of an optimal
window size remains to be further investigated. We chose 30Å to illustrate our theory
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which leads to the set of smooth and slowly varying homogenised coefficients presented
in figures 7.24 and 7.25. The approximation of the configurational first moment 〈g(0, s)〉
is then defined by an analytic change variables applied to the numerical solution of the
homogenised system, as described in (7.3.8a). Figures 7.26, 7.27, 7.28 and 7.29 show the
results for the configurational first moment 〈g(0, s)〉 for the sequence λ and evaluated
at the position of base pairs, and the analogous results obtained using the Monte Carlo
simulation for the original sequence dependent rigid base pair model. The agreement is
here again particularly good, but the significant additional characteristic in these exam-
ples is that the number of steps used in the numerical method is about a third of the
original number of base pairs, as shown in table 7.5. Even if a more detailed analysis on
the approximation of the original chain configurational first moment by the continuum
solution of an homogenised ODE system remains to be done, these results, are believed
to be not only encouraging in the multi-scale modelling of DNA statistical physics but
also in the definition of sequence dependent large scale models.

The application of both the deterministic and the stochastic exponential Cauchy-Born
rules to sequence dependent rigid base and rigid base pair models of DNA has allowed
the definition of sequence dependent continuum birod and rod models. The use of these
models to approximate discrete chains properties, such as equilibrium configurations or
the configurational first moment, but in continuum settings has been shown to give
results with a reasonable accuracy. In addition a promising route towards large scale
descriptions has been established through a homogenisation method.

In conclusion, the study of the statistical physics properties of DNA molecules can
only be done in an accurate and efficient way through sequence dependent and multi-scale
mechanical models. The proper foundation of such models requires a fine understanding
of both heterogeneous rigid body chains and continuum rod models, as well as practi-
cal ways to bridge, in a mathematical and in a physical sense, these two descriptions.
According to the theoretical and concrete results presented in this thesis, we believe
we have presented a framework which, even if it still requires improvement, is a signifi-
cant contribution to the understanding and the modelling of sequence dependent DNA
mechanics.
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A. Appendices

We provide here a set of heterogenous sections each of which comprises technical devel-
opments related to the results of this thesis.

A.1 On the Expansion of the cgDNA Internal Coordinates

We present here a way to write down explicitly the expansion (1.3.4) for the specific
choice of the variables xn = (un, vn) used in (2.1.18), i.e. where un denotes the Cayley
vector of the rotation matrix Qn = Q(un) and where vn parametrized the translation

vector qn = Q
1
2
nvn expressed in the junction frame. Similarly to (2.1.5), we write the

block structure of the terms in the expansion (1.3.4) for k = 1, 2 as

a
(k)
x̄n =

(
Q

(k)
x̄n q

(k)
x̄n

0 0

)
(A.1.1)

where we have removed the explicit dependence on (xn− x̄n) for brevity. The expansion
of the individual blocks of an reads

Qn =

(
Id3 +Q

(1)
x̄n +

1

2
Q

(2)
x̄n

)
Q̄n (A.1.2a)

qn =

(
Id3 +Q

(1)
x̄n +

1

2
Q

(2)
x̄n

)
q̄n + q

(1)
x̄n +

1

2
q

(2)
x̄n . (A.1.2b)

To compute the terms Q(1)
x̄n and Q

(2)
x̄n we use an interesting feature of the Cayley

parametrization of the rotation group in (2.1.16), which is that it allows a direct expansion
around any Cayley vector ūn ∈ R3 using the following Neumann expansion

(A−B)−1 = A−1 +A−1BA−1 +A−1BA−1BA−1 + o
(∣∣A−1B

∣∣2) . (A.1.3)

Precisely, applying the expansion (A.1.3) in the expression (2.1.16), with A = Id3 −
1
2 [ūn×], gives

Q(un) = Q(ūn) +

j∑
k=1

1

2k−1
E(ūn) [∆un×] ...E(ūn) [∆un×]E(ūn) + o

(
|∆un|j

)
(A.1.4)
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where we have used the notation

E(ūn) :=

(
Id3 −

1

2
[ūn×]

)−1

=
1

2
(Q(ūn) + Id3) (A.1.5)

and ∆un := un− ūn. Note that the term [∆un×] appears exactly k times in the kth term
of the sum in (A.1.4). If one uses the identity

