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Abstract

We introduce a sequence–dependent coarse–grain model of double–stranded DNA
with an explicit description of both the bases and the phosphate groups as interacting
rigid–bodies. The model parameters are trained on extensive, state–of–the–art large
scale molecular dynamics (MD) simulations. The model paradigm relies on three
main approximations: 1) nucleic acid bases and phosphate groups are rigid, 2) in-
teractions are nearest–neighbour and can be modelled with a quadratic energy, 3)
model parameters have dimer sequence dependence. For an arbitrary sequence, the
model predicts a sequence–dependent Gaussian equilibrium probability distribution.
The parameter set comprises dimer–based elements, which are used to reconstruct
mean con�gurations, called ground–states, which can have strong non–local sequence
dependence, and precision matrices, or stiffness matrices, for any sequence of any
length. This prediction step is suf�ciently ef�cient that it is straightforward to con-
struct probability density functions for millions of fragments each of length a few
hundred base–pairs. The estimation of a parameter set consists in minimising the
sum of Kullback–Leibler divergences between Gaussians predicted by the model and
analogous Gaussians estimated directly from MD simulations of a training library
of sequences. The training library comprises a short list of short palindromic DNA
sequences. We designed the palindromic library using an ad hoc algorithm to include
multiple instances of all independent tetramer sub–sequences. We exploit palindromic
symmetry properties to study the convergence of the statistics extracted from MD
simulations of palindromes and to de�ne palindromically symmetrised estimators of
�rst and second centred moments. The computation of the parameter set is delicate
and needs the use of sophisticated numerics. We present an ef�cient and reliable
procedure for estimating a complete parameter set which involves a generalisation
of the classic Fisher information matrix and its relationship to the relative entropy,
or Kullback–Leibler divergence. The model is a computationally ef�cient tool that
allows the study of the mechanical properties of double–stranded DNA of arbitrary
length and sequence. We use the model to study the sequence–dependent rigidity
of DNA and we compute sequence–dependent apparent and dynamic persistence
lengths. The explicit treatment of the phosphate group also allows computation of
sequence–dependent grooves widths. Moreover, with �ne–grained representation of
predicted ground–states, we can also study sequence–dependence of sugar puckering
modes and BI–BII backbone conformations.
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aaaKeywords: coarse–grain DNA, phosphate group, palindromic sequence, molecular
dynamics simulation, Kullback–Leibler divergence, Fisher information, parameter set
estimation, sugar puckering, BI–BII conformations, groove width.
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Résumé

Dans cette thèse, nous introduisons un modèle gros–grains d'ADN à deux brins qui dé-
pend de la séquence, avec une description explicite des bases et des groupes phosphate
en tant que corps rigides en interaction. Les paramètres du modèle sont déterminés
par des simulations approfondies de dynamique moléculaire (DM) à large échelle.
Le paradigme du modèle repose sur trois approximations principales : 1) les bases
d'acide nucléique et les groupes phosphate sont rigides, 2) les interactions sont locales
et de type "plus proche voisin", et peuvent être modélisées par une énergie quadra-
tique, 3) les paramètres du modèle ont une dépendance au niveau des dimères de la
séquence. Pour une séquence donnée, le modèle prédit une densité de probabilité
à l'équilibre gaussienne qui dépend de cette séquence. L'ensemble de paramètres
du modèle inclut des éléments liés aux dimères, qui sont utilisés pour reconstituer,
pour des séquences de longueur arbitraire, d'une part des con�gurations moyennes,
appelées états de base, et qui peuvent avoir une forte dépendance non locale au
sein de la séquence, et d'autre part des matrices de précision, ou matrices de rigidité.
Cette étape de prédiction est suf�samment ef�cace pour qu'il soit aisé de construire
des fonctions de densité de probabilité pour des millions de fragments qui soient
chacun d'une longueur de quelques centaines de paires de bases. L'estimation de
l'ensemble des paramètres consiste en une minimisation de la somme des divergences
de Kullback-Leibler entre des gaussiennes prédites par le modèle et des gaussiennes
obtenues directement par des simulations de DM sur une librairie de séquences. La
librairie comprend une brève liste de courtes séquences palindromiques d'ADN. La
librairie palindromique est générée en utilisant un algorithme ad-hoc a�n d'inclure de
multiples exemples de toutes les sous-séquences indépendantes de tetramères. On
exploite les propriétés de symétrie palindromique pour étudier la convergence des
estimateurs statistiques extraits des simulations de DM des palindromes et pour dé�nir
des estimateurs palindromiquement symétrisés des premier et des second moments
centrés. Le calcul de l'ensemble des paramètres est délicat et nécessite l'utilisation de
techniques sophistiquées d'analyse numérique. Nous présentons une façon ef�cace
et �able pour estimer un ensemble complet de paramètres, qui fait intervenir une
généralisation de la matrice classique d'information de Fisher ainsi que sa relation
avec l'entropie relative, ou divergence de Kullback-Leibler. Le modèle est un outil,
computationnellement robuste, qui permet l'étude des propriétés mécaniques d'un
double brin d'ADN de longueur et de séquence arbitraire. Ce modèle est utilisé pour
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Résumé

étudier la rigidité en fonction de la séquence d'ADN ; en particulier, nous calculons
les longueurs de persistance apparente et dynamique, dépendant de la séquence. Le
traitement explicite des groupes phosphate permet aussi un calcul de la largeur des
sillons, une quantité qui dépend de la séquence. De plus, la représentation à grains �ns
des con�gurations moyennes prédites par le modèle permet une étude des différents
"puckerings" du sucre et des conformations du squelette BI-BII.
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Riassunto

In questa tesi introduciamo un modello “coarse-grain” della doppia elica del DNA con
dipendenza a livello della sequenza e con descrizione esplicita delle basi azotate e dei
gruppi fosfati. I parametri del modello sono determinati a partire da delle simulazioni
di dinamica molecolare. Il paradigma del modello si base su tre ipotesi principali: 1)
le basi azotate e i gruppi fosfati sono unità rigide 2) le interazioni �siche sono locali
e di tipo “più vicine” 3) i parametri del modello hanno dipendenza dalla sequenza a
livello dei dimeri. Per una sequenza data, il modello predice una funzione di densità
di probabilità di Gauss. L'insieme dei parametri che sono utilizzati per ricostruire
il vettore della media, detto anche stato fondamentale, e la inversa della matrice di
covarianza, detta anche matrice di rigidezza. Lo stato fondamentale dipende non
localmente rispetto alla sequenza, mentre la matrice di rigidezza ha una dipendenza
locale. La ricostruzione dei parametri della distribuzione di Gauss è suf�cientemente
ef�cace, permettendo di ricostruire milioni di funzioni di distribuzione di probabi-
lità per sequenze di lunghezza di alcune centinaia di basi. La stima dei parametri
del modello consiste nel minimizzare la somma di divergenze Kullback–Leibler tra
gaussiane predette dal modello e gaussiane empiriche. Quest'ultime sono ottenute da
simulazione di dinamica molecolare di una libreria di sequenze. Una libraria consiste
in una lista di corte sequenze palindromiche. La libreria palindromica è stata generata
da un algoritmo appositamente sviluppato per includere tutte le sotto sequenze di
lunghezza pari a quattro paia di basi. La simmetria palindromica è in seguito usata
per studiare la convergenza degli stimatori associati alle simulazione di dinamica
molecolare di queste sequenze. Ottenere l'insieme dei parametri del modello è un
processo delicato che necessita l'utilizzo di metodi numerici so�sticati. In questo
lavoro presentiamo un metodo ef�cace e robusto che utilizza una generalizzazione
della matrice d'informazione di Fisher e la sua relazione con la divergenza di Kullback–
Leibler. Il modello è uno strumento computazionalmente ef�ciente che permette
lo studio delle proprietà meccaniche di �lamenti di DNA di lunghezza e sequenza
arbitrarie. Quest'ultimo può essere impiegato per lo studio della rigidità del DNA
(sequenza–dipendente) ed in particolare per il calcolo della lunghezza persistente
apparente e dinamica (anch'esse sequenza–dipendenti). Il trattamento esplicito dei
gruppi fosfati permette, per sequenze arbitrarie, il calcolo del loro solco maggiore
e minore. Inoltre, per ogni con�gurazione media predetta dal modello, è possibile
derivare una rappresentazione atomistica della molecola per studiare il “puckering”
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degli zuccheri pentosi e le conformazioni dello scheletro fosfato–deossiribosio, dette
BI–BII.
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Introduction

Deoxyribonucleic acid, or DNA, is the molecule that is responsible for much of the
functioning of the cell of any living organism. DNA is a molecule consisting of two
chains, called strands, which are attached one to another via hydrogen bonding be-
tween the nucleic acid bases. The interaction between the two strands leads to the
typical double helix. Each backbone is composed of alternating phosphate groups
and sugar rings with attached nucleic bases. There are four standard nucleic acid
bases Adenine, Thymine, Guanine, and Cytosine, respectively abbreviated by A,T,G,
and C. In the double helix the two strands interact at the level of the base–pair, and
the standard Crick–Watson pairing rule states that A and T always pair, and G and
C always pair. A signi�cant feature of DNA is that its shape has been observed to
have a strong sequence–dependence. For example, it has been noticed that some
DNA sequences containing a speci�c succession of bases have an intrinsic bend [76,
43, 22]. A particular example showing the relation between sequence and shape are
phased runs of three to six Adenine nucleic acid base, or A–tracts, repeated with a
helical periodicity which leads to a signi�cant global curvature of the double helix
molecule [22]. A second signi�cant physical property of the DNA molecule is its local
rigidity, or stiffness, that also has been shown to have a complex sequence–dependent
behaviour [51, 71]. A combination of both intrinsic shape and local stiffness properties,
characterises the overall deformations or �uctuations of the DNA which consequently
show a considerable variation between different sequences. In particular, it remains
an interesting, yet non trivial, problem to fully quantify these properties.
From an experimental point the rigidity of naked DNA is estimated in different ways.
Here we mention two classic approaches: cyclisation experiments, for fairly short
fragments, and single molecule tweezers, for longer fragments. The �rst experimen-
tal method consists in the quanti�cation of the probability of closed loop formation
starting from multiple copies of a linear piece for the same DNA with cohesive, or
sticky, ends. In the second technique a bead is attached to an end of a single linear
molecule of DNA by magnetic or optical tweezers or a micropipette then the molecule
is pulled and twisted. However, for both experiments, a mechanical model is needed
to rationalise the outcomes and to use of the results as a prediction tools.
Modelling the mechanical properties of DNA is strongly related to the length scales
of interest. Different length scales lead to different models in terms of the number of
model parameters, in terms of data to be �tted, and in terms of target applications of
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the model. For long length scales, the most widely used models have a comparatively
low number of parameters and just model the DNA as a single uniform sequence–
independent rod or wormlike chain, see for example [31]. At shorter length scales a
full atomistic approach leads to a very detailed mechanical model of DNA, which can
be used in the study of local properties of the molecule. The main drawback of the full
atomistic model is its high computational cost due to the large numbers of degrees of
freedom and associated parameters involved in the model particularly if the solvent
is treated explicitly. which is often thought to be necessary to capture the detailed
electrostatics of DNA. A third method for modelling the mechanical property of the
DNA is based on coarse–graining fully atomistic models by introducing additional
assumptions that control the level of detail present in the model. The rigid–base–pair
model [51, 78] identi�es each base–pair as a rigid unit resulting in a single, rigid–body
chain representation of the DNA molecule. The sequence dependence is typically
taken into account at the dimer sequence level and the resulting model is local in both
shape and stiffness. On the other hand, a rigid–base [55, 19] model identi�es each
base as a rigid unit, which consequently leads to a more detailed model, and the DNA
structure is represented as the interactions between two single chains, one for each
strand.
The cgDNA rigid–base model presented in [55, 19] is the starting point for this work.
The cgDNA model is a coarse–grain sequence–dependent rigid–base model of DNA
in solution. For an arbitrary DNA sequence composed in the standard alphabet
f A; T; G; Cg, the cgDNA model predicts a Gaussian stationary or equilibrium dis-
tribution for the underlying dynamics by reconstructing a mean con�guration, or
con�guration of the minimal energy state, and a stiffness matrix. One of the main prop-
erties of the model is that an arbitrary DNA fragment has an intrinsic shape that has
non–local sequence–dependence as a consequence of the fact that each base cannot
minimize the interaction energy between all of its neighbours. The latter phenomenon
is called frustration, and is an implication of the speci�c banded, but not block diago-
nal, pattern of the stiffness matrix. The banded sparsity pattern of the stiffness matrix
corresponds to each base interacting with �ve nearest neighbours. Consequently the
con�guration of a minimal state of a given sequence exhibits a non–local behaviour
under single letter mutation in the sequence, although the stiffness matrix changes
locally. cgDNA can be used for model–based analysis of different features of the DNA.
For example in [45], the authors exploited the cgDNA predicted Gaussian to compute
the apparent and dynamic persistence lengths for a large number of sequences, and in
particular, they introduced and computed sequence–averaged apparent and dynamic
persistence lengths.

This work is divided into four parts. Part I is dedicated to background material. In Part
II we estimate and compare different cgDNA parameter sets extracted from different
MD protocols and introduce some enhancements to the cgDNA model. Part III is the
central contribution of the thesis. It presents the cgDNA+ model, which is a re�nement
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Introduction

of cgDNA that introduces additional degrees of freedom associated with an explicit
description of the con�gurations of the phosphate groups. Part IV contains some
illustrative applications of the cgDNA+ model.

Chapter 1 has as its primary goal the presentation of all the basic notions that are
useful for the complete understanding of the cgDNA and cgDNA+ models. We start
with the standard chemical detail about DNA. The text presents the primary, secondary,
and tertiary structures of DNA by giving the main de�nitions and notation that are
used throughout this work. In addition to the classic DNA notions associated to bases,
the torsional angles and sugar ring puckering will be important in the applications of
the cgDNA+ model, while ideal bases will be the starting point for the coarse–grain
process of modelling the full atomistic representation of the DNA.
Chapter 2 presents the core mathematical ideas that will be useful in the development
of our coarse–grain models. Section 2.1 presents the properties of the Lie groups SO(3)
and SE(3) which are the main geometrical objects involved in the modelling procedure.
In particular, these Lie matrix groups are important for the formalisation of the bichain
interpretation of DNA, which leads to a set of internal coordinates leading to a tractable
and apparently rather accurate quadratic energy in our model.
Chapter 3 brie�y introduces the state–of–the–art molecular dynamics simulations that
we have used to train our coarse–grain models. In particular we present the computa-
tional work�ow that we implement for post-processing the large scale trajectory data
set produced by the full atomistic computations. From time series of atom positions,
we extract a time series of bichain internal coordinates. First and second (centred)
moments are then computed using standard estimators. We also present an algorithm,
as developed in [18, 20], for estimating a stiffness, or precision, matrix with a prescribed
sparsity pattern from a full covariance matrix with dense inverse.
Chapter 4 presents the cgDNA model [55, 19]: from the main assumptions underpin-
ning the coarse–grain model to its applications to the study of sequence–dependent
persistence lengths. The importance of this chapter to this thesis relies on the multiple
concepts and mathematical notions that form the core of the dogma of the cgDNA
coarse–graining methodology, and which will be the starting point for the development
of the enhanced cgDNA+ model.
The last chapter of the background part, Chapter 5, is entirely dedicated to the es-
timation of the cgDNA parameter sets from MD data. In this chapter, we recall the
Kullback–Leibler divergence and present its properties. Then we introduce the detail
of cgDNA parameter set extraction procedures along with the de�nition of a positive–
de�nite best–�t parameter set.

Part II of the thesis is dedicated to the comparison of different best–�t cgDNA parame-
ter sets computed for various different MD simulations protocols, which in this work
are all modi�cations of the ABC protocol [8, 15].
In Chapter 6 we compare cgDNA parameter sets extracted from MD data sets based
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Introduction

on protocols with different simulation durations, sequence libraries, force �elds, and
ion types and concentrations. An elementary one–at–a–time sensitivity analysis is
then performed to compare the coarse–grain best–�t parameter sets. We present a
parameter continuation algorithm that we use to compute all the different cgDNA
parameter sets based on different MD training data. An average per degree of freedom
Kullback–Leibler divergence is used to quantify the differences between the various
cgDNA parameter sets and the MD data set used in the �tting procedure. Moreover,
persistence lengths are computed for all the parameter sets to study the impact of the
MD protocol on the overall rigidity of the DNA.
In Chapter 7 we focus our attention on the design of MD training libraries. In particular
we present an algorithm that we have developed which searches for a library composed
of only palindromic sequences. In particular, the sequence library, which we call the
palindromic library, is composed of 16 sequences each of length 24 base–pairs. The
algorithm searches for a palindromic library which contains at least two copies of all
non–palindromic independent tetramers. We recall that a palindrome has the property
that the sequence on the reading strand matches the complementary sequence when
both strands are read in the 50 ! 30direction. In the context of the prediction of cgDNA
ground–states, we have a simple linear relation between the internal coordinates of a
sequence read on one strand and the internal coordinates read from its complemen-
tary strand. In particular, for a palindromic sequence, the latter relation states that the
internal coordinates of a ground–state of a palindrome is invariant under a change of
reading strand. This property leads to the idea of quantifying the lack of convergence
in the MD simulations of a palindromic sequence by computing the error between the
mean estimator and its palindromically symmetrized version. We then apply the same
idea to compute the convergence error for the estimated covariance matrix. With this
approach, we have a quanti�able way of testing the quality of the training library data,
and also a way of estimating the palindromic symmetrised �rst and (centred) second
moment that will be used in the parameter set extraction. We complete Chapter 7 by
introducing a new cgDNA parameter set format which has dimer dependent blocks for
the ten independent interior blocks, and sixteen end dimer blocks. The new format of
the parameter set leads to a non uniqueness of the best–�t parameter set, although the
reconstructions of the mean and the stiffness matrix of any sequence remain unique.
Having additional dedicated dimer–dependent end blocks seems to lead to a signi�-
cant improvement in the accuracy of the cgDNA model.

The central part of this work is Part III where we introduce the coarse–grain model we
call cgDNA+ which add an explicit treatment of the phosphate groups. The modelling
dogma behind cgDNA+ is similar to the one of cgDNA. In fact, in the cgDNA+ model
we add extra degrees of freedom based on the assumption of rigidity of the phosphate
groups atoms.
In Chapter 8 we introduce the mathematical background underlying the cgDNA+
model. More precisely, we generalize the concept of double chains, and the bichain
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representation introduced in [21] that are pertinent to the cgDNA model to double in-
teracting strands and tetrachains. To treat the phosphate groups explicitly, we consider
an extra set of six degrees of freedom between each base and its associated phosphate
group. We give a general de�nition of internal coordinates for the tetrachains, and
derive the Crick–Watson symmetry transformation describing the relation between
the internal coordinates of a sequence and the internal coordinates read with respect
to its complementary strand. Then we introduce a nearest–neighbour energy for the
tetrachain model and compute its �rst variation. Consequently, we can compute the
expression for the total external load acting on a single phosphate group necessary to
hold it in equilibrium in any con�guration. We give expressions for the variations in
both coordinates free and coordinate speci�c cases.
Chapter 9 contains all the detail about the cgDNA+ model. The internal coordinates are
de�ned by base–to–phosphate degrees of freedom in the relatively rigid–body motion
from the base to its 50phosphate group. Once the de�nition of internal coordinates
is chosen we investigate, using the palindromic MD data set, the sparsity pattern of
the observed stiffness matrices. Remarkably a block structure appears which leads
to the de�nition of the assumed cgDNA+ model sparsity pattern. We then compute
the palindromic error in the mean and covariance estimators for the cgDNA+ internal
coordinates and the palindromic data set in order to understand the convergence
rate of the base–to–phosphate degrees of freedom. After introducing all the model
assumptions, we de�ne the cgDNA+ parameter set format which contains only dimer–
dependent stiffness matrices and sigma vectors. As already done for the modi�ed
cgDNA model described in Chapter 7, we allow dimer speci�c blocks for the ten in-
dependent interior dimers and sixteen additional for the end ones. In the case of
cgDNA+ this is necessary because the end blocks have a different dimension to the
interior blocks because there is no 50phosphates associated to the bases forming the
�rst and last base pairs. We then show how to compute a �rst cgDNA+ parameter
set trained on the palindromic data set. This step required the introduction of a new
computational approach due to the large number of parameters to be estimated. To
that end, we introduce the Fisher information matrix and its relationship with the
second derivatives of Kullback–Leibler divergence. We then show how to take advan-
tage of the relation between Fisher information and Kullback–Leibler divergence to
compute a good initial guess for the �tting optimization problem. In collaboration
with O. Gonzalez, we introduce a Fisher–informed gradient �ow which shows very
good performance in numerically solving the �tting problem. Once the �rst cgDNA+
parameter set has been computed, we show how to prove that the best–�t parameter
set is, in fact, positive de�nite, meaning that for any arbitrary sequence the predicted
stiffness matrix is positive–de�nite. This exercise is not trivial as the format of the
parameter set leads to a non–injective reconstruction scheme due to a freedom in the
overlaps. Thus, the best–�t parameter set is not unique and thanks to this feature we
can take advantage of the null–space in order to prove the positiveness of a cgDNA+
parameter set. We continue by illustrating the performance of the best–�t cgDNA+
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parameter set in approximating the observed ground–states and the tangent–tangent
correlations for the Palindromic data set. Finally, we discuss the number of degrees of
freedom introduced in the cgDNA+ model compared to the improvement in the level
of approximation of the observed data. In particular, we use the Akaike information
criterion to quantify the actual gains consequent upon introducing the extra degree of
freedoms in cgDNA+. Moreover, we discuss a possible further extension of the model
by allowing additional blocks in the imposed sparsity pattern of the stiffness matrix
corresponding to local interactions beyond nearest neighbour.

Part IV is dedicated to four applications of the cgDNA+ model, and in particular to
applications which are only possible thanks to the explicit treatment of the phosphate
groups.
In Chapter 10, we start by computing the spectra of persistence lengths (apparent
and dynamic). In Chapter 11, we study packing forces computed for two different
crystal structures of the Drew–Dickerson dodecamer sequence by considering only
the external load acting on the phosphate group. Chapter 12 is all about the backbone
and in particular sugar ring puckering. In fact, from a cgDNA+ predicted ground–state
we can embed the ideal atoms for each base and each phosphate group. Then, we can
recompute the position of the sugar ring atoms which are not explicitly considered
in the cgDNA+ degrees of freedom. Consequently, we can compute the torsional en-
docyclic angles of the sugar ring and categorise its conformation using the value of
a pseudorotation phase angle. Then we can compute the backbone torsional angles
(conventionality named " and � ) which can be used to compute the conformation of
the backbone as being call BI or BII. We can then study the repartition of BI and BII
backbone con�gurations for each dimer according to all possible sequence contexts.
The �nal application in Chapter 13 is about a groove width computation. In particular,
we show how to compute and identify the major and minor grooves width for an arbi-
trary sequence by mimicking the methodology proposed in [38] but now within the
cgDNA+ coarse–grain model, which allows many possible sequence to be considered.
In particular we can study the sequence context dependence of both grooves using a
simpli�ed yet faster method for detecting major and minor grooves widths.

The thesis is closed with a discussion of our conclusions, and outlook for further model
development and applications
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1 Introduction to DNA

In this chapter we introduce basic facts about right–handed B–form DNA. In particular
we cover the basic aspects of the chemical structure of the DNA that will be useful for
our modelling, as well as the main features of the double helix such as the grooves.
A DNA molecule has four nucleic bases, two purines A and G and two pyrimidines T and
C. The purines, or simply R, are bigger (two very rigid rings), while the pyrimidines, or Y,
are smaller (one rigid ring). In standard DNA, A pairs with T with two hydrogen bonds,
while C pairs with G with three hydrogen bonds, in both cases forming a base–pair. In
this work we will only consider these four base types along with the aforementioned
pairing, also called Crick–Watson pairing . The double helix of the DNA molecule is
composed of two interacting anti–parallel strands. Each strand is itself composed of
repetitions of a unit called a nucleotide formed by a base, a sugar ring, and a phosphate
group. The chain formed by the repeated pattern of a sugar ring and a phosphate
group is called a backbone. It has a speci�c direction, given by the sugar group, called
the 50 ! 30direction. A DNA molecule is associated to a list of bases X 2 f A; T; G; Cg
called a sequence, denoted here by S = X 1X 2 � � � X N , where N 2 N is the length of
sequence counted in number of base–pairs. The sequence is actually the list of bases
composing one of the two strands, written in the 50 ! 30direction. That strand is called
the reading strand while its anti–parallel is called the complementary strand . In this
work we also refer to the reading strand as the Watson strand and to the complementary
strand as the Crick strand . The sequence of the complementary strand is denoted by
S = X 1X 2 � � � X N where X n is the Crick–Watson complement of X N � n+1 . Sequences
that satisfy S = S are called palindromes and will play an important role in this work.
In an idealized, �rst, approximation B–form DNA is a uniform double helical structure
with a straight centreline. The double helix has one full turn every 10.5 base pairs
or so, i.e. the DNA double helix as an high intrinsic twist. Moreover, the average
distance between two consecutive base–pair is about 3.4 Å. The distance between the
two backbone is not constant and forms two distinct regions called the minor groove
and the major groove . The DNA grooves could play an important role in the readout
process of the sequence from the proteins. Now, the B–form DNA is far from being
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Chapter 1. Introduction to DNA

a simple uniform double helical structure, in fact the different stacking interactions
between purines and pyrimidines, and because of the different numbers of hydrogen
bonds in the Crick–Watson pairing, the sequence modulates both the intrinsic shape,
and local rigidity of the molecule in a biologically signi�cant way.
Recapping we have presented three nucleic acid structures of the DNA:

� Primary structure : The single stranded linear chain of a string or word in the
alphabet f A; T; G; Cg nucleotides represented by a DNA sequence

� Secondary structure : Crick–Watson pairing de�ning the interactions between
bases on different strands. In case of B–form DNA two strands with an overall
structure is a double helix.

� Tertiary structure : The physical properties of the double helix such as its intrin-
sic shape and its rigidity as a function of the sequence.

There is also a quaternary structure that refers to DNA–protein complexes and their
interactions. In this work the nucleic acid tertiary structure is of main interest and its
study and understanding is our major goal.
In the next sections we focus on two further different notions related to the backbone
and its chemical structure that will be of importance.

1.1 Torsional angles

The backbone is a chain composed by two main units repeated in an alternating way.
The �rst unit is the sugar ring and the second is the phosphate group. In �gure 1.1 we
show a schematic representation of part of a backbone composed by a sugar ring and
two phosphate groups. As a �rst remark one can notice that the sugar ring is separated
from the phosphate group. On the right–hand side, by a single covalent bond while
it is connected by two bonds to the left hand side phosphate group. This asymmetry
identi�es the 50 ! 30orientation using the schematic representation. In the �gure we
label only the oxygen atoms O and the phosphorous atoms P while the non–labelled
atoms are carbons C and hydrogen are not shown at all. Now starting from the oxygen
atom we count the carbon atoms clockwise. In this manner the third and the �fth
carbon atoms de�ne the 50 ! 30direction. We have that, with respect to the sugar ring,
the left-hand side phosphate group is the 50phosphate group while the right–hand
side one is the 30 phosphate group. In �gure 1.1 we show also six angles called the
backbone torsion angles which are related to four consecutive covalently bonded atoms.
In general, let f A; B; C; D g be a group of four atoms, the torsion angle � associated to
the group of atoms is de�ne as the angle between the plane passing through f A; B; C g
and the plane passing through f B; C; D g. In table 1.1 for each torsion angle we report
the associated group of atoms. For sake of completeness in table 1.1 we report also
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1.2. Sugar ring puckering

Torsion angle Group of atoms
� O0

3 � P � O0
5 � C0

5
� P � O0

5 � C0
5 � C0

4
 O0

5 � C0
5 � C0

4 � C0
3

� C0
5 � C0

4 � C0
3 � O0

3
" C0

4 � C0
3 � O0

3 � P
� C0

3 � O0
3 � P � O0

5
� O0

4 � C0
1 � N1=9 � C2=4

Table 1.1 – Torsional angle and related group of atoms. For the torsion angle � two
choices are possible for the third and fourth atoms depending on whether the base is
R or Y. In italics we report the atom number in case of a base Y and in bold in case of a
base R.

the torsion angle � which is related to the relative orientation between a sugar group
and its base. As the chemical structure of the base changes between pyrimidine and
purine, the � torsion angle is de�ned for two different atoms groups, both reported in
table 1:1.
The " and � torsional angles have been associated to the so called BI–BII junction
conformations which are characterised by two distinct positions of the phosphate
group [23]. The value of the difference " � � identi�es the conformation of the junction.
More precisely if the difference is negative the junction is in the BI conformation, which
on the contrary, if the difference is positive the junction is in the BII conformation.

Figure 1.1 – Torsional angle of the backbone

1.2 Sugar ring puckering

We will also need more speci�c features of the sugar group. One of the main properties
of the sugar ring is that, due to its chemical structure, its con�guration cannot be
planar. In fact, the spatial conformations of the sugar ring are of two kinds called
envelope and twist . The envelope con�guration is characterised by four atoms being
planar and one being out of plane, while the twist conformation is associated to three
atoms being planar and two being out of plane one opposite to the other. In �gure
1.2 we show a schematic representation of an envelope and a twist con�guration. In
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Chapter 1. Introduction to DNA

general we refer to sugar ring puckering any sugar ring conformation.
The sugar ring puckering can be completely characterise by �ve endocycling tor-

Figure 1.2 – Three possible con�guration of the sugar ring: the planar which never
occurs, the envelope, and the twist. The red dots do not lay in the same plane formed
by the black dots.

sion angles normally called vn ; n = 0 ; : : : ; 4. The atoms forming the sugar ring are
f O0

4; C0
1; C0

2; C0
3; C0

4g and the relation to the torsion angles are reported in table 1.2. Us-
ing the torsion angle we can compute a pseudorotation parameter that can be used to
infer the sugar puckering mode: the pseudorotation phase angle P. There are at least
two slightly different ways for computing these pseudorotation parameters:

tan P =

P 5
i =1 � � i sin(4

5 � (i � 1))
P 5

i =1 � i cos(45 � (i � 1))
[3]; (1.1)

tan P =
(v4 + v1) � (v3 + v0)

2v2
�
sin

� 1
5 �

�
+ sin

� 2
5 �

�� [77]: (1.2)

Once P is computed using the arctangent in both cases it is converted to degrees. For

Name De�nition
v0 or � 4 C0

4 � O0
4 � C0

1 � C0
2

v1 or � 5 O0
4 � C0

1 � C0
2 � C0

3
v2 or � 1 C0

1 � C0
2 � C0

3 � C0
4

v3 or � 2 C0
2 � C0

3 � C0
4 � O0

4
v4 or � 3 C0

3 � C0
4 � O0

4 � C0
1

Table 1.2 – Naming and de�nition of the endocyclic sugar torsion angles.

the second de�nition if P < 0 then P = P + 360� . Finally by using the pseudo–rotation
cycle in �gure 1.3 the value of the pseudo–rotation phase angle is used to label the
sugar puckering modes. In either envelope or twist conformations the atoms with the
biggest displacement names the con�guration and the labels endo and exo indicate in
which direction the atoms is displaced.