E [y×]ET = detE
[
(E−T y)×

]
(A.1.6)

for all invertible E ∈ R3×3 and y ∈ R3, one can rewrite (A.1.4), since E(ūn)−TE(ūn) =
Q(ūn), as

Q(un) =

{
Id3 +

j∑
k=1

1

2k−1
Q

(k)
ūn (∆un)

}
Q(ūn) + o

(
|∆u|j

)
(A.1.7)

where Q(k)
ūn (∆un) is k-multilinear in ∆un and is given by

Q
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ūn (∆un) = [P1(ūn)∆un×]
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(A.1.8)

with by definition

P1(ūn) := detE(ūn)E−T (ūn) =
1

1 +
(
|ūn|

2

)2

(
Id3 +

1

2
[ūn×]

)
(A.1.9)

and where the term [P1(ūn)∆un×] appears exactly k times. In particular, the two first
matrices Q(k)

ūn can be expressed as

Q
(1)
ūn (∆un) =

[
γ(1)
n ×

]
(A.1.10a)

Q
(2)
ūn (∆un) =

[
γ(1)
n ×

]2
+
[
γ(2)
n ×

]
(A.1.10b)

with the triples γ(1)
n , γ

(2)
n ∈ R3 defined as

γ(1)
n = P1(ūn)∆un (A.1.11a)

γ(2)
n = −1

2
P1(ūn)(∆un ⊗∆un)ūn. (A.1.11b)

Unfortunately, the computation of the terms q(1)
x̄n and q(2)

x̄n is less straight forward because

of the presence of the matrix Q
1
2
n in the definition of qn. The difficulty is to compute a

second order expansion of the matrix Q
1
2
n = Q

1
2 (un) with respect to the Cayley vector

un. To do so, we will use the expansion (A.1.7) twice.
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First, since Q
1
2 (u) is also a rotation matrix there exists, in analogy to (A.1.10),

coefficient vectors ζ(1)
n , ζ

(2)
n ∈ R3 such that
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1
2 (un) =

{
Id3 +

[
ζ(1)
n ×

]
+

1

2

([
ζ(1)
n ×

]2
+
[
ζ(2)
n ×

])}
Q

1
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Second, since the square of this expansion has to match, up to o
(
|∆un|2

)
terms, the one

in (A.1.7), one has to define
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n (A.1.13a)
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2 (ūn)

)−1 [
γ(2)
n − ζ(1)

n ×Q
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2 (ūn)ζ(1)
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where the triples γ(1)
n and γ

(2)
n are defined in (A.1.11). Note that we have used the

identity

[γ×][ζ×]− [ζ×][γ×] = [(γ × ζ)×] (A.1.14)

for any triple γ, ζ ∈ R3. The relations (A.1.11) and (A.1.13) motivate the definition of
the matrix

P2(ūn) =
(
Id3 +Q

1
2 (ūn)

)−1
P1(ūn) (A.1.15)

in order to write (A.1.13) as
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2 (ūn)

)−1 [
(Q

T
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similarly to (A.1.11). Note that we have used (A.1.6) to deduce (A.1.16b).
A second order expansion for the translation vector qn = Q

1
2 (un)vn is then
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where we have used ∆vn = vn − v̄n. In order to match the terms in the expansion
(A.1.2b), one has to define
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where q̄n = Q
1
2 (ūn)v̄n. The expressions (A.1.10) and (A.1.18) serve as explicit definitions

of the blocks in the expansion (A.1.2), and then, equivalently, as definitions of the terms
a

(1)
x̄n (xn − x̄n) and a(2)

x̄n (xn − x̄n) in the expansion (1.3.4). The terms L(1)
x̄n (xn − x̄n) and

L(2)
x̄n (xn − x̄n) are then obtained from the relations (1.3.6). Precisely, one finds
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From (A.1.19a) one defines the matrix operator L(1)
x̂n

, which appears in (2.2.20), (A.5.3)
and (A.5.4), by
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according to the definitions (A.1.11a) and (A.1.18a). Its inverse is explicitly given by
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A.2 On the Transformation Rule between Double Chain
and Bichain Constitutive Relations