1.3 Rigid–body con�guration of ideal nucleic acid bases

It as been observed that the bases f A; T; G; Cg are incredibly close to being rigid. Thus
it is common to assume that the atoms forming a nucleic base lie in the same plane.
During the so called Tsukuba meeting, the participants established a reference system
of the bases. For the aim of this work the Tsukuba convention [50] is the de�nition
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1.3. Rigid–body con�guration of ideal nucleic acid bases

Figure 1.3 – Pseudorotation phase angle wheel. Each 36� the sugar puckering mode
changes. The label of the puckering mode is given by the name of the atoms with the
biggest displacement and the direction of the displacement is named endo or exo.

of idealised nucleic acid bases described by a pair composed by an atom type and
associated three dimensional Cartesian coordinates. For the sake of completeness in
the appendix we report in table A.1 the detailed Tsukuba convention.
The rigidity assumption implies that a single base can be interpreted as a box con-
taining the atoms. A box can be described by a single point called the reference point
and its orientation . In the context of the ideal bases of DNA [38] described a proce-
dure to compute the ideal base reference point and the ideal base orientation. For
completeness we report the entire procedure in [38], but we �rst make two remarks.
The �rst is that the procedure is mathematically the same for purine and pyrimidine
bases, but the atoms to be used vary between the two base types. In table 1.3 we report
the parameters used in the computations. The second remark is about mathematical
notation of the con�guration of a rigid object. In particular its orientation is expressed
by a proper rotation matrix R 2 R3� 3 and its position is given by a three dimensional
vector r 2 R. In this work we will denote by g = ( R; r ) a rigid–body con�guration of
a rigid object. The mathematical object g will be better introduced and discussed in
the next chapter, as well as the de�nition of proper rotation matrix. In the following
paragraph we present how to compute the rigid–body con�guration of an ideal basis,
whose atoms coordinates are given by the Tsukuba convention.
Let a; b 2 R3 and d 2 R, compute ~R3 = a � b, where � is the vector product, then
de�ne R3 =

~R3

k ~R3k
and c = d a

kak , where d 2 R and k�k is the euclidean norm. Compute

r = Q(R3; � 1)cwhere Q(R3; � 1) is a matrix which rotates the vector caround the unitary
axis R3 thought the angle � 1. In section 2.1 we give explicit formula for computing
Q(R3; � 1). Next we compute R2 = Q(R3; � 2)c, ~R1 = R2 � R3, and R2 =

~R2

k ~R2k
. The

base reference position is given by r 2 R while the base reference orientation is given
by the matrix R which column are the unitary vectors Rn ; n = 1 ; 2; 3, denoted by
R = ( R1jR2jR3).
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parameter de�nition
a x(N1=9) � x(C0

1)
b x(N1=9) � x(C2=4)
d 4.702 Å
� 1 2,4691 rad ( 141.47� )
� 1 -0,9496 rad ( -54.41� )

Table 1.3 – De�nition of the parameters used for the computation of the base reference
point and base reference orientation. The notation x(A) stands for the Cartesian
coordinates of the atoms A given by the Tsukuba convention [50] table A.1.

Finally in table 1.3 we report the de�nition of all the parameters that have been used
in the above method. Finally let aX 2 R3nX be the set of nX ideal atom coordinates for
the base X 2 f A; T; G; Cg. With the above procedure we can compute the rigid–body
con�guration gX = ( RX ; r X ), thus for each base we have the following couple (aX ; gX )
of ideal coordinates and ideal rigid–body con�guration.
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2 Mathematics behind coarse-grain DNA
models

This chapter is dedicated to the main mathematical notions that will be used through-
out this work. More precisely we �rst introduce basic mathematical notation for matrix
and probability calculus. Then we focus on the special euclidean group SE(3) for
which we describe the structure and most important properties that will be useful here.
We then apply the SE(3) group to the coarse–graining process of double stranded
DNA by presenting brie�y a classic polymer physics model, and an introduction to
persistence length. We continue to the mathematical modelling of more realistic DNA
by presenting the bichain representation of double stranded DNA introduced in [21].
We denote A; B 2 Rn� n two real n times n matrix, and use the following notation

A : B = trace(B T A) =
nX

i;j =1

A ij B ji ; (2.1)

for the Frobenius inner product , where the subscripts indicate the ij entries of the
matrices, the superscript T indicate the transpose matrix, and trace is the usual trace
of the matrix. The norm induced by the Frobenius inner product will be denoted

kAk =
p

A : A; (2.2)

and will be called the Frobenius norm . The Frobenius inner product (2.1) is related
to the Euclidean inner product by vectorising both matrices A; B 2 Rn� n using the
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following rule

vec(A) =

2

6
6
6
6
6
6
6
6
6
6
6
6
4

A11

A12
:::

A1n

A21
:::

Ann

3

7
7
7
7
7
7
7
7
7
7
7
7
5

; (2.3)

so that we have the equivalence of inner products

A : B = vec(A) � vec(B ): (2.4)

The determinant of the square matrix A is denoted simply jAj. The principal square
root of a matrix A is de�ned by A

1
2 . The expectation of an observable F : Rn ! Rm

with respect to a probability density function is

hF (w)i p =
Z

Rn
F (w)p(w)dw: (2.5)

A multivariate normally distributed random variable in Rn will be noted by X �
N (�; C ), where � 2 Rn is the mean and 0 < C = CT 2 Rn� n is the covariance matrix .
The probability density function of X will be denoted by

� (w; �; K ) =
1
Z

expf�
1
2

(w � � ) � K (w � � )g; (2.6)

Z = j2�C j �
1
2 ; (2.7)

where K = C � 1 is called the precision matrix , or, in the context of this work, the stiffness
matrix . Depending on need, sometimes a more pertinent parametric notation for �
will be used, more precisely,

� (w; �; K ) = � (w; � ); (2.8)

where � 2 Rn+ n2
is a vector containing all the entries of � and K . We will use the

following notation

� := param(�; vec(K )) =

"
�

vec(K )

#

2 Rn+ n2
: (2.9)

For the sake of simplicity in this work the vector � contains all the entries in K even if
in the case of Gaussian probability distributions the precision matrix is symmetric.

10



2.1. The groups SO(3) and SE(3)

2.1 The groups SO(3) and SE(3)

We start by introducing the special orthogonal matrix group denoted SO(3) that is
de�ned by

SO(3) = f R 2 R3� 3jRT R = RRT = I; jRj = 1g; (2.10)

where I 2 R3� 3 is the identity matrix. The group SO(3) represents the group of all
proper rotations in euclidean space. Rodrigues' rotation formula [61] characterises a
right–handed rotation around the unit vector x through an angle 0 � �leq� :

R(x; � ) := I + sin( � )[x� ] + (1 � cos(� ))[x� ]2 2 SO(3); (2.11)

where [�� ] : R3 ! R3� 3 denotes the linear mapping de�ned by

[x� ] =

2

6
4

0 � x3 x2

x3 0 � x1

� x2 x1 0

3

7
5 ; (2.12)

for any arbitrary vector x 2 R3, called the skew–operator . Clearly, if S is a skew matrix,
we have that S = [ u� ] with u = ( S32 S13 S21) 2 R3. AsSO(3) is a Lie group it admits a
linear algebra, denoted by so(3), de�ned by

so(3) = f S 2 R3� 3jS = [ x� ]; with x 2 R3g: (2.13)

Hence, so(3) is the set of all three dimensional skew matrices. In Lie group theory the
Lie group and the Lie algebra are related by two transformations called the exponential
and the logarithm . The exponential map, exp : so(3) ! SO(3) is de�ned by (2.11)
where for any u 2 R3, exp([u� ]) = R(x; � ), where � is the norm of u and x = u=� . We
stress the fact that the mapping expis de�ned for any arbitrary vector u but exp([u� ]) =
exp([~u� ]) where j~uj = jujmod (2� ). The logarithm map is, instead, de�ned by log :
SO(3) ! so(3):

log(R) =
�

2 sin(� )
(R � RT ); (2.14)

where � satis�es 1+2 cos(� ) = trace(R) and log(R) = [ u� ] with kuk = � . For SO(3) both
mappings are in fact the actual matrix exponential and matrix logarithm functions.
Another parametrization for rotations of interest in this work, is the Cayley vector
representation in the speci�c sense de�ned in [36] [55] . Let cay : R3 ! SO(3),

cay� (� ) = I +
4� 2

4� 2 + j� j2

�
1
�

[� � ] +
1

2� 2 [� � ]2
�

; � 2 R: (2.15)

11



Chapter 2. Mathematics behind coarse-grain DNA models

For � 2 R3 with k� k = 2 � tan( �
2) we have that cay� (� ) = R(x; � ) where x = �

j � j . The
scalar factor � in (2.15) is in general equal to one but in the context of DNA � = 5 . The
inverse transformation cay� 1 : SO(3) ! R3 is

cay� 1
� (R) =

2�
1 + trace(R)

vec(R � RT ): (2.16)

Depending on the context we will use both parametrisations of the rotation group.
The matrix group SO(3), being a Lie group, is also equipped with a differential structure
and thus, for a differentiable curve R(t) � SO(3), for t 2 R we have that

d
dt

R(t) = [ � g(t)� ]R(t) (2.17)

= R(t)[� d(t)� ]; (2.18)

where � g(t); � d(t) 2 R3 are the Darboux vectors. The Darboux vector � g(t) satisfying
(2.17) for all t is called the left in�nitesimal generator while � d(t) satisfying (2.18)
is called the right in�nitesimal generator . For the SO(3) Lie group, left and right
in�nitesimal generators satisfy the following relationship

R(t)� d(t) = � g(t); 8t: (2.19)

The homogeneous matrix representation of the special euclidean group , denoted by
SE(3), is the Lie group of rigid body transformations de�ned by

SE(3) =

(

g 2 R4� 4jg =

"
R r
0 1

#

= ( R; r ) with R 2 SO(3) and r 2 R3

)

; (2.20)

where, for an arbitrary element g, the rotational part is represented by the matrix R
and the translational part is described by the vector r . The product of two element in
SE(3) is given by standard matrix multiplication, i.e, for g1; g2 2 SE(3),

g1g2 =

"
R1R2 R1r2 + r1

0 1

#

; (2.21)

while the inverse of a rigid body transformation g is given by

g� 1 =

"
RT � RT r
0 1

#

: (2.22)

The Lie algebra, denoted se(3), is de�ned by

se(3) =

(

T 2 R4jT = T(� ) =

"
[u� ] v

0 0

#

; with � = ( u; v) and u; v 2 R3

)

; (2.23)

12



2.1. The groups SO(3) and SE(3)

where we can introduce the operator T : R6 ! R4� 4 de�ned by

T � =

"
[u� ] v

0 0

#

; with � = ( u; v); (2.24)

so that an arbitrary element T = T(� ) 2 se(3) can be simply written as T(� ) = T � .
The operator (2.24) is called the tangent operator and admits a unique adjoint operator
T � : R4� 4 ! R6 de�ned by

T �

 
X x
0 0

!

=

 
Vect(X )

x

!

; (2.25)

where

Vect(X ) =

2

6
4

X 32 � X 23

X 13 � X 31

X 21 � X 12

3

7
5 ; 8X 2 R3� 3: (2.26)

Let g 2 SE(3); then we de�ne the right in�nitesimal generator as

d
dt

g = gT � d =

"
R(t)[� R

d (t)� ] R(t)� r
d(t)

0 0

#

; (2.27)

and the left in�nitesimal generator of g as

d
dt

g = T � g(t)g =

"
[� R

g (t)� ]R(t) [� R
g (t)� ]r (t) + � r (t)

0 0

#

: (2.28)

Just as for the SO(3) group we have a linear relationship between left and right in-
�nitesimal generators

� g(t) = Adg(t ) � d(t); with Ad g(t ) =

"
R(t) 0

[r (t)� ]R(t) R(t)

#

; 8t: (2.29)

The Ad operator has two useful properties

Adg1g2
= Adg1

Adg2
; (2.30)

Ad� 1
g = Adg� 1 =

"
RT 0

� RT [r � ] RT

#

: (2.31)

Let now g1(t); g2(t) 2 SE(3) with left in�nitesimal generator de�ned by � (g;1)(t); � (g;2)(t),
i.e

d
dt

gi = T � (g;i ) (t)gi (t); i = 1 ; 2: (2.32)

13
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Assume now that g(t) 2 SE(3) satis�es d
dt g(t) = T � g(t)g(t) and that it can be written

asg(t) = g1(t)g2(t). We can relate � g(t) to � (g;i ) via the equation

� g(t) = � (g;1)(t) + Adg1 (t ) � (g;2)(t); (2.33)

and by using equation (2.29) we can rewrite the above expression for the right in�nites-
imal generator, namely

� d(t) = Adg� 1
2 (t ) � (d;1)(t) + � (d;2)(t): (2.34)

We now brie�y introduce the natural exponential map, Exp : se(3) ! SE(3) as de�ned
in [12]:

Exp(T � ) =

"
exp(u)

�
I + (1� cos(� ))

� [x� ] + (� � sin( � ))
� [x� ]2

�
v

0 1

#

; (2.35)

for � = ( u; v) and � = juj, x = u
� , and exp(u) as de�ned in (2.11) and (2.35) is in fact

equivalent to the standard exponential for matrices of the form T � . The standard
de�nition is used to de�ne the neighbour rigid body transformation of a given one,
noted g, by truncating the power series at a chosen order, for example the second order
(left) approximation of a neighbour of g is de�ned by

g =
�

I + T � g +
1
2

(T � g)2
�

g + O(j� gj2): (2.36)

We refer to [21] for more detail about matrix calculus.

2.2 Polymer physics and persistence length

A polymer can be modelled by a linear chain of rigid bodies represented by a set of
rigid body con�gurations g = f gngN

n=1 2 SE(3)N , with gn = ( Rn ; rn ) 2 SE(3). One
classic observable in polymer physics is the relative rigid body displacement

F (g; n) = g� 1
0 gn =

"
RT

0 Rn RT
0 (rn � r0)

0 1

#

(2.37)

where g0 = ( R0; r0) is a reference frame that usually is taken to be away from the end
of the chain. It is common to de�ne from (2.37) two different expectations:

the Flory vector [17] : hRT
0 (rn � r0)i ; (2.38)

tangent–tangent correlation : h(RT
0 Rn )(3;3) i = ht0 � tn i ; (2.39)

where h�i denotes the expectation with respect to an underlying equilibrium distribu-
tion. We observe that both expectations are functions of the chain index n � 1 and are

14



2.2. Polymer physics and persistence length

respectively a vector and a scalar.
A classic simple polymer model is the discrete version of the Kratky-Porod wormlike–
chain (WLC) [64] [32] where the chain is assumed to be composed by rigid links and
with the same length b, in such a way that the con�guration of an N long polymer
chain can be described by means of a set of unitary tangent vector f tngN � 1

n=1 , where

tn =
1
b

(rn+1 � rn ). The free energy associated to the WLC is assumed to be

E(g) =
B
b

N � 1X

n=1

(1 � tn � tn+1 ); (2.40)

where B is a constant bending rigidity parameter. We remark that the ground–state, or
state of minimal energy, of such a model is intrinsically straight, meaning that all the
unit tangent vectors are aligned. We further assume that the equilibrium distribution
of the WLC is Boltzmann, i.e, it can be written as � (g) = exp f �E (g)g with � � 1 = kbT.
With this simple model, both the Flory vector and the tangent–tangent correlation
functions, can be computed analytically:

hRT
0 (rn � r0)i � = b`p

�
1 � exp

�
�

n
`p

��
e3; (2.41)

ht0 � tn i � = exp
�

�
n
`p

�
; (2.42)

where e3 = (0 ; 0; 1)T , and the exponential decay parameter `p is called the persistence
length , here expressed in base–pairs. Moreover, in the WLC model we naturally �nd
that b`p = �B which represents the persistence length in arc length units of b. As a
last comment we stress that both expressions in (2.41) are exact in the continuous
limit of the WLC model, for which the quantity b`p stays constant while b ! 0, N ! 1 ,
Nb ! L , and nb ! s 2 [0 L ], where L is the length of the polymer in arc–length units.
In the context of DNA the chemical composition of the polymer chain is a function of
a speci�c sequence S in the f A; T; G; Cg alphabet which implies that both the Flory
vector and the tangent–tangent correlation function will be function also of S. For more
detail we refer to [18] [45]. Hereafter we brie�y introduce the sequence dependent and
sequence average generalization of (2.41):

`F (S) = lim
n!1

khRT
0 (rn � r0)ik ; exp

�
�

n
`p(S)

�
� h tn � t0i ; (2.43)

`F = lim
n!1

k
�

RT
0 (rn � r0)

	
k; exp

�
�

n

`p

�
� fh tn � t0ig ; (2.44)

where f�g , is an average over an ensemble of sequences, `F (S) is the sequence–dependent
Flory persistence length, `F is the sequence average Flory persistence length, `p(S) is the
sequence–dependent persistence length, `p is the sequence average persistence length,
and � signi�es that `p(S) is the negative reciprocal of the slope of the linear �t through
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Chapter 2. Mathematics behind coarse-grain DNA models

the origin of log(htn � t0i ) vs n. For sake of simplicity `p(S) will denote the tangent–
tangent correlation persistence length and we do not introduce a speci�c notation for
that. But, it should be remarked that, `F (S) and `p(S) are now not in principle the same
due to the non-trivial intrinsic shape of DNA. For example it is known that sequences
containing phased A–tracts [44] [65][60] tend to have a high intrinsic curvature which
implies a non–linear decay in the log–tangent–tangent correlation leading to a poor
approximation of `p(S). In section (4.3), we will present a few examples of computa-
tions of `p(S). Furthermore, in [18] [45], the concept of dynamic persistence length is
presented and studied. In [74] the authors proposed the following sequence–averaged
decomposition of the persistence length:

1

`p
=

1

`s
+

1

`d
; (2.45)

where, following [45], `p is renamed to the apparent persistence length, `s is the static
persistence length, and `d is the dynamic persistence length. Equation (2.45) states that
the apparent persistence length can be decomposed into two contribution, a static one
related to intrinsic shape, and a dynamic one related to thermal �uctuations. The static
contribution can be computed as the sequence ensemble average of the deterministic
form of (2.44) 2, de�ned by

exp
�

�
n

`s

�
� f btn � bt0g; (2.46)

where btn is evaluated on the ground–state con�guration for each sequence in the
ensemble. Finally in [45] the authors generalized the sequence–averaged dynamic
persistence length of [74] in the following sequence–dependent dynamic persistence
length

(btn � bt0) exp
�

�
n

`d(S)

�
� h tn � t0i : (2.47)

Hence, `d(S) can be computed from the linear �t of a plot of lnhtn � t0i � ln(btn � bt0) as
function of n. The quality of the latter �t has been shown [18, 45] to be always better
then its analogous (2.43) 2 which make `d(S) more robust as a proxy for the "rigidity" of
different DNA sequences.

2.3 From atoms to rigid-bodies

In this section we present the classic approach underlying the coarse–graining of
double stranded DNA molecules. The �rst step is to set the level of coarse graining to
consider in the model, meaning that some group of atoms will be considered as part of
the same unit and others will be not explicitly considered in the model. For example
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we will consider that each base of the DNA molecule is an individual rigid unit. In the
following we will present the standard methodology used to associate a rigid–body to
each unit. Consider two set of atoms coordinates aX = f aX

i gm
i =1 and p = f pi gm

i =1 with a
one–to–one correspondence between aj and pj , in the sense that they represent the
same atom type. We will refer to a as ideal atoms and to p as observed atoms and we
are interested in associating a rigid body to the observed atoms. In the DNA context
the ideal atoms are �xed coordinates for each type of bases and are planar. In [50] the
authors give the list of atoms type and Cartesian coordinates forming the ideal bases
for the nucleic acid bases A; T; G, and C. Moreover, in [38] the authors give a way of
associating a rigid body ga to each ideal atoms groups a. In general, for the ideal atom
group a we have a couple (ga; a) where ga 2 SE(3) has the matrix form described in
(2.20). Now, mathematically the assumption of rigidity of the observed atoms p imply
that there exists a rigid–body transformation g = ( R; r ) 2 SE(3) such that

qi = Ri ai + r i ; 8i = 1 ; : : : ; m; (2.48)

with (R; r ) satisfying

(R; r ) = argmin
Q2 SO(3) ;t2 R3

mX

i =1

kqi � pi k2; (2.49)

and �nally we compute the rigid body associated to p by right rigid body transforma-
tion

gp = gga; (2.50)

where g = ( R; r ). The least square system (2.49) can be solved by de�ning S = XY T

where the column of X and Y are given by

X i = ai � a; i = 1 ; : : : ; m; a =
1
m

mX

k=1

ai ;

Yi = pi � p; i = 1 ; : : : ; m; p =
1
m

mX

k=1

pi ;

and by computing the singular value decomposition of S = U� V T . Then the rotation
matrix R is computed as

R = V DUT ; with D =

2

6
4

1 0 0
0 1 0
0 0 kV UT k

3

7
5 ;
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where kV UT k = � 1 guarantees that R 2 SO(3). Finally the translational part r is

r = p � Ra:

For all the details about the derivation of the above computation we refer to [67].
Let us consider a N base–pair long DNA fragment with sequence S and assume that

p(S) = ( p1; : : : ; pL )(S) 2 R3L ;

with pi 2 R3 is the Cartesian coordinates of the i–th atom and L the total number of
atoms in the DNA. We �rst coarse–grain p(S) by forming units with some of the atoms
and by neglecting the rest. For example, by coarse–graining at the level of single bases,
we obtain the following map

r(S) ! (pX ; pX ) = ( pX 1 ; : : : ; pX N ; pX 1 ; : : : ; pX N ) 2 R3` ; (2.51)

where S = X 1X 2 � � � X N , X i 2 f A; T; G; Cg, pX i = ( pX i
1 ; : : : ; pX i

n i
) 2 R3n i are the atoms

considered for the base X i , X denote the Crick–Watson complementary base of X ,
and ` =

P N
i =1 (ni + ni ). We can now apply (2.49) to (pX ; pX ) in the following way

R ) (pX ; pX ) = ( g+
1 ; : : : ; g+

N ; g+
1 ; : : : ; g+

N ) = ( g+ ; g+ )(S) 2 SE(3)2N ; (2.52)

where g+
n and g+

n are the rigid body associated, respectively to pX n and pX n computed
by (2.50). In the context of rigid–base modelling of DNA it is in fact more convenient to
work with both base frames having the d3 axis along approximately the same direction,
see �gure 2.1, thus we introduce the matrix P 2 O(3) de�ned by

P =

2

6
4

1 0 0
0 � 1 0
0 0 � 1

3

7
5 ; (2.53)

and we de�ne

R ) (pX ; pX ) = ( g+ ; g� )(S) 2 SE(3)2N ; (2.54)

where

g�
n = ( R�

n ; r �
n ) = ( R

+
n P; r +

n ); 8n: (2.55)

As a �nal remark, we stress the fact that the mapping R ) is not invertible because a
least square �tting is involved. But the atomistic resolution of only the coarse–grain
units, can be retrieved approximately by using the transformation described in (2.48).

18



2.4. Bichain interpretation of DNA

Figure 2.1 – Example of rigid body, in black, �tted to two complementary bases. In
the context of rigid–base coarse–graining, it is more convenient to rotate the frame g+

n
along the d1 axis by P 2 O(3), see (2.53) and (2.55), to obtain the blue frame .

2.4 Bichain interpretation of DNA

When coarse–grained to the level of bases, a molecule of double stranded DNA can
be interpreted as a double chain of rigid bodies. In this section we will recall the basic
concept and notation for rigid–body double chain con�gurations and we will present
its relationship to the bichain representation of coarse–grain double stranded DNA.
More detail can be found in [21].
Formally, a rigid–body double–chain con�guration is denoted by the couple

(g+ ; g� ) = ( g+
1 ; g+

2 ; : : : ; g+
N ; g�

1 ; g�
2 ; : : : ; g�

N ) 2 SE(3)2N :

In the context of DNA g+ ; g� represent respectively the reading strand and comple-
mentary strand where each strand is described by a single chain of rigid bodies. A more
convenient way for interpreting a molecule of DNA is in fact the rigid–body bichain
interpretation. A bichain con�guration of a N base–pair long fragment of DNA can
be described by a macrostructure and a microstructure respectively noted g and P.
Hence (g; P) 2 SE(3)2N will be used to denote a bichain con�guration. In the DNA
context, the macrostructure con�guration g = ( g1; : : : ; gN ) 2 SE(3)N describe the po-
sition and orientation of each base-pair along the molecule, while the microstructure
con�guration P = ( P1; : : : ; PN ) 2 SE(3)N describes the relative con�guration of the
complementary bases in the same base–pair level. Clearly, the microstructure con�gu-
rations do not form a chain and this concept can be useful in some applications.
From coarse–grained MD trajectories we actually observe times series of double chain
con�gurations of DNA, but there is an invertible mapping between both interpreta-
tions. Indeed, for any double chain con�guration we can de�ne the invertible mapping
R : SE(3)2N ! SE(3)2N de�ned by

Rk(g+ ; g� ) = ( g; P); (2.56)

where

gn = ( Rn ; rn ) =

"
R�

n ([R�
n ]T R+

n )
1
2 1

2(r +
n + r �

n )
0 1

#

; (2.57)
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where gn represent the nth base–pair rigid body along the chain. Its de�nition is in
fact the half point along the geodesic going from g�

n to g+
n , when the left invariant

Riemannian metrix is considered. The microstructure, instead, is de�ned as the rigid
body displacement between the two strands at the same base–pair level, i.e,

Pn = ( Pn ; pn ) = g�
n g+

n =

"
[R�

n ]T R+
n RT

n (r +
n � r �

n )
0 1

#

: (2.58)

2.4.1 Internal coordinates for (g; P)

We can now introduce the set of internal coordinates for a bichain con�guration. In
this representation the internal coordinates naturally split into coordinates for the
macrostructure and coordinates for the microstructure. For de�ning the macrostruc-
ture coordinates, also called inter coordinates , we have to introduce the inter base–pair
junction displacements

an =

"
Qn qn

0 1

#

(2.59)

that satisfy gn+1 = gnan . The inter coordinates are, in fact, a parametrization of
the junction displacement. Hence, let xn = ( un ; vn ) 2 R6 be a set of coordinates
parametrizing an = an (xn ) = ( Qn ; qn )(xn ) where

Qn = Q(un ) = cay� (un ); � = 5 ; (2.60)

qn = qn (un ; vn ) = Q
1
2 (un )vn ; (2.61)

where cay� is de�ned in (2.15). Finally we have a reconstruction rule for the chain part
of the bichain representation,

x = ( x1; x2; : : : ; xN ) 2 R6(N � 1) 7! g(x) = ( g1; : : : ; gN ) 2 SE(3)N ; (2.62)

by using the formulas

gn+1 = gnan = g1

nY

i =1

ai : (2.63)

The set of internal coordinates for the microstructure will be called, intra base–pair co-
ordinates . They parametrise the intra displacement de�ned by Pn . Let yn = ( � n ; wn ) 2
R6 be the intra coordinates parametrising Pn , then they satisfy

P(yn ) =

"
P(� n ) P(� n )

1
2 wn

0 1

#

; (2.64)
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where

Pn = P(� n ) = cay� (� n ); � = 5 (2.65)

pn = pn (� n ; wn ) = P(� n )
1
2 wn : (2.66)

Finally, by de�ning

(x; y) = ( y1; x1; y2; : : : ; xN � 1; yN ) 2 R12N � 6 (2.67)

as the bichain internal coordinates we can formally write an invertible reconstruction
rule for a bichain Rz : R12N � 6 ! SE(3)2N

(x; y) 7! (g; P)(x; y): (2.68)

The inverse map, noted [Rz]� 1, can then be used to de�ne a mapping between any
double chain con�guration and its bichain internal coordinates, which we will denote
by R : SE(3)N ! R12N � 6, de�ned by

R(g+ ; g� ) = [ Rz]� 1(Rk(g+ ; g� )) = ( x; y): (2.69)

2.4.2 Internal Energy for (g; P)

In this paragraph we introduce and discuss the internal energy for bichain con-
�guration along with its �rst variation, will be important later in this work. But
before we present the results for the bichain we will brie�y introduce the equilib-
rium conditions for chains . The equilibrium conditions for a set of rigid bodies
g = ( g1; : : : ; gN ) 2 SE(3)N , gn = ( Rn ; rn ) 2 SE(3), can be written, in a short for-
mat, as

� � n+1 (g) + � n (g) + � n = 0 ; 8n = 1 ; : : : ; N (2.70)

with

� n =

"
mn + rn � nn

nn

#

2 R6; � n =

"
cn + rn � fn

fn

#

2 R6; n = 2 ; : : : ; N (2.71)

and � 1 = � N +1 = 0 :

where mn ; nn 2 R3 are respectively the total internal couple around rn and internal
force on gn from the downstream (along the chain) rigid–body gn� 1. The corresponding
external loads are denoted cn 2 R3 for the total external couple, around rn , and fn 2 R3

for the total external force acting on gn . Moreover, we set � 1 = � N +1 = 0 . The
mapping g 7! � n (g); 8n = 1 ; : : : ; N , is called the local chain constitutive relations
which together with equations (2.70) form the equilibrium conditions for the chain
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Chapter 2. Mathematics behind coarse-grain DNA models

g = ( g1; : : : ; gN ) 2 SE(3)N . Hereafter we will introduce the local energy for bichains
con�gurations, compute its �rst variation and relate it with the balance laws (2.70).
Let us consider a con�guration (g; P) 2 SE(3)2N . The bichain internal energy E :
SE(3)N ! R for (g; P) of interest is of the form

E(g; P) =
N � 1X

n=1

wn (Pn ; an ; Pn+1 ); (2.72)

in particular, the energy (2.72) has local energy contributions de�ned at the junction
level J n = ( Pn ; an ; Pn+1 ). We will refer to this type of energy, with this particular local
interactions, as a nearest neighbour interaction energy. It will be shown to play a major
role in the modelling of DNA, see for instance chapter 4. The �rst (left) variation of the
internal energy (2.72) reads:

D l E(g; P)(� ; � P ) = D l E(g; P) � � + D l E(g; P) � � P ; (2.73)

where

D l E(g; P) � � =
N � 1X

n=1

(� � n+1 (g) + � n (g)) � � n ; (2.74)

D l E(g; P) � � P =
NX

n=1

� P
n � � P

n ; (2.75)

and

� gn = T � ngn ; � = ( � 1; : : : ; � N );

� Pn = T � P
n Pn ; � P = (� P

1 ; : : : ; � P
N );

� n+1 (g) = Ad� T
gn

T � �
@an wnaT

n

�
2 R6; � 1 = � N +1 = 0 ; (2.76)

� P
n = T � �

@Pn (wn + wn� 1)PT
n

�
2 R6: (2.77)

It has been shown in [21] that the con�guration (g; P) 2 SE(3)2N that makes E sta-
tionary, under certain geometric constraints on (g; P), satisfy for n = 1 ; : : : ; N , the
following bichain balance laws

� � n+1 (g) + � n (g) = 0 ; (2.78)

� P
n = 0 ; (2.79)

where the �rst equation is directly related to the equilibrium conditions for the chain
g = ( g1; : : : ; gN ) 2 SE(3)N , and the second equation is the equilibrium of the mi-
crostructure represented by the intra rigid body displacement P = ( P1; : : : ; PN ) 2
SE(3)N . These two conditions, and in particular the chain part, can be generalized
also to allow external forces and, thus, the equilibrium conditions (2.78) can be rewrit-
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2.4. Bichain interpretation of DNA

ten has

(D l E(g; P) + � (g)) � � + D l E(g; P) � � P = 0 ; (2.80)

(g; P) 2 Cg � C P ; (2.81)