To translate the double chain constitutive relations (2.2.28), or equivalently (2.2.30), into
the bichain ones (2.2.36) one uses the relations (2.1.29) together with the chain rule. One

needs then to differentiate the matrix P±
1
2

n which gives

δP
± 1

2
n = ±P±

1
2

n

[
M±n φn×

] (A.2.1)

for some triple φn ∈ R3 and where M±n =

(
Id3 + P

± 1
2

n

)−1

as in (2.2.39). This leads to

the following identities

mn = P−n m+
n + P+

n m−n + wn ×
1

2

[
P+
n n−n − P−n n+

n

]
(A.2.2a)

nn = P−n n+
n + P+

n n−n (A.2.2b)

and

CPn = M−n
[
−m−n+1 − q

−
n × n−n+1 + c−n

]
−M+

n (Q−n−1)Tm−n

−M+
n

[
−m+

n+1 + m+
n − q+

n × n+
n+1 + c+

n

]
+M−n (Q+

n−1)Tm+
n

(A.2.2c)
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FPn =
1

2
P+
n

(
−n−n+1 + n−n + f−n

)
− 1

2
P−n

(
−n+

n+1 + n+
n + f+n

)
(A.2.2d)

where we have used the short notation P+
n = P

1
2
n and P−n = P

T
2
n and the fact that

M+
n +M−n = Id3.

A.3 On the Transformation Rule between Double Rod and
Birod Constitutive Relations

To translate the double rod constitutive relations (3.2.32), or equivalently (3.2.33), into
the birod ones (3.2.46) one uses the relations (3.1.22) together with the chain rule. One
needs then to differentiate the matrix P±

1
2 (s) which gives

δP±
1
2 (s) = ±P±

1
2 (s)

[
M±(s)φ(s)×

]
(A.3.1)

for some continuous function φ(s) ∈ R3 and where M±(s) =
(
Id3 + P±

1
2 (s)

)−1
as in

(3.1.25). The leads to the following identities

m(s) = P−(s)m+(s) + P+(s)m−(s)

+w(s)× 1

2

[
P+(s)n−(s)− P−(s)n+(s)

] (A.3.2a)

n(s) = P−(s)n+(s) + P+(s)n−(s) (A.3.2b)

mP(s) = M−(s)m−(s)−M+(s)m+(s) (A.3.2c)

nP(s) =
1

2

[
P+(s)n−(s)− P−(s)n+(s)

]
(A.3.2d)

and

cP = M−(s)
[
m−(s)× U−(s) + n−(s)× V −(s) + c−(s)

]
−M+(s)

[
m+(s)× U+(s) + n+(s)× V +(s) + c+(s)

]
+
d

ds

(
M+(s)

)
P+(s)m−(s)− d

ds

(
M−(s)

)
P−(s)m+(s)

(A.3.2e)

fP(s) =
1

2

[
P+(s)f−(s)− P−(s)f+(s)

]
− U(s)× 1

2

[
P+(s)n−(s)− P−(s)n+(s)

]
(A.3.2f)

where we have used the short notation P+(s) = P
1
2 (s) and P−(s) = P

T
2 (s) and the fact

that M+(s) +M−(s) = Id3.
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A.4 Detail of the Formulation of the Quadratic Birod En-
ergy

We discuss here in more details the quadratic birod energy presented in (5.3.3). We
first discuss the property that any equivalent quadratic birod energy formulation can be
written in terms of the absolute minimizer.

Suppose that the energy is given in the form

E[g,P(y)] =

∫ L

0

1

2

 y(s)− a(s)
d
dsy(s)− b(s)
ξ(s)− c(s)

 ·K(s)

 y(s)− a(s)
d
dsy(s)− b(s)
ξ(s)− c(s)

 ds

+
1

2
(y(0)− d0)) ·K0 (y(0)− d0)) +

1

2
(y(L)− dL) ·KL (y(L)− dL) .