8� 2 DCg and 8� P 2 DCP (2.82)

where Cg and CP are the set of geometric constraint that prescribe a �xed value to,
respectively, a subset of rigid bodies in g and a subset of intra displacements of P. The
geometric constraints de�ne then the spaces of admissible variations DCg and DCP

where, for example,

DCg = f � 2 R6N j� n = 0 if gn is prescribed g: (2.83)

In practice the bichain energy is in general given in term of internal coordinates
w = ( x; y) in the following form

E(x; y) =
N � 1X

n=1

wn (yn ; xn ; yn+1 ); (2.84)

which leads to the computationally tractable formulas

� n+1 (g(x)) = Ad� T
gn

L � T
xn

@xn wn 2 R6; (2.85)

� P
n = L � T

yn
@yn (wn + wn� 1) 2 R6: (2.86)

The matrix L x has been derived in [21] with respect to the internal coordinates used in
[55]. For x = ( u; v) 2 R6,

L x =

"
P1(u) 0

Q
1
2 [v� ]P2(u) Q

1
2 (u)

#

; (2.87)

with

P1(u) =
4� 2

4� 2 + kuk2

�
1
�

I +
1

2� 2 [u� ]
�

; (2.88)

P2(u) =
�

I + Q
1
2 (u)

� � 1
P1(u): (2.89)

The matrix Ad � 1
g is de�ned in (2.29).
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3 On molecular dynamics simulation proto-
cols and analysis

3.1 Potential and force �eld

Molecular dynamics (MD) simulations are nowadays widely used for the study of both
naked DNA in solution and of DNA-ligand complexes as they allow, in a comparatively
short amount of time, the computation of a large number of atomic trajectories. Times
series of microsecond, in simulation times, or billions of time steps are now standard
thanks to the improvement from both a software and hardware engineering point of
view. Given a potential energy E : R3L ! R, with L � 1 representing the total number
of atoms in the system, MD simulation use numerical methods to integrate Newton's
second law of motion

�
@

@ri
U(r1; : : : ; rL ) = mi

d2

dt2 r i ; 8i = 1 ; : : : ; L; (3.1)

where r i 2 R3 is the Cartesian position of the i th atom, mi 2 R its mass, and � @
@ri

U(r1; : : : ; rL ) =
Fi 2 R3 the force acting on it. In past years a lot of effort has been put in the derivation
of accurate potentials U and consequently the derivation of the force �eld F [59, 24].
Let us consider a number L of atoms, and let r = ( r1; : : : ; rL ) be their Cartesian coordi-
nates. The potential energy U(r) is in general assumed to have two distinct contribu-
tions: an energy coming from covalently bonded interactions , denoted by Ub(r ), and
anther potential coming from non covalently bonded interactions , denoted Unb(r ). The
potential energy Ub(r ) is in general de�ned by

Ub(r ) =
X

bonds

kb(db � bdb)2 +
X

angles

ka(� a � b� a)2 +
X

dihedrals

Vd

2
(1 + cos(nd� d � � d)) ; (3.2)

where the �rst term is a harmonic potential modelling the elastic energy of a covalent
bond, the second term is again a harmonic potential modelling the elastic energy of
angles between two bonds, and the last term accounts for the contribution of dihedral,
torsion, angle potentials. In �gure 3.1 we show a schematic representation of the three
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Chapter 3. On molecular dynamics simulation protocols and analysis

different terms. In [39] one can �nd the detailed de�nition of all the parameters.

Figure 3.1 – Schematic representation of four atoms, numbered from 1 to 4. The
dihedral angle between the atoms [1 2 3 4]is denoted � d, the bond angle between
atoms [2 3 4]is denoted by � a and the bond distance between atoms [3 4] is denoted by
db.

The non-bonded energy potential in general reads

Unb(r ) =
X

i<j

A ij

d12
ij

�
B ij

d6
ij

+
X

i<j

qi qj

�d ij
; (3.3)

where the �rst term is the van der Waals force accounting for the attractive and repul-
sive forces between a pair of atoms approximated by the Lennard–Jones potential, and
the second term is related to electrostatic interactions between atoms and is repre-
sented by the Coulomb potential. Again in [39] the reader can �nd all the details about
the parameters in (3.3). For the full atomistic simulation of DNA the most commonly
used simulation programs are AMBER [53, 11] and CHARMM [10].

3.2 The ABC collaboration and simulation protocol

The Ascona B–DNA consortium, or ABC, was an international collaboration between
groups with the aim to build a shared pool of MD trajectories of linear fragments
of DNA, which we will refer to as the ABC data set. The consortium designed a set
of 39 sequences of length 18 base–pairs in such a way to have multiple instances
of all independent 136 tetramer sub–sequences without counting the end dimers.
In table B.1 one can �nd the complete list of sequences. An important goal of the
ABC collaboration was also to establish a single, consistent, MD simulation protocol
to be used in all the 39 simulations. In table C.1 we report the most pertinent, for
this work, parameters of the ABC protocol. The ABC collaboration lead to a series of
four articles [52, 37, 8, 15]. The most recent analysed a set of one microsecond MD
simulations of the ABC library. The main conclusions of [52] are that there are indeed
strong sequence effects at the tetranucleotide level on the distributions of the standard
helical parameters, as was already previously observed in shorter duration simulations,
and that microsecond simulations are apparently long enough for the statistics of
many observed quantities to have converged. The longer simulations also con�rm a
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3.3. Analysis of trajectories

phenomenon observed in the previous shorter duration ABC simulations [37, 55, 19],
namely that within some sequence contexts, histograms along the time series of some
of the standard 12 DNA helical parameters deviate in a noticeable way from Gaussian
distributions. The long simulations of [52] allowed the authors to characterise the
deviations from Gaussianity in terms of type of helical parameter and of dinucleotide
step in the purine–pyrimidine alphabet (R=Y). More precisely, only three of the helical
parameters, namely shift, slide and twist, and only at junctions that are either RR
or Y R dinucleotide steps deviate from Gaussianity, but never at RY steps. The non-
gaussianity is related to a double-well phenomenon at both RR and at Y R steps, with
the relative occupancies of each well strongly linked to the tetranucleotide �anking
sequence of the given dinucleotide step. Moreover the well occupancies are very highly
correlated with a bimodal behaviour of a speci�c phosphate group (corresponding to
the so-called BI-BII transition of the local backbone angles), with the phosphate being
in the junction between RR steps, and in a neighbouring junction for Y R steps. The
BI–BII transition has been investigated in more detail in [4, 5].

3.3 Analysis of trajectories

The ABC data set comprises a large number of MD trajectories that can be used to
compute, �rstly time series of rigid body double chains, and secondly time series
of internal coordinates. Hence, for a sequence S in the ABC data set and for each
snapshot k one can compute

R )
�

r (k) (S)
�

= ( g+ ; g� )(k) [S] 2 SE(3)2N ; (3.4)

R
�

(g+ ; g� )(k) [S]
�

= ( x; y)(k) [S] = w(k) (S) 2 R12N � 6; (3.5)

where R ) was de�ned in (2.54) and R in (2.69). Finally for each sequence we obtain
a time series of internal coordinates denoted by f w(k) (S)gM

k=1 , M � 1. We can now
compute two standard statistics, namely the �rst and centred second moment, or
covariance matrix, by computing

� (S) :=
1

M

MX

n=1

w(k)
n (S); (3.6)

C(S) :=
1

M

MX

n=1

(w(k)
n (S) � bw(S))T (w(k)

n (S) � bw(S)) ; (3.7)

(the fact that the estimate (3.7) with weight 1
M is biased is inconsequential for us as

M � 106). As both estimations are done for each sequence separately we will refer to
the couple ( bw; C)[S] asoligomer–based statistics.
Two natural analyse can be done on the oligomer–based statistics: the �rst has been
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Chapter 3. On molecular dynamics simulation protocols and analysis

already mentioned in section 3.2, namely the study of the one–dimensional marginal
histogram for each component of the helical parameters, the second is the study of the
inverse of the covariance matrix, or precision matrix or, for us stiffness matrix. For both
cases we show an example in �gures 3.2 and 3.3. The sparsity pattern of the observed
inverse covariance is close to 18 times 18 block diagonal with 6 times 6 overlaps. This
behaviour can be observed for any arbitrary sequence, and played a central role in
the derivation of the cgDNA model, see [55, 19] and chapter 4 of this work. In the
next section we will show how to impose the pattern to the observed stiffness matrix.
The one-dimensional histograms reveals that some of the helical parameters deviate
noticeably from Gaussian. As already presented in section (3.2) the non-gaussianity
appears only in the inter–base–pair parameters and for just for some of the helical
parameters. For those parameters the deviation from Gaussianity can be characterised
in terms of its junction step expressed in the purine-pyrimidine alphabet, and in term
of the �anking sequences. The histograms are then quite consistent independent of
the location of the given tetranucleotide sequence contest provided it is suf�ciently far
from an ends.
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Figure 3.2 – Portion of the inverse covariance matrix observed from 1�s simulations for
sequence S4, see table B.1. The black lines highlights the sparsity pattern correspond-
ing to nearest neighbour interactions.

The computational estimation of higher moments in a high–dimensional space, such
asR12N � 6 with N = 18 is far from being a trivial exercise. We therefore, consider only
the two �rst moments; the mean and the covariance. For example for a sequence S
in the ABC training set we have, thanks to the maximum entropy principle [42, 25, 26,
27, 20], that the Gaussian distribution � (w; � (S)) with � (S) = param(�; C � 1)[S] is the
distribution that maximizes the entropy function S, de�ned by

S(p) = �
Z

R12N � 6
p(w) log p(w)dw; (3.8)

under the constraint that the distribution matches �rst and second observed moment,
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Figure 3.3 – We present four examples of histogram computed for a one dimensional
marginal for sequence S4, see table B.1. The top line corresponds to inter–base–pair
coordinates, while the second are intra–base–pair coordinates. In the �rst column we
show the rotational coordinates while in the second the translations.

i.e, under the constraint that the distribution belongs to

C(S) =
�

p(w)j h1i p = 1 ; hwi p = � ; h(w � � )T (w � � )i p = C
	

: (3.9)

More precisely

� (w; � (S)) = argmax
p2C(S)

S(p): (3.10)

In an equivalent way one can also estimate the distribution � (w; � (S)) by means of
maximum likelihood estimation. The main difference between the two estimation
procedures is that in the maximum entropy principle we do not assume a priori that
the solution is a Gaussian distribution, while for maximum likelihood we assume a
normal distribution in order to have a tractable problem.

3.3.1 Hydrogen bond �ltering

First and second moments are estimated from a time series of internal coordinates
(2.67) extracted from MD simulations. We recall that the rotational components are
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Chapter 3. On molecular dynamics simulation protocols and analysis

computed using the Cayley vector transformation (2.15)). If the relative rigid–body
rotation is closely to being a rotation through � , the norm of the corresponding Cay-
ley vector tends to the in�nity. Such problems arise in the MD simulations of DNA
especially close to the ends of the molecule, where, depending on the end dimer, the
two strands can open and the base–pair hydrogen bonds are consequently broken
quite frequently. In order to avoid signi�cant bias in the estimations of the moments,

Figure 3.4 – Schematic representation of the hydrogen bonds between G and C, left,
and between A and T, right. The yellow circles highlight the atoms that are considered
in the �ltering process.

we introduce a �ltering step in post–processing the time series data which detects
and discard snapshots with fraying ends or any other anomaly which could lead to
very large Cayley vectors for that con�guration. The procedure simply computes the
distances dHB and the bond angles � HB between the atoms forming the base–pair
hydrogen bonds of all the base–pairs in the molecule. Then a hydrogen bond of a
base–pair is declared broken if 1) dHB > 4 Å or 2) � HB > 120� . We discard all the
snapshots that have one or more broken hydrogen bonds in any base–pair. In �gure 3.4
we show a schematic representation of the atoms considered for the hydrogen bond
�ltering for both Crick–Watson base–pair pairing.

3.4 Estimation of banded stiffness matrix

In the previous section we have presented a way of estimating �rst and (centred) sec-
ond moments from a time series of internal coordinates. Moreover, in �gure 3.2 we
showed an example of a stiffness matrix estimated from a MD time series of internal
coordinates for sequence S4 of the ABC training library, see table B.1. In this �gure it
is clear that the matrix is not banded, but a consistent block structured pattern, high-
lighted in �gure 3.2, suggests that the assumption of nearest–neighbour interactions in
the energy corresponds to overlapping 18x18blocks is a quite accurate approximation.
Thus, the need to estimate banded stiffness matrices from an observed dense one. We
describe now a simple and yet elegant way of doing so in the speci�c case of the cgDNA
sparsity pattern, i.e, 18 � 18diagonal blocks with 6 � 6 overlaps. The details and the
general proof for what follows can be found in [18].
Let C(S) 2 R(12N � 6)� (12N � 6) be an observed covariance matrix and let us rename the
blocks forming the cgDNA sparsity pattern by Ci , i odd, for the i th 18� 18block and
Cj , j even, the j th 6 � 6 overlapping block. In �gure 3.5 we show a schematic represen-
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3.4. Estimation of banded stiffness matrix

tation of C(S) for helping the reader. Moreover, to each block Ci we associate a set of
indices ind i 2 Nn i indicating its location in the matrix C(S), where # ni = 6 , for i even
and # ni = 18, for i odd. For example ind 1 = 1 ; : : : ; 18and thus (C(S)) (ind 1 ;ind 1 ) = C1.
The procedure to construct a banded stiffness matrix, denoted K band (S) is given in

Figure 3.5 – Schematic representation of algorithm 1

algorithm 1 and will only use the blocks Ci and Cj of C(S). The theory behind the

Algorithm 1 Banded stiffness estimation

Given: C(S) 2 R(12n� 6)� (12n� 6) $ f (C1; ind 1); : : : ; (Cn ; ind n )g; n = 2N � 3,
for k = 1 : 2N � 3 do

Compute K tmp = [ Ck ]� 1

if k is even then
K tmp = � K tmp

end if
(K band )(ind k ;ind k ) = ( K band )(ind k ;ind k ) + K tmp

end for
Output: K band 2 R(12N � 6)� (12N � 6) ; K band = K T

band > 0:

algorithm in fact provide a characterisation of a banded matrix in terms of the entries
of its inverse. More precisely, let us consider eC = ( K band ) � 1: the theorem that lead to
the derivation of the algorithm 1 reveals that the block outside the stencil of eC are all
functions of the blocks inside its stencil. Again more detail can be founded in [18, 20].
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4 cgDNA: a sequence–dependent rigid–base
model for DNA

In [55, 19] the authors introduced a sequence–dependent, rigid–base, coarse–grain
model of B–form DNA called the cgDNA model. The cgDNA model is parametrized
from full atomistic molecular dynamics simulations of a set of sequences of short
length. Given a parameter set P and an arbitrary DNA sequence S, cgDNA predicts
a Gaussian equilibrium probability density function in con�guration space, by re-
constructing the mean � � � (P; S) 2 RN , or ground–state, and the precision matrix
K � K (P; S) 2 RN � N , or stiffness matrix:

� (w; P; S) =
1
Z

exp
�

�
1
2

(w � � ) � K (w � � )
�

: (4.1)

In this section we brie�y review the main assumptions underpinning the cgDNA model
and the reconstruction of the density (4.1). We will then discuss the structure and
properties of the parameter set P and compare predictions of the model and MD
observables. In particular we will present a study on sequence–dependent persistence
length of DNA using the cgDNA model.

4.1 Main assumptions underlying the cgDNA model

The cgDNA model is based on many assumption that will be listed and brie�y discussed
hereafter. We start with the assumptions on the chemical structure of the molecule
of DNA and in particular on the form of the DNA. The cgDNA model [55, 19] is based
on molecular dynamics simulations of double stranded B–form DNA fragments and
consider only Crick-Watson pairing for the bases, and the standard alphabet of bases
f A; T; G; Cg. The �nal assumption on the chemical structure is about the rigidity of the
bases, which was already discussed in section 1.3. The Curves+ software [38] is used in
the �tting procedures. The convention about ideal atom coordinates are reported in
appendix A.
As already mentioned the cgDNA model is a rigid–base model of DNA, �xing the level
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Chapter 4. cgDNA: a sequence–dependent rigid–base model for DNA

of coarse graining to single bases. More than an assumption, the latter is a modelling
decision based on observation. In section 2.4 we presented the mathematics behind
bichains and in particular the relation between the rigid body representation and
internal coordinates. When considering a bichain representation of a n base–pair long
DNA sequence S, the internal coordinates w(S) 2 R12n� 6 satisfy the following physical
property related to the Crick-Watson symmetry,

w(S) = E2n� 1w(S); (4.2)

where S is the complementary sequence of S and E2n� 1 2 R(12n� 6)� (12n� 6) is a block,
trailing diagonal matrix composed by 2n� 1copies of E = diag(� 1; 1; 1; � 1; 1; 1) 2 R6� 6

E2n� 1 =

2

6
6
6
6
4

E
E

: :
:

E

3

7
7
7
7
5

; (4.3)

where E2n� 1 = E T
2n� 1 = E � 1

2n� 1.
The next assumption is motivated by the modelling choice of coarse–graining to the
level of individual rigid bases. In what follow S = X 1X 2 : : : X n , X i 2 f A; T; G; Cg is a
sequence. The internal energy for S will assume to be a shifted quadratic function in
the internal coordinates w = ( y1; x1; y2; : : : ; yn ) = ( x; y)

Utot (w; S) =
1
2

(w � � ) � K (w � � ); (4.4)

where � � � (S) 2 R12n� 6 is the ground-state of S, or its minimal con�guration energy,
and K = K T � K (S) 2 R(12n� 6)� (12n� 6) is a positive de�nite matrix called the stiffness.
Based on observation of statistics estimated from MD trajectories, see for instance
�gure 3.2, we assume that the stiffness matrix K is banded, i.e is a sparse matrix in
which non–zeros entries are all close to a diagonal band. More precisely the sparsity
pattern of K is 18� 18block diagonal with 6 � 6 overlaps:
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4.1. Main assumptions underlying the cgDNA model

The cgDNA model further assumes that the free energy has local contributions of the
form:

Ulocal (w; S) =
n� 1X

i =1

1
2

(wi � � X i X i +1
i )�K X i X i +1 (wi � � X i X i +1

i )+
X 1

2
(yi � � X i )�K X i (yi � � X i )

(4.5)

where, wi = ( yi ; x i ; yi +1 ) and the two kind of contributions are: dimer–based and
monomer-based. Now, Ulocal can be written as a single shifted quadratic form and can
be compared to Utot . What one �nds is that the stiffness matrix K is simply computed
as the sum of the dimer and monomer blocks, as shown in the next scheme,

and the ground–state is equal to

� = K � 1�; (4.6)

where � is a vector which has dimer and monomer contributions de�ned by

� X i X i +1 = K X i X i +1 � X i X i +1
i ; (4.7)

� X i = K X i � X i
i ; (4.8)

with the de�nition of � summarized using the following scheme

We want now to focus on one important point: � has a non local dependence on the
entries of � X i X i +1 and � X i due to K � 1, as the inverse of a band matrix with overlaps
being in general non banded. Moreover, by completing the square in (4.5) a non zero
constant term bU will naturally appear re�ecting the fact that in the ground–state all the
interactions of each base cannot simultaneously vanish. Hence, the oligomer–based
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local energy (4.5) is also a model for frustration. More detail can be found for example
in chapter 6 of [55].

4.2 The cgDNA parameter set

The cgDNA parameter set is the set of weighted shape vectors and symmetric matrices
of the form

P = f � � ; � �� ; K � ; K �� g�;� 2f A;T;G;C g: (4.9)

By assuming Crick-Watson symmetries we can reduce the size of P to contain only
independent elements. For the monomer-dependent elements � 2 M = f A; Gg and
�� 2 D where D contains the four palindromic dimers and six independent non
palindromic dimers. In particular D must satisfy:

if ��; �� 2 D ) �� = ��; and (4.10)

if �� 62D ) ��: 2 D (4.11)

Now, given an arbitrary DNA sequence S = X 1X 2; : : : ; X n we can use P to reconstruct
the ground–state � � � (P; S) and the stiffness matrix K � K (P; S) using the following
reconstructions rules:

K (P; S) = PT
d K dPd + PT

m K m Pm ; (4.12)

� (P; S) = PT
d � d + PT

m � m (4.13)

� (P; S) = K (P; S) � 1� (P; S); (4.14)

where

K d = diag(K X 1X 2 ; : : : ; K X n � 1X n );

K m = diag(K X 1 ; : : : ; K X n );

� d = ( � X 1X 2 ; : : : ; � X n � 1X n )

� m = ( � X 1 ; : : : ; � X n ):
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The matrices Pd 2 R18(n� 1)� (12n� 6) and Pm 2 R6n� (12n� 6) take the following form:

Pd =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

I 0 0 0 0 � � � 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
:::

:::
0 0 0 0 0 I

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

; Pm =

2

6
6
6
6
6
6
4

I 0 0 0 0 � � � 0
0 0 I 0 0 0
0 0 0 0 I 0
:::

:::
0 0 0 0 0 I

3

7
7
7
7
7
7
5

: (4.15)

In chapter 5 we will present the methodology used in [55, 19] to derive a best–�t cgDNA
parameter set P trained on the ABC data set. In this chapter we will just show an ex-
ample of comparison between prediction of the cgDNA model and observations from
simulations in the ABC data set. In particular we have (randomly) selected sequence S4,
and its MD observed ground–state and stiffness matrix. In �gures 4.1 we compare the
predicted cgDNA ground–state with the observed ground–state of S4. For visualisation
purpose we have divided the shape vectors into rotational and translational compo-
nents of intra– and inter–base–pair variables and plot each component individually.
We remark an excellent agreement between prediction and observation. In order to
compare the stiffness matrix we choose to use the tangent–tangent correlation as way
of comparison.

4.3 Study of persistence length using the cgDNA model

In section 2.2 we introduced the concept of sequence–dependent apparent and dy-
namic persistence length. Evaluation of the persistence length is one way to compare
stiffness, but �rst some remarks should be made. We �rst stress that the sequence–
dependent Flory persistence length is computed as the limit of norm of the Flory
persistence vector. In practice the sequence–dependent Flory persistence length can
be computed for DNA fragments with length of order 103. The length of the sequence
simulated in the MD and in particular in the ABC project vary between 12 and 18
base–pairs. Thus, in what follow we will consider only persistence lengths computed
by means of the tangent–tangent correlation function, and we will drop the "sequence–
dependent" adjective in front of persistence length as we are in the framework of the
cgDNA sequence–dependent model.
We reconsider again S4 and in particular its cgDNA reconstructed Gaussian � (w; P; S4) �
� m (w); and the observed banded Gaussian, � (w; S4) = � o(w). We can now numerically
compute the tangent–tangent correlation with respect to � m and � o along with the
static persistence lengths of both ground–states and plot the results. In �gure 4.2, left,
we show the comparison for S4 and we can observe that the prediction of the model
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Figure 4.1 – Comparison between cgDNA ( solid ) and MD ( dashed) ground–states for
sequence S4.

is again in good agreement with the data. The value of the apparent and dynamic
persistence length are respectively 130.4/129.9 base-pairs (bp), 157.3/156.4 bp, where
the bold values are the prediction of cgDNA. Compared to the comparison of the
ground–states done in the previous section, both persistence lengths are non–trivial
functions of the internal coordinate and the stiffness matrix which enhances the dif�-
culty for this kind of comparison. We also recall that the sequence S4 was in the training
library used in parameter extraction procedure for obtaining P, but no �tting of the
persistence length was done. Finally, we refer again to [18, 45] for the details about
the convergence of the tangent–tangent correlation as function of number of drawn
con�gurations. In �gure 4.2, right, we present another example of tangent–tangent
correlation computations done using cgDNA reconstructed Gaussian for the sequence
SA-tr = ( A6CGCGA6CGGGC)3, where X n means n repetitions of the sequence X , see
�gure 4.3. As already mentioned in section 2.2, the approximation of the apparent
persistence length from the log-ttc plot is in general poor for sequences with a high
intrinsic bend, as for example, phased A–tracts sequences. In �gure 4.2, right, we also
illustrate the ef�ciency of the shape factorization which leads to a more linear decay
and thus, to a good and robust approximation of the dynamic persistence length. For
SA-t we obtained the following values for the persistence length: `p = 66 bp, `d = 196
bp. We stress again that for bent sequences the apparent persistence length will be in
general an under estimate due to the bad quality of the linear �t in a semi–log plot.
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Figure 4.2 – Example of tangent–tangent correlation in solid and with shape factoriza-
tion in dashed. Left: comparisons for S4 between cgDNA and MD. Right: comparison
between (AT )30 and SA-tr .

To better illustrate better the unreliability of the apparent persistence length approx-
imation we consider the poly dimer sequence (AT )30 whose bichain representation
of the ground–state is shown in �gure 4.3. As the ground–state is intrinsically straight
we observe a very linear decay in the log–ttc, see for instance (4.2) right. Moreover, we
obtained the following values for persistence length: `p = 137 bp and `d = 147 bp. By
comparing the values of persistence length obtained for the two sequences, SA-tr and
(AT )30, it is clear that the only comparison that make sense is the one between the
values of `d, and interestingly enough, the A–tract sequence has a higher value.

Figure 4.3 – Bichain representation of the ground–state of SA-tr =
(A6CGCGA6CGGGC)3, the bent one, and (AT )30, the straight one.

In section 2.2 we also introduced the notion of sequence–averaged persistence lengths.
Thus, we randomly generated an ensemble of 104 220 base–pair long sequences by
assigning the same probability to each base. Then we computed the apparent and
dynamic persistence lengths for every sequence in the ensemble and plotted the
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resulting spectra in �gure 4.4. Moreover, we studied also the persistence length of
six independent poly dimer sequences because their ground–states are intrinsically
straight and thus a direct comparison between both de�nitions of persistence lengths
is possible. In �gure 4.4 we show all the results. In blue we have the spectra for `p

while in red we have the one for `d. The values of `p and `d for each independent poly
dimer and the sequence average over the ensemble are reported respectively in italic
and bold. The �rst observation is that the shape of the two spectra are completely
different. In particular the spectra for `p is �at and reach very low values ( < 120)
which are related to bent sequences. In contrast the spectra of `d is more peaked with
some very large values (> 190). The sequence averaged values of both persistence
lengths are indicated by Avg(= 160 bp) and Avg(= 178 bp) respectively for `p and `d,
see table 4.1 for the values of the poly–dimers. But, in both cases it is clear that the
sequence–dependence plays a central role in the study of the rigidity of DNA, and thus,
in the context of sequence–dependent modelling of DNA, both sequence–dependent
de�nition of persistence length could help studying and understanding the mechanical
property of DNA.

100 110 120 130 140 150 160 170 180 190 200 210 220 230
0

0:1

0:2

0:3

AA

AA

AG

AG

GG

GG

TG
TG

CG

CG

AT

AT

Avg Avg

length [base–pair]

`p

`d

Figure 4.4 – Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using the cgDNA model (trained on the ABC data set) over a sequence
ensemble of 10K randomly generated sequences of length 220 base pairs. We report
the averaged values (Avg) of both spectras: italic font for the apparent and bold font
for the dynamic persistence length. The values of the persistence lengths for six
independent poly–dimers of length 220 are reported: italic for the apparent and bold
for the dynamic. The positions of the values of the apparent persistence length is given
by a circle while the positions for the dynamic is given by a square.

AA AG GG TG CG AT Avg

`p 220 193 174 169 166 146 160
`d 221 194 178 173 168 148 178

Table 4.1 – Values of `p an d `d for six poly–dimers and the sequence–average. The
values are expressed in base–pairs.
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5 Estimation of cgDNA parameter sets

5.1 Kullback-Leibler divergence

Let p(x) and q(x) be two continuous multivariate probability density functions de�ned
on 
 � RN . The Kullback–Leibler divergence (KLd), or relative entropy, between p and
q is [33, 34]

DKL (p(x); q(x)) =
Z



p(x) log

p(x)
q(x)

dx: (5.1)

KLd is in general non symmetric, namely DKL (p(x); q(x)) 6= DKL (q(x); p(x))) , it van-
ishes if and only if p = q, and it is positive for any two densities p 6= q, namely
DKL (p(x); q(x)) > 0. The fact that (5.1) is not symmetric and, moreover, does not
satisfy the triangle inequality, implies that KLd does not de�ne a metric, but only a
premetric on the set of probability density functions. KLd is invariant under rescaling
meaning that if X p; X q are the random variables associated to p; q and ~X p = MX p,
~X q = MX q are rescaled random variable respectively associated to ~p; ~q we have that

DKL (p(x); q(x)) = DKL (~p(x); ~q(x)) : (5.2)

The latter property has two direct consequences in the context of modelling DNA
mechanics. The �rst is the rescaling factors introduced in the de�nition of the Cayley
transformation (2.15), more precisely, the rescaling of the rotational coordinates by a
factor of 5 used in the cgDNA model [55, 19] does not affect the values of (5.1). The
second is the linear relation between the coordinates of a sequence and the coordinates
read from its complementary shown in (4.2), and thus the invariance of the KLd under
change of reading strand.
Another, essential for us, feature of KLd is that is has an explicit algebraic form when
both probability density functions p and q are multivariate normal distributions. More
precisely if p(x) � N (� p; Cp) and q(x) � N (� q; Cq) the KLd between the two Gaussians
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can be written as

DKL (p; q) =
1
2

�
tr (K � 1

p K q) + ln
�

det K p

det K q

�
� N

�
+

1
2

(� q � � p)T K q(� q � � p); (5.3)

with K p = C � 1
p and K q = C � 1

q . The previous expression can be separated into two
parts, i.e DKL = D y + M where

D y(p(x); q(x)) =
1
2

�
tr (K � 1

p K q) + ln
�

det K p

det K q

�
� N

�
; (5.4)

M (p(x); q(x)) =
1
2

(� p � � q)T K q(� p � � q): (5.5)

The square root of the second term,
p

M , is called the Mahalanobis distance [14] it
measures the distance between the point � p and the distribution N (� q; Cq). We recall
that (5.3) can be expressed as a function of the covariance matrices of p and q, but can
simple be written in term of their precision matrices, or in our context in terms of their
stiffness matrices.
The non symmetry of the KLd clearly implies two different ways of comparing two
probability density function. For example, KLd can be used as an objective function for
computing parameters of a model density compared to observed ones. More precisely,
if q is considered as an observed pdf one can minimise the KLd in order to �nd a model
p(�; � ) close to q. But the choice of the ordering in the argument of the KLd function
leads to two different approaches. In particular, the solution of the following problem

min
� 2C

DKL (q(x); p(x; � )) ; where Cis the contraint space for the parameter �; (5.6)

is equivalent to the maximum log-likelihood of the data whereas the opposite order do
not relate to any other known method. Now, instead of considering only one observed
density we can consider a family of N distinct pdfs denoted by f qi gN

i =1 and again, a
single model pdf noted by p(�; � ). We are now interested in the �rst order conditions
related to the minimisation problem and the two different orderings of the KLd, i.e

min
� 2C

NX

i =1

DKL (qi (x); p(x; � )) � min
� 2C

F1(� ; q); or (5.7)

min
� 2C

NX

i =1

DKL (p(x; � ); qi (x)) � min
� 2C

F2(� ; q); (5.8)

For sake of simplicity we will consider now that all the probability functions in the pre-
vious problems are Gaussian distributions, thus qi � N (� i ; K i ) and � = ( � m ; K m ). Due
to the latter simpli�cation we can use the explicit formulation of the KLd for deriving
explicit algebraic formulation of both sums (5.7-5.8) and we can easily compute the
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5.2. Estimation of parameters

�rst–order conditions for �nding explicit forms for the model parameters � and K . In
detail, for Gaussians

F1(� ; q) =
1
2

 

K m :

 
NX

i =1

K � 1
i

!