(A.4.1)

For any birod variables (ξ̂(s), ŷ(s)), the energy E in (A.4.1) is then identically equal to

E[g,P(y)] =

∫ L

0

1

2

 y(s)− ŷ(s)
d
dsy(s)− d

ds ŷ(s)

ξ(s)− ξ̂(s)

 ·K(s)

 y(s)− ŷ(s)
d
dsy(s)− d

ds ŷ(s)

ξ(s)− ξ̂(s)

 ds

+
1

2
(y(0)− ŷ(0)) ·K0 (y(0)− ŷ(0)) +

1

2
(y(L)− ŷ(L)) ·KL (y(L)− ŷ(L))

−
∫ L

0
(y(s)− ŷ(s)) ·

[
Fŷ(s)−

d

ds
Nŷ(s)

]
+ (ξ(s)− ξ̂(s)) ·Mξ̂(s)ds

−1

2
(y(0)− ŷ(0)) · [K0 (d0 − ŷ(0))−Nŷ(0)]− 1

2
(y(L)− ŷ(L)) · [KL (dL − ŷ(L)) +Nŷ(L)] + cste

(A.4.2)

after integration by parts and where we have definedFŷ(s)
Nŷ(s)
Mξ̂(s)

 = K(s)

 ŷ(s)− a(s)
d
ds ŷ(s)− b(s)
ξ̂(s)− c(s)

 . (A.4.3)

Consequently, if the birod variables (ξ̂(s), ŷ(s)) can be chosen such that

Fŷ(s)−
d

ds
Nŷ(s) = 0

Mξ̂(s) = 0

K0 (d0 − ŷ(0))−Nŷ(0) = 0

KL (dL − ŷ(L)) +Nŷ(L) = 0

(A.4.4)

according to the relations in (A.4.3) then the birod energy E becomes exactly of the
wanted form. Such a birod configuration exists and is the global minimum of the energy
in (A.4.1) since the equations in (A.4.3) are literally the birod stationary conditions
in (3.2.59) for fully unstressed boundary conditions. Consequently the birod energy
formulation in (5.3.3) and in (A.4.1) differ by a null Lagrangian.
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Matrix for Chains

A.5 Explicit Approximation of the Expected Junction and
of the Local Fluctuation Matrix for Chains

The aim of this appendix is to present how an explicit approximation of the expected
junction rigid body displacement ān and to the local fluctuation matrix Cn can be deduced
in the case of the normal configurational distribution in (5.2.1), or equivalently in (7.2.1),
when it is concentrated enough.

Let x = (x1, ..., xN−1) ∈ R6(N−1) be the internal coordinates of a rigid body chain as
defined in (2.1.13) and denote by an = a(xn) the parametrization of a junction displace-
ment in the chain, as defined in (2.1.11). We assume that there exists a unique rigid
body motion ān which satisfies the property of the expected junction (2.4.10) and we
introduce x̄n as its internal coordinates.

The relation between the variables Θn and xn can be expanded around x̄n as

Θn(xn) = L(1)
x̄n (xn − x̄n) +

1

2
L(2)
x̄n (xn − x̄n) + o

(
|xn − x̄n|2

)
(A.5.1)

where L(1)
x̄n (xn − x̄n) and L(2)

x̄n (xn − x̄n) stand respectively for the linear and quadratic
contribution of (xn − x̄n) in this expansion. The fact that there is no constant term in
this expansion comes from the definitions of ān in (2.4.7) and of Θn in (2.4.8).

Taking both sides the expectation with respect to the normal Boltzmann distribution
dρn(a(xn)) in (5.2.1), or in (7.2.1), leads to

〈Θn〉 = L(1)
x̄n (〈xn〉 − x̄n) +

1

2

〈
L(2)
x̄n (xn − 〈xn〉)

〉
+

1

2
L(2)
x̄n (〈xn〉 − x̄n) +

〈
o
(
|xn − x̄n|2

)〉
.

(A.5.2)

Assuming that
∣∣∣L(1)
x̂n

∣∣∣
Sp

= O (1) and
∣∣∣L(2)
x̂n

∣∣∣
Sp

= O (1), and denoting the local covari-

ance matrix cxxn,n, as defined in (2.3.19b), then the condition 〈Θn〉 = 0 in (2.4.10), which
defines the expected junction ān, is then satisfied by

x̄n = x̂n +
1

2
L(1)
x̂n

−1 〈
L(2)
x̂n

(xn − x̂n)
〉

(A.5.3)

up to o
(
|cxxn |Sp

)
since

〈
o
(
|xn − x̄n|2

)〉
= o

(
|cxxn |Sp

)
and

〈
L(2)
x̂n

(xn − x̂n)
〉

= O
(
|cxxn |Sp

)
.