+
NX

i =1

(� m � � i ) � K m (� m � � i )

!

+ N ln Z (5.9)

F2(� ; q) =
1
2

�
K � 1

m : K � � N ln jK m j + ( � m � [K � ]� 1� � ) � K � (� m � [K � ]� 1� � )
�

;

(5.10)

where K � =
P N

i =1 K i and � � =
P N

i =1 K i � i . Then we can compute the �rst order
necessary conditions for each F i , i = 1 ; 2 to obtain the estimation of the parameter
� = param(� m ; K m ), i.e, we compute

@F i

@Km
= 0 ;

@F i

@�m
= 0 ; i = 1 ; 2: (5.11)

We �nally obtained the resulting formulas

� m;1 =
1
N

NX

i =1

� i ; K � 1
m;1 =

1
N

 
NX

i =1

K � 1
i + � i 
 � i

!

� � m;1 
 � m;1 (5.12)

� m;2 = [ K � ]� 1� � ; K m;2 =
1
N

K � : (5.13)

It is interesting to notice �rst the difference between the estimation of the mean, in
particular the second involves the sigma vectors which have an important role in the
cgDNA model but which are not directly observable from an ensemble of con�guration
snapshots generated from MD simulations. The second difference is in the estimation
of the covariance for the maximum likelihood way and the estimation of the stiffness
for the other choice of argument in the KLd. Away from the global minimum of F i

there is no reason to believe that the estimators (5.12) and (5.13) give the same results.

5.2 Estimation of parameters

In this section we denote a Gaussian probability density function with mean � 2 Rn

and stiffness matrix K 2 Rn� n by � (x; � ), where � 2 RN is a vector whose components
are all the entries of � and K , and the notation (2.9) will be used

� = param(�; K ):

Let now Lb := fS i gM
i =1 , be a training of sequences library in which we have computed

statistics from molecular dynamic trajectories as presented in section 3.3. Thus, for
each Si 2 Lb, i = 1 ; : : : ; M we have estimated a mean � (Si ) and a stiffness K (Si ) for
which the associated Gaussian distribution will be denoted by � (x; � i ). We recall that a
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cgDNA parameter set is denoted by P = f � � ; � �� ; K � ; K �� g� 2 M;�� 2 D 2 Ptot , where

Ptot = [ R6]2 � [S6]2 � [R18]10 � [S18]10; (5.14)

where SN is the set of N � N symmetric matrices. We can re�ne the parameter space
by using the Crick–Watson symmetries presented in (4.2). In fact we can de�ne the
subset of Pself � Ptot

Pself = fP 2 Ptot j � �� = E2� �� ; K �� = E2K �� E2; 8�� 2 D
0
g; (5.15)

where D
0
contains only the four palindromic dimers. As the goal of the parameter set

P is to reconstruct the parameters of a Gaussian probability density function, another
subspace of Ptot arise naturally by considering the training library. Given the set of
sequencesLb it is rational to consider the following subset

Ptrain = fP 2 Ptot j K (P; Si ) > 0; 8i = 1 ; : : : ; M g; (5.16)

where K (P; Si ) is reconstructed using the rule de�ned in (4.12). Finally we de�ne the
parameter space of all admissible cgDNA parameter sets as P = Pself \ Ptrain . Now,
given a family of estimated Gaussian densities f � (x; � i )gM

i =1 , one for each sequence
in Lb, we de�ned the best �t cgDNA parameter set P as the solution of the following
optimization problem

P = argmin
P2 P

F(P; Lb) (5.17)

where F(P; Lb) : P ! R is de�ned as the sum of Kullback-Leibler divergences over the
training library, more precisely

F(P; Lb) =
MX

i =1

DKL (� (x; � i (P)) ; � (x; � i )) ; (5.18)

where � (x; � i (P)) is the Gaussian probability density function in which parameters are
reconstructed using the parameter set P and the rules (4.12–4.14) , and

� i (P) = param (� (P; Si ; ); K (P; Si )) ; 8i = 1 ; : : : ; M: (5.19)

We stress here that in [55, 19, 20] the choice of order in the KLd is as follows: model in
�rst position and data in second position, which corresponds to the case (5.8). In order
to solve problem (5.17) the use of numerical methods is necessary. Explicit expressions
for the gradient and Hessian matrix can be computed for the function (5.18), and a
combination of gradient �ow and Newton-Broyden methods can be used to solve
(5.17). There were many challenges faced when trying to solve (5.17): the �rst problem
is clearly the large dimension of the unknown vector, which is of dimension 1592. The
high number of dimensions implies a large number of operations in matrix–vector and
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vector–vector multiplication which slows down the entire computational procedure.
Moreover, the numerical evaluation of the Hessian matrix of (5.18) is costly, which
motivated the use of a quasi–Newton method, namely the Broyden method. Secondly,
�nd a starting point is not a trivial task, meaning, constructing an initial parameter
set Pini 2 P is not, in general an easy exercise. Later in chapter 9 of this work we
will present a new methodology, which allows computations of an admissible initial
guess in a rational and rather simple way. Moreover a new numerical scheme to solve
problem (5.17) will be presented.

5.3 Positiveness of the best–�t parameter set

The main objective of the cgDNA model is to predict a Gaussian distribution for any
arbitrary sequence S. This implies in particular that the reconstructed stiffness matrix
K (S) must be both symmetric and positive de�nite for any arbitrary sequence S. If a
parameter set P satis�es both conditions for any arbitrary sequence, we will refer to
it as a positive de�nite parameter set . The symmetry is trivially satisfy by the fact that
symmetry has been imposed on each block in the derivation of the best–�t parameter
set P. Positivity however is not, in general, easy to impose in the numerics, thus an a
posteriori criterion is necessary in order to guarantee the positiveness of any matrix
K (S). In [20] the authors managed to �nd a set of suf�cient conditions for P to be
positive de�nite, which are satis�ed on the actual estimated parameter set. In detail,
let us de�ne the following two matrices

K ��
1
2

:= K �� +

2

6
4

1
2K � 0 0

0 0 0
0 0 1

2K �

3

7
5 (5.20)

K 50�� := K �� +

2

6
4

K � 0 0
0 0 0
0 0 1

2K �

3

7
5 (5.21)

for all �; � 2 M and �� 2 D , where D comprises all the 16 dimers. Using Crick–Watson
symmetries it is suf�cient to consider ten independent dimer dependent matrices for
(5.20) and just the sixteen for (5.21) because

K 30�� = E2K 50� � E2: (5.22)

We can now state that a best-�t parameter set P is positive de�nite if it satis�es the
following conditions

K ��
1
2

> 0; 8�� 2 D; (5.23)

K 50�� > 0; 8�� 2 D: (5.24)
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Part II

Comparison of cgDNA parameter
sets
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6 Sensitivity of cgDNA parameter sets to
training data

An MD simulation requires a large ensemble of input parameters that the user should
de�ne. Consequently the cgDNA best-�t parameter set P (4.9) is directly related to
the choices made in the MD protocol used in the training library simulations. In this
chapter we study how mechanical properties of DNA predicted by the cgDNA model
depend upon the training sets constructed in the MD simulations. We de�ne a training
set as the following ensemble of MD variables

MD = ( St; Lb; F f; Io ); (6.1)

where

St is the simulation time,

Lb is the training library of sequence,

F f is the force �eld,

Io is the ion type and concentration.

All the other input variables have been �xed to the standard ABC protocol [37, 52]. The
methodology we will follow here for comparing different training sets is based on the
simplest well–known one–factor–at–a–time, or just one–at–a–time, sensitivity analysis.
It consists simply in studying how the outcome of a model varies as function of its
input variables. In our context, we will change one–at–a–time the component of MD
and the outcome will be some speci�c predictions of the related cgDNA parameter set
P. In the next section we will introduce the training set we will consider and the chain
of comparisons we will study. Moreover we will also introduce the predictions we will
take into account in order to be able to compare the different parameter sets. Before
going further in the comparison we will brie�y discuss how in practice the different
training sets are computed.
For each training set one has to solve numerically the high dimensional optimization
problem (5.17). We have implemented a parameter continuation method in order
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to ensure the �nding of a solution and thus in order to automatize the computation
of new cgDNA parameter sets. The parameter continuation technique consists in
studying the solutions of parameter dependent non–linear systems of the form

F (w; " ) = 0 ; (6.2)

as the parameter " 2 Rn varies. Let us introduce the weighted objective function
F(P; Lb; ! ) : P ! R de�ned by

F(P; Lb; ! ) =
MX

i =1

! i DKL (� (x; � i (P)) ; � (x; � i )) ; (6.3)

where ! 2 RM are the weights, the �rst argument of the KL divergence is the Gaussian
de�ned by the reconstructed parameter � i for the sequence Si 2 Lb using P, and the
second argument is the observed Gaussian estimations for, again, the sequence Si .
For more detail about the latter notation we refer to the chapter 2 of this work. Given
oligomer–based statistics for the libraries Lb1 and Lb2 and given a best–�t parameter
set P1 computed using Lb1 we want to compute the best-�t parameter set P2 for the
data using the parameter continuation technique on the following function

F(P; Lb; ! ) = F(P; Lb1; ! 1) + F(P; Lb2; ! 2); (6.4)

where ! = ( ! 1; ! 2), Lb = Lb1 [ Lb2. The best–�t cgDNA parameter set P2 will be
computed using the algorithm (2). The convergence is ensured as long as the total
number of continuation iterations nc 2 N is large enough. Practically speaking we
have used nc = 200 and, in order to speed up the computation we have computed the
Hessian matrix only twice during the run of algorithm (2): once at iteration k = 1 and
once at iteration k = 100. For detail about the computation of the hessian matrix of a
function of the form (5.17), see section E in appendix.

Algorithm 2 Parameter continuation of function (6.3)

1: Initialize: ! 1 = (1 ; : : : ; 1), ! 2 = (0 ; : : : ; 0), P (0) = P1, " = 1=nc, nc 2 N
2: for k = 1 : nc do
3: Vary weights: ! 1 = ! 1 � k" , ! 2 = ! 2 + k"
4: Initial Guess: P (k� 1)

5: Compute using Broyden: P (k) = argmin
P 2 P

F(P; Lb; ! )

6: end for
7: Finalise: P2 = P (nc )
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6.1. Introduction to training data comparison

6.1 Introduction to training data comparison

We consider six different MD training sets: two training sets will have the ABC sequence
library as training library while four will have a library called miniABC. The sequence
library miniABC was designed by M. Pasi and R. Lavery and, as the ABC one, it contains
at least one copy of each of the 136 independent tetra nucleotides. But it is much
compact than ABC; it has 13 sequences each of length 18 base pairs and each with GpC
dimers at both ends. In the following table we list all the sequences in the miniABC
library:

GCAACGTGCTATGGAAGC
GCAATAAGTACCAGGAGC
GCAGAAACAGCTCTGCGC
GCAGGCGCAAGACTGAGC
GCATTGGGGACACTACGC
GCGAACTCAAAGGTTGGC
GCGACCGAATGTAATTGC
GCGGAGGGCCGGGTGGGC
GCGTTAGATTAAAATTGC
GCTACGCGGATCGAGAGC
GCTGATATACGATGCAGC
GCTGGCATGAAGCGACGC
GCTTGTGACGGCTAGGGC

Table 6.1 – The miniABC training library

The details, along with the naming, of the different training sets, are listed hereafter:

Label St Lb F f Io
ABC 50–100ns ABC bsc0 K+
� ABC 1� s ABC bsc0 K+
MABCK

0 1� s miniABC bsc0 K+
MABCK

1 1� s miniABC bsc1 K+
MABCKNa

1 1� s miniABC bsc1 50% K+ 50% Na+
MABCNa

1 1� s miniABC bsc1 Na+

Table 6.2 – Characteristics of the training sets considered in the MD simulations.

In this chapter we will considering three different predictions of the cgDNA model that
will be used to compare the different parameter sets. The �rst prediction is in fact the
Gaussian distribution predicted by the parameter set for the sequences in the training
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library, and in particular how far these predictions are from the banded observed
distributions. Let us recall that the objective function (5.18) is minimized to extract
a cgDNA parameter set P. We now de�ne a function that will be used to compare
different training sets. Let DKL be the Kullback-Leibler divergence introduced in
(5.3) and let us use the same ordering for the arguments as for parameter extraction,
see (5.18). We de�ne the following averaged Kullback-Leibler function per degree of
freedom for the best–�t parameter set P and the training library Lb

D(P; Lb) =
1
N

NX

i =1

�
1

ndofs
DKL

�
� (x; � i (P)) ; � (x; � i )

� �
(6.5)

=
1
N

NX

i =1

�
1

ndofs
D y

�
� (x; � i (P)) ; � (x; � i )

�
+

1
ndofs

M
�

� (x; � i (P)) ; � (x; � i )
� �

= D y(P; Lb) + M (P; Lb): (6.6)

where we use the separation of the KLd presented in (5.4), � i = param(� (Si ); K (Si )) ,
� i (P) = param(� (P; Si ); K (P; Si )) , Si 2 T , and ndofs = 12ni � 6 where ni is the
length of Si . We also recall that � (�; � ) is a Gaussian distribution parametrized by
� = param(�; K ), see (2.9). Using (6.5) we can quantify the quality of the parameter
set in predicting Gaussian distributions for sequence in the training library Lb and
by using the decomposition (6.6) we can measure the contribution coming from the
stiffness and coming from the ground–state.
For example for the ABC training data presented in chapters 3.2 and 4, we have the
following values for the total D , shape M and stiffness D y parts of the KLd:

Protocol D D y M
ABC 3:00� 10� 2 1:95� 10� 2 1:05� 10� 2

Thus, the main contribution to D for the ABC training set comes from D y.
The other criterion we will focus on are based on the persistence lengths previously
presented in section (2.2), and in particular on the apparent and dynamic persistence
lengths, respectively (2.43) and (2.47). We will focus our analysis on the spectra of the
latter over an ensemble of randomly generated sequences of length 220 base–pair. The
sequence ensemble will be �xed throughout the following study. In �gure 6.1, left,
we show the spectra of `p and `d already presented in section 4.3. In �gure 6.1, right,
we show the spectra of differences between the reciprocal of apparent and dynamic
persistences for each sequence in the ensemble. This difference de�nes the reciprocal
of the static component of the persistence length, see formula 2.45, and is interesting
to analyse because it can be used to look for the most bent ground–states in a sequence
ensemble. More precisely, for an arbitrary sequence with straight ground–state the
difference 1

`p
� 1

`d
will be close to zero.
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6.2. Sensitivity to simulation duration: ABC versus � ABC
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Figure 6.1 – Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the ABC data set, over a sequence ensemble of
10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly–
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

We will take the ABC training set as the starting point for our analysis, in more detail
we will consider the following chain of pair wise comparisons:

1. ABC versus� ABC

2. � ABC versusMABCK
0

3. MABCK
0 versus MABCK

1

4. MABCK
1 versus MABCNaK

1

5. MABCK
1 versus MABCNa

1

where in particular we will �rst study the effect of different simulation durations, then
different training libraries, then different force �elds, and �nally, we will study the
effect of different different ion types and concentrations. Again for more detail about
the different training sets we refer to table (6.2).