Consequently, the covariance matrix Cn = 〈Θn ⊗Θn〉 can also be approximated up to
o
(
|cn|Sp

)
as

Cn = L(1)
x̂n
cxxn L(1)

x̂n

T (A.5.4)

which is symmetric and positive definite since the matrix cxxn is.
Moreover, for local internal chain coordinates xn used in [Gonzalez et al., 2013, Petke-

viciute et al., 2014], the matrix L(1)
x̂n

is explicitly given in (2.2.20), or in (A.1.19a), and the

quadratic term L(2)
x̂n

(xn − x̂n) in (A.1.19b). Observe that if the variable xn is such that
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its covariance cn has the property that |cn|Sp << 1 and the linear operator L(1)
x̂n

has the

property that
∣∣∣L(1)
x̂n

∣∣∣
Sp

= O (1), then the hypothesis (2.4.14) is satisfied with εn = |cn|Sp

since

µk(Θn) = O
(
|cn|

k
2
Sp

)
for k > 2 (A.5.5)

where µk(Θn) denotes the kth moment of the variable Θn.
Consequently, the approximation of the internal coordinates x̄n = (ūn, v̄n) for the

expected junction in (A.5.3) can be shown to be

ūn = ûn −
1

4
cuun ûn (A.5.6a)

v̄n =
(
Id3 − Tr

(
Q

T
2 P2c

uu
n PT2

)
Id3 −Q

T
2 P2c

uu
n PT2

)
v̂n − det

(
Id3 +Q

1
2

)−1
Vect

(
Q

T
2 P1c

uu
n PT1 Q

)
× v̂n

+Vect
(
cuvn PT1

[
û

1
2
n×
]
Q

1
2

)
(A.5.6b)

where the matrices Q,P1,P2, defined in (2.1.16) and in (2.2.21), have to be evaluated at

ûn and where û
1
2
n denotes the Cayley vector associated to the rotation matrix Q

1
2 (ûn) as

defined in (2.1.16).

A.6 Definition of the sequences λ and CF

In this appendix we give the precise composition of the sequences λ [Sanger et al., 1982]
and CF [Kitchin et al., 1986] used in chapters 5, 6 and 7.

The sequence λ :

GGGCGGCGAC CTCGCGGGTT TTCGCTATTT ATGAAAATTT
TCCGGTTTAA GGCGTTTCCG TTCTTCTTCG TCATAACTTA
ATGTTTTTAT TTAAAATACC CTCTGAAAAG AAAGGAAACG
ACAGGTGCTG AAAGCGAGGC TTTTTGGCCT CTGTCGTTTC
CTTTCTCTGT TTTTGTCCGT GGAATGAACA ATGGAAGTCA
ACAAAAAGCA GCTGGCTGAC ATTTTCGGTG CGAGTATCCG
TACCATTCAG AACTGGCAGG AACAGGGAAT GCCCGTTCTG
CGAGGCGGTG GCAAGGGTAA TGAGGTGCTT TATGACTCTG
CCGCCGTCAT AAAATGGTAT GCCGAAAGGG ATGCTGAAAT
TGAGAACGAA AAGCTGCGCC GGGAGGTTGA AGAACTGCGG
CAGGCCAGCG AGGCAGATCT CCAGCCAGGA ACTATTGAGT
ACGAACGCCA TCGACTTACG CGTGCGCAGG CCGACGCACA
GGAACTGAAG AATGCCAGAG
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The sequence CF :

CAGGAAAGCG GTGAAAACAC CCCCACCAAA CCCAAGGCAG
GCCCAAAGTA CCAAACCAGC GCAAATCACC TCTGTCCAGC
ACAAACCCCG TCCAAACCAG CACTCAGACC CAGGAAAACC
CCTCCCGGAG GCCCCGAAAT CGGGCTAGAA CCCCGCCAAA
CCCCCTGCCA GGAGGCCTAA AATTCCAACC GAAAATCGCG
AGGTTACTTT TTTGGAGCCC GAAAACCACC CAAAATCAAG
GAAAAATGGC CAAAAAATGC CAAAAAATAG CGAAAATACC
CCGAAAATTG GCAAAAATTA ACAAAAAATA GCGAATTTCC
CTGAATTTTA GGCGAAAAAA CCCCCGAAAA TGGCCAAAAA
CGCACTGAAA ATCAAAATCT GAACGTCTAC GCCTCTGCTT
TAGAGTCTGT CTACCACCCG GGTCGGTTAA ATATGTCGGC
CGTATTAAAG CTCACATGAC AAAATCATGC GATGAGGTTA
GGAAAGGGAA AGACAATGTA C

A.7 Details on the averaging principle

We present here a brief summary, largely inspired from related sections in [Hartmann,
2007, Freidlin and Wentzell, 2012], of the averaging principle for problems with two
distinct scales.

Let 0 < ε << 1 a scalar and consider the following ODE system for s ∈]0, L[

d

ds
xε(s) = εf(xε(s), yε(s))

d

ds
yε(s) = g(xε(s), yε)(s)

(A.7.1)

where f, g ∼ O (1). The scale separation is understood in the fact that the variable yε
exhibits relatively strong variations with respect to the variable xε at the length scale
s ∼ 1. The variable xε is called the slow variable and yε is called the fast variable.

A local averaging principle can be stated as follows. Let ∆s > 0 be a scalar value,
which is not particularly small, and observe that for any fixed value of s0 we have

xε(s0 + ∆s)− xε(s0 −∆s) = ε

∫ s0+∆s

s0−∆s
f(xε(s

′), yε(s
′))ds′

= ε

∫ s0+∆s

s0−∆s
f(xε(s0), yε(s))ds+ O

(
ε2∆s2

)
= ε

∫ ∆s

−∆s
f(xε(s0), yε(s0 + s′))ds′ + O

(
ε2∆s2

)
(A.7.2)

if f is Lipschitz in its first argument and where we have used (A.7.1). Introducing the
scaled parameter σ = ε(s− s0), and the rescaled variables

x∗ε (σ) = xε

(
s0 +

σ

ε

)
and y∗ε (σ) = yε

(
s0 +

σ

ε

)
(A.7.3)
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Index

leads then to the expression

d

dσ
x∗ε (0) + O

(
∆σ2

)
=

1

2∆σ

∫ ∆σ

−∆σ
f(xε(s0), y∗ε (σ

′))dσ′ + O (∆σ) . (A.7.4)

where O (∆σ) = O (ε∆s) by definition, and equivalently

d

ds
xε(s0) + O

(
ε3∆s2

)
=

ε

2∆s

∫ s0+∆s

s0−∆s
f(xε(s0), yε(s))ds+ O

(
ε2∆s

)
. (A.7.5a)

Similarly to (A.7.2) we also have

d

ds
yε(s0) + O

(
∆s2

)
=

1

2∆s

∫ s0+∆s

s0−∆s
g(xε(s0), yε(s))ds+ O (ε∆s) (A.7.5b)

for any fixed value of s0. These expressions motivate the definition, for a fixed value of
∆s = o

(
1
ε

)
, of the homogenised variable x(H) as a solution of the homogenised system

d

ds
x(H)(s) = εf

(H)
∆s (x(H)(s)) (A.7.6a)

where

f
(H)
∆s (x(H)(s0)) =

1

2∆s

∫ s0+∆s

s0−∆s
f(x(H)(s0), y0(s; s0))ds (A.7.6b)

and where the variable y0(s; s0) is defined as the solution of
d

ds
y0(s; s0) = g(x(H)(s0), y(s; s0)) with y0(s0; s0) = y(s0) (A.7.6c)

for any fixed value of s0. The system (A.7.6) is said to constitute an averaging principle for
the two scale ODE (A.7.1) and has the property that its solutions x(H)(s) and y0(s; s0)
provide, in some sense, approximations of the original solutions xε(s) and yε(s). The
precise sense of the convergence, as well as necessary hypothesis on the function f and
g, require a discussion which goes beyond this thesis, see [Freidlin and Wentzell, 2012,
Abdulle et al., 2012] for instance. Intuitively, however, we expect the solution of the
homogenised system be close to the original one if ∆s is chosen such that ε∆s <<
1, since s′ = O (1) one would have then for |y0(s0 + s′; s0)− yε(s0 + s′)| = O (ε∆s),
according to (A.7.5b), and

∣∣x(H)(s0 + s′)− xε(s0 + s′)
∣∣ = O

(
ε2∆s

)
for x(H)(s0) = xε(s0)

and according to (A.7.5a). One of the crucial properties of the averaging principle is
moreover that it delivers an approximation of the slow variable xε(s) at relatively large
scale, as expressed in (A.7.4), or precisely∣∣∣x(H)(s0 + s′)− xε(s0 + s′)

∣∣∣ = O (ε∆s) for s′ = O
(

1

ε

)
(A.7.7)

and for x(H)(s0) = xε(s0).
The averaging principle becomes particularly explicit when g(x, y) = g(y) in (A.7.1)

or if y is actually a known function in (A.7.5). In practice, it is difficult to guess a
priori the optimal choice of the value of the window size ∆s as a function of the value
of ε. The smaller the value of ∆s is, the closer are the solutions of (A.7.1) and (A.7.6a)
respectively, but the less the original ODE system has been homogenised.
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Γ−convergence, 243

admissible perturbations, 63
anti-symmetric, 17
atomistic models, 18, 166
AUTO, 176

Baker-Campbell-Hausdorff formula, 84
base, 17
base pair, 17
bBDNA, 192
bichain covariance matrix, 71
bichain end conditions, 59
bichain equilibrium conditions, 59
bichain ground state configuration, 149, 171
bichain ground state internal coordinates,

170
bichain internal coordinates, 46
bichain internal energy, 57
bichain Lagrange multipliers, 63
bichain macrostructure, 169
bichain microstructure, 169
bichain reconstruction rule, 46
bichain stiffness matrix, 170
birod end conditions, 110
birod equilibrium conditions, 109
birod ground state configuration, 150, 182
birod Hamiltonian, 114
birod Hamiltonian in internal coordinates,

115
birod Hamiltonian variables, 114
birod internal energy, 108
birod internal variables, 95
birod interpolation, 124
birod interpolation generator vectors, 124
birod interpolations generator vectors, 147

birod Lagrange multipliers, 117
birod stiffness matrix, 182
Boltzmann constant, 66, 119
Boltzmann distribution, 66
Boltzmann distribution for a Cosserat rod,

119

Cauchy-Born rule, 144
Cayley vector, 34, 41, 42
centered generator vector, 95
centered second moment of the internal co-

ordinates, 71
centreline, 88
cgDNA, 171
chain constitutive relations, 50
chain end conditions, 49
chain equilibrium conditions, 49, 50
chain internal energy, 50
chain normal configurational distribution,

158
chain reconstruction rule, 41
change of reference strand, 48, 97
chord-chord correlation, 73
coarse grain models, 18, 166
complementary pairing, 17
configurational first moment, 70, 73, 128,

130, 205
consistent configurational distribution, 151
consistent energy, 147
consistent observable, 151
constrained microstructure, 65, 118
continuation method, 192
continuum birod configuration, 93
continuum birod equilibrium configurations,

103
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continuum birod observable, 127
continuum double rod configuration, 91
continuum double rod equilibrium configu-

rations, 103
continuum Euler-Poincaré variation for birods,

111
continuum Euler-Poincaré variation for dou-

ble rods, 106
continuum Euler-Poincaré variation for rods,

101
continuum rod configuration, 88
continuum rod observable, 126
coordinate system, 34
correlated, 80
Cosserat rod models, 88, 176
Cosserat rod theory, 99
Crithidia fasciculata, 22, 172
cyclisation j-factor, 190

Darboux vector, 29, 90
deformation matrix, 81, 138
degenerate chain, 79
degenerate rod, 136
deterministic exponential Cauchy-Born rule,

144
deterministic exponential Cauchy-Born rule

for bichains, 149, 157
deterministic exponential Cauchy-Born rule

for chains, 149, 157
Dirac function, 129, 158
Dirichlet conditions, 49, 60, 98, 110
discrete Euler-Poincaré variation for bichains,

60
discrete Euler-Poincaré variation for chains,

52
discrete Euler-Poincaré variation for double

chains, 57
discretised birod configuration, 123
discretised junction displacement, 119
discretised rod configuration, 119
discretised space of birod configurations, 124
discretised space of rod configurations, 120
DNA, 17
double chain constitutive relations, 54

double chain end conditions, 54
double chain equilibrium conditions, 54
double chain internal energy, 55
double rod balance laws, 104
double rod constitutive relations, 104
double rod end conditions, 104
double rod equilibrium conditions, 104
double rod Hamiltonian, 107
double rod Hamiltonian variables, 107
double rod internal energy, 105
downstream indexing, 47, 96
dynamic persistence length, 206

E. Coli bacterium, 22, 171
effective non-local internal energy, 55
equilibrium birod conditions in internal co-

ordinates, 113
equilibrium configuration, 49, 98
equilibrium statistical mechanics, 66
Euler angles, 34, 41
Euler-Lagrange variations, 33
Euler-Poincaré variation, 33
expectation of a bichain observable, 69
expectation of a birod observable, 127
expectation of a chain observable, 69
expectation of a rod observable, 126
expected chain, 76
expected chain relative rigid body displace-

ment, 76
expected chain relative rotation, 76
expected chain relative translation, 76
expected generator vector, 133
expected junction, 75
expected rod, 133
expected rod configuration, 132, 176
expected rod relative rigid body displace-

ment, 133
expected rod relative rotation, 134
expected rod relative translation, 134
exponential Cauchy-Born rule, 144
exponential coordinates, 34, 41, 176
external couples and forces, 49, 98

fast variable, 232, 257
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finite dimensional birod marginal distribu-
tion, 125

finite dimensional expectation, 126, 127
finite dimensional observable approximation,

126
finite dimensional rod marginal distribution,

121
first moment of the birod microstructure in-

ternal variables, 128
first moment of the internal coordinates, 71
first moment of the macrostructure genera-

tor vector, 128
first moment of the relative rigid body mo-

tion, 70, 73, 128, 130
Flory persistence vector, 73, 130, 205
Fröbenius norm, 27
frame correlation matrix, 74, 130, 205
functional, 33

Gaussian chains, 18
genome, 17
geodesic finite element method, 121
Grönwall Inequality, 136
ground state internal coordinates, 168

Hamiltonian form of birod the equilibrium
conditions in internal coordinates,
115

Hamiltonian form of the birod equilibrium
conditions, 114

Hamiltonian form of the double rod equi-
librium equations, 107

Hamiltonian form of the rod equilibrium
equations, 103

Helical hinge, 205
Helical Wormlike chain, 18, 88, 166, 176,

205
heterogeneous polymers, 17
homogenised system, 232, 258
homogenised variable, 258
hyper-elastic chains, 51
hyper-elastic double chain, 56
hyper-elastic double rod, 105
hyper-elastic rods, 100

infinitesimal rotational degrees of freedom,
90

infinitesimal translational degrees of free-
dom, 90

inner product of two matrices, 27
inter coordinates, 46
internal bichain observable, 70
internal birod observable, 127
internal chain observable, 70
internal coordinates of the rigid body chain,

41
internal couples and forces, 49, 98
internal rod observable, 127
intra coordinates, 46, 95
intra rigid body displacement, 42, 91
invariance under overall rigid body motion,

46, 95
isolated continuum birod in a stochastic bath,

123
isolated continuum rod, 98
isolated continuum rod in a stochastic bath,

119
isolated double rigid body chain, 54
isolated double rod, 104
isolated rigid body chain, 49
isolated rigid body chain in a stochastic bath,

66
isolated rigid body double chain in a stochas-

tic bath, 68

Jacobian factor, 66, 68
junction displacement, 40
junction frame, 34, 41
junction lengths, 154
junction rotation, 38
junction translation, 40

kinetic temperature of the bath, 66, 119
Kratky-Porod persistence length, 18, 73, 130,

166, 205
Kuhn segments, 18

Lagrange multiplier method, 116
Lagrange multipliers method, 62
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Lagrangian function, 63, 116
Lambda phage, 22, 171
Langevin stochastic dynamics, 122
left infinitesimal generator, 30, 90
Legendre transform, 102, 107, 113, 192
Lie algebra, 28
local averaging principle, 232, 257
local bichain coordinate expectations, 71
local birod interpolation, 147
local chain constitutive relations, 50
local chain fluctuation matrix, 77
local change of framing, 47, 96
local double rod constitutive relations, 104
local energy, 50, 55, 99, 105
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