6.2 Sensitivity to simulation duration: ABC versus � ABC

The simulations duration clearly leads to an higher number of trajectory snapshots and
consequently to a larger time series of internal coordinates. The latter observations
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Chapter 6. Sensitivity of cgDNA parameter sets to training data

lead simply to the conclusion that with a longer simulation time the convergence
will be better and consequently the overall quality of the data will be better. Thus,
we expect to have better estimators for the oligomer–based stationary mean and
covariance, hence potentially better �ts to the equilibrium distribution values. We can
verify the latter by looking at the values for D , see equation (6.6):

Protocol D D y M
ABC 3:00� 10� 2 1:95� 10� 2 1:05� 10� 2

� ABC 2:72� 10� 2 1:77� 10� 2 0:95� 10� 2

The values D decreased meaning that the oligomer–based statistic in the training
data are better predicted by the model. In �gure 6.2 we show the spectra of apparent
and dynamic persistence lengths, on the left, and the spectra of the static persistence
length on the right. The are no particular differences when compared to the analogous
plot shown in �gure 6.1, though one can observe that the � ABC protocol leads to lower
values for both sequence averaged persistence lengths:

Protocol avg. `p [bp] avg. `d [bp]
ABC 160 178

� ABC 156 173

Also by looking at the values of `p and `d (in base–pairs) for the six poly dimer sequences
one can notice that for � ABC data these values tend to be smaller. Thus we can
conjecture that simulating up to one microsecond leads to a better exploration of the
possible coarse–grained con�gurations which consequently lead to a slightly softer
model.

6.3 Sensitivity to training library: � ABC versus MABCK
0

We continue the chain of comparisons by changing the training library and in particular
we will present results for the miniABC training library. We refer to table 6.1 for the
list of the sequences. Before discussing the comparison between the two training sets
we make a few remarks about the training libraries and especially about the statistics
of occurrences of base and dimer sequence sub units contained in both sequence
lists. The �rst remark is that � ABC contains 39 sequences while miniABC contains
just 13, which leads to big differences in the number of instances for different bases
and dimers. In �gure 6.3 we show the counting of the instances of bases (top row) and
dimers (bottom row) for ABC (left column) and miniABC (right column). Beyond the
differences in the total numbers of instances, both libraries seems to have equivalent
statistics for both bases and dimers. For our purpose it does not matter if, for example,
there is a large difference between the number of instances of complementary steps e.g.
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6.3. Sensitivity to training library: � ABC versus MABCK
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Figure 6.2 – Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the � ABC data set, over a sequence ensemble of
10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly–
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

CC and GG because in the parameter set computation the instances will be summed
by choosing one of the two complementary dimer steps as independent and by using
the Crick-Watson symmetries to transform the dependent one. The same reasoning
works also for the bases. The only dimers that will be under represented will be the
four palindromic ones. In fact one can observe that for miniABC the total number of
instances for the palindromic dimer step is around 10 while for the non–palindromic
ones it is larger than 15.
By using the cgDNA parameter set computed for the � ABC we have computed the

best-�t parameter set for the protocol MABCK
0 and, as before, we start by looking at the

values of the averaged Kullback–Leibler divergence per degree of freedom are reported
in the following table:

Protocol D D y M
� ABC 2:72� 10� 2 1:77� 10� 2 0:95� 10� 2

MABCK
0 2:92� 10� 2 2:01� 10� 2 0:91� 10� 2

The �rst thing we observe is that we obtained an higher value of D for the MABCK
0

protocol. It is quite dif�cult to interpret this result because the value D y is higher
for MABCK

0 while the value M is lower with respect to � ABC protocol. A deeper
investigation on the values of the KLd between reconstructions and oligomer–based
statistics for each sequence in the training libraries reveals that for both protocols there
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Figure 6.3 – The total number of instances of dimer, and base counting on only one
strand for ABC library on the left and muABC library on the right.

are two sequences–(11,28) for � ABC and (3,8) for MABCK
0 –that have signi�cantly larger

values for D y. The protocol MABCK
0 is indeed penalized by the fact that the average is

over a smaller ensemble. If we want really to compare both protocols the �gure 6.4 is
more pertinent. Again on the left we show the histograms of apparent and dynamic
persistence lengths computed using cgDNA model trained on the MABCK

0 data set
while on the right we show the histogram of the static component. In the following
table we report �rst the values of the sequence averaged quantities `p and `d

Protocol avg. `p [bp] avg. `d [bp]
� ABC 156 173

MABCK
0 158 174

By comparing �gures 6.2 and 6.4 we notice that MABCK
0 has a slightly higher value

for both sequence averaged persistence lengths. By inspecting better also the values
of `p and `d for the poly dimer sequences we can observe a difference between the
two protocols. In fact for MABCK

0 all the values are higher but for poly A it is nearly
unchanged. Thus, for MABCK

0 we have a general trend that leads to a slight increase in
the rigidity of the parameter set that can also be seen in the spectra of static persistence
length, �gure 6.4, where one can observe that the tail on the right–hand side of the
histograms get shorter meaning that in the sequence ensemble some sequence will
have a ground–state closer to straight, or at least, not as bent.

6.4 Sensitivity to force �eld: MABCK
0 versus MABCK

1

The next comparison is on the force �eld and in particular on the switch from bsc0 to
bsc1. The authors in [24] highlight many different points where the force �eld bsc1 is
actually better then other classical MD force �elds. But, in the context of this work, one
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6.4. Sensitivity to force �eld: MABCK
0 versus MABCK
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Figure 6.4 – Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the MABCK

0 data set, over a sequence ensemble of
10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly–
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

particular aspect captured our interest: the bsc1 force �eld provides better stability
at the end of the molecule during the simulation, meaning that it suffers less end
fraying and broken hydrogen bonds. In section 3.3.1 we introduced the hydrogen bond
�ltering that we adopted to discard MD snapshots that lead to exceptional outliers in
the internal coordinates–especially in the intra–base–pair rotational components–that
cannot be included in the estimation of �rst and second moments. Both protocols have
a simulation durations of 1 � s which converts into 106 snapshots before HB �ltering.
The miniABC library has 13 sequence, thus potentially with both protocols we could
reach an accumulated time series of length 13� 106. We computed the percentage of
accepted snapshots after HB �ltering and we obtained: 71:7 % for MABCK

0 and even
90:4 % for MABCK

1 . In the following table we show the average KLd values:

Protocol D D y M
MABCK

0 2:92� 10� 2 2:01� 10� 2 0:91� 10� 2

MABCK
1 2:58� 10� 2 1:59� 10� 2 0:99� 10� 2

The �rst interesting thing is that sequences 3 and 8 do not have as high values of D y

for the bsc1 protocol as was the case for the bsc0 one. The latter could be explained
by the higher stability of the bsc1 force �eld that lead to better statistics for the latter
two sequences. Secondly the value of M is higher for protocol MABCK

1 which is again
dif�cult to interpret. We, thus, move to the second step of comparison: sequence–
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Chapter 6. Sensitivity of cgDNA parameter sets to training data

dependent persistence length analysis. In �gure 6.5, left, we show the spectra of `p and
`d and we can say straightaway that both histograms looks qualitatively different from
their analogues for the bsc0 force �eld. In detail, we notice a substantial shift to the
right of the distribution of `p and for `d the distribution of the values are more peaked
and the tail of the right–hand side of the spectra vanishes. The sequence–averaged
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Figure 6.5 – Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the MABCK

1 data set, over a sequence ensemble of
10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly–
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

values of both persistence lengths are:

Protocol avg. `p [bp] avg. `d [bp]
MABCK

0 158 174
MABCK

1 168 179

The data actually con�rm the intuition that the protocol MABCK
1 lead to an overall

more rigid cgDNA parameter set. Also all the poly dimer sequences have a consistent
shift toward the right of the graph and, for example, poly A reached a value higher then
220 bp. The left plot in (6.5) shows a change in the shape of the distribution off the
reciprocal of the static persistence length with the major feature that the tail on the
right-hand side got shorter, indicating again that the protocol MABCK

1 tends to have
less bent sequences.
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6.5. Sensitivity to ions: MABCK
1 versus MABCNaK

1 versus MABCNa
1

6.5 Sensitivity to ions: MABCK
1 versus MABCNaK

1 versus MABCNa
1

In this section we compare two different ion types against the standard potassium. We
recall that the overall ion concentration has been kept the same for all choice of the
protocols. In the following table we reported the values of D along with its two main
contributions:

Protocol D D y M
MABCK

1 2:58� 10� 2 1:59� 10� 2 0:99� 10� 2

MABCNaK
1 2:82� 10� 2 1:73� 10� 2 1:09� 10� 2

MABCNa
1 2:88� 10� 2 1:81� 10� 2 1:07� 10� 2

We notice that changing ion type leads to an increase of approximation error compared
to the baseline values given by the protocol MABCK

1 . In �gures 6.6 and 6.7 the sequence–
averaged `p and `d are

Protocol avg. `p [bp] avg. `d [bp]
MABCK

1 168 179
MABCNaK

1 168 179
MABCNa

1 169 179

Thus, we basically have no change in the overall rigidity of the model by changing ion
type. There are a few changes in the spectra of the reciprocal of the static persistence
length, left plot in �gures 6.6 and 6.7. When adding more sodium ions the trend
seems to be that the distribution of 1

`s
get more and more peaked to the left, i.e, more

sequences in the ensemble have potentially a straighter ground–state.

6.6 Discussion and Conclusions

We summarize the conclusion of the analysis made in the previous sections:

� Simulation time : The major change is in the higher reliability of the data be-
cause longer time series are closer to converged and thus the oligomer–based
equilibrium statistics estimated for the time series will be more accurate. Apart
for the latter point no major differences between the two protocols has been
identi�ed.

� Training library : No important changes have been observed while passing from
� ABC to miniABC libraries for the same MD protocol. Even though both libraries
have at least one instance of all the 136 distinct tetranucleotides, they differ by
the numbers of instances of distinct bases and dimers, which could be a reason
for the small changes between the two associated coarse–grain parameter sets.
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Figure 6.6 – Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the MABCNaK

1 data set, over a sequence ensemble
of 10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly–
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

� Force �eld : Changing the force �eld from bsc0 to bsc1 leads to an increase in
the sequence averaged persistence length with the major increase being in the
sequence averaged`p. This is due to the fact that in the ensemble of sequences,
the population of sequences with small `p (bent ground state) decreases, i.e, the
cgDNA model parameters trained on bsc1 simulations lead to coarse–grained
reconstructions that are on average straighter. The increase in `d is less as the
dynamic persistence length depends less on the ground state and more (in a
non linear way) on the stiffness. Moreover the total number of accepted MD
snapshots after HB �ltering increased considerably for the protocol MABCK

1 due
to the better stability of the force �eld at the end of the oligomer.

� Ion type, NaK (50%–50%): No major changes between protocols MABCK
1 and

MABCNaK
1 (50/50) have been identi�ed. Both protocols lead to close values of

sequence averaged`p and `d.

� Ion type, Na : No major changes between protocols MABCK
1 and MABCNa

1 have
been identi�ed. Both protocols lead to close values of sequence averaged `p and
`d.

As the only major observed change is between the two force �elds we make some
additional remarks about the changes in the rigidity of the model. For each of the 104

sequences in the ensemble we can compute the differences in `p and `d computed using
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Figure 6.7 – Left: Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the MABCNa

1 data set, over a sequence ensemble
of 10K randomly generated sequences of length 220 base pairs. We report the averaged
values (Avg) of both spectras: italic font for the apparent and bold font for the dynamic
persistence lengths. The values of the persistence lengths for six independent poly–
dimers of length 220 are also reported: italic circle for the apparent and bold square
for the dynamic. Right: Histogram of differences between reciprocals of apparent and
dynamic peristence length computed over the same sequence ensemble used for the
histograms shown on the left. This difference is always positive and the magnitude is a
indication of how bent the sequence is in an overall sense.

the two protocols MABCK
0 and MABCK

1 . In �gure 6.8 we show the histograms of these
differences: left for apparent persistence length, and right for dynamic persistence
length. The order we chose for the subtraction is "bsc0 values" minus "bsc1 values".
For the apparent persistence length we can observe that most of the distribution is
located in the negative region of the graph, meaning that most of the `p compute with
the bsc1 protocol have higher values compared to the one computed with the bsc0
protocol. The same observation can be done for the � `d spectra where actually the shift
towards the negative values is much more prominent. In fact `d has only contributions
from the stiffness as the ground–state part has been factorised out. This means that the
difference of `d in the right–hand side histogram in �gure 6.8 actually says something
about the difference in the rigidity between the two force �elds. Finally, from these
two histograms it is even more clear that the cgDNA model parametrized with the
bsc1 protocol is more "rigid" compared to the model parametrized with the protocol
MABCK

1 . We next consider again the A–tracts sequence SA-tr = ( A6CGCGA6CGGGC)3

already mentioned in section 4.3 and compute using the bsc1 cgDNA parameter set
its tangent–tangent correlation with and without shape factorization. In �gure 6.9 left
we plot the ttc (solid line) and its factorized version (dashed line). Moreover in blue
we show the result obtained with the cgDNA parameter set trained with the protocol
MABCK

1 while in red we show the results obtained with the published bsc0 cgDNA
parameter set [55, 19] trained on the original ABC protocol. In �gure 6.9 on the right,
we also show the rigid–body reconstruction of the ground–state for both protocols.
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Figure 6.8 – Histograms of differences between persistence lengths computed for the
same sequences using bsc0 and bsc1trained cgDNA parameter set. We computed bsc0
predictions minus bsc1 predictions for apparent persistence length, left, and dymanic
persistence length right. The fact that the � `d are almost all negative indicates that
bsc1 id effectivily stiffer than bsc0.

The more bent molecule corresponds to the ground–state reconstructed from the bsc0
parameter set. In conclusion, in the coarse–grained context, the only major changes
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Figure 6.9 – Left: comparison between tangent–tangent correlations (solid)
and factorized tangent–tangent (dashed) computed for the sequence SA-tr =
(A6CGCGA6CGGGC)3 using cgDNA trained on MABCK

1 (blue) and ABC data (red).
Right: 3D visualisation of the ground–state of SA-tr predicted by the cgDNA model
trained on MABCK

1 data set (more straight) and ABC data set (more bent). The 3D
�gures have been obtained using the web–based viewer for the cgDNA model [13].

in the cgDNA model, and its predictions, is made by the change of force �eld and in
particular by changing from the bsc0 force �eld [58] to the state of the art force �eld
bsc1 [24].
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7 A Palindromic training library

In the previous chapter we computed cgDNA parameter sets for different MD proto-
cols but we never discussed in detail the convergence of the MD trajectories. More
precisely, we did not discuss the convergence of the �rst and second (centred) mo-
ments estimated for MD time series of internal coordinates. In fact, using the ABC
(B.1) or the miniABC (B.2) training library and exhaustive convergence test for the
estimators is not possible. The primer goal of this chapter is to introduce a training
library comprising of only palindromic sequences which will allow a convergence test
based on the Crick–Watson symmetry (4.2), for mean and covariance estimated from
MD time series . We �rst focus on the designing of this palindromic library and in
particular we present the algorithm developed to construct it. Then, we study the
convergence of the oligomer–based statistics for each sequence of the palindromic
library estimated from MD trajectories of 3� s long simulations. Finally we de�ne a
new format for the cgDNA parameter set which contains only dimer–based elements
and comprises dedicated blocks for each dimer end. Finally we compute a cgDNA
parameter set for the new format trained on the 3� s palindromic training data and
compare it to a cgDNA parameter set with the old format trained on the same data.

7.1 Designing palindromic libraries

The minimal conditions we want to impose on the library Lbpalin are the following:

1. every sequence should be a palindrome,

2. the library should contain at least one instance of all the independent tetramers
without counting end dimers,

3. both ends should be GpC step (for stability against fraying).
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Chapter 7. A Palindromic training library

Condition 1 implies that each sequence must have an even total number of base–pairs
and that the central dimer must be a palindrome. Moreover the palindromic conditions
implies simply that one half of the sequence is in fact the Crick–Watson complement
of the other half. Condition 2 implies that in Lbpalin one should be able to count 136
independent tetramers 16 of which are palindromic. Thus, the remark on condition 1
together with the last statement lead to the choice of placing a palindromic tetramer
in the middle of a palindromic sequences. The library Lbpalin will thus contains sixteen
sequences of the following form:

S 2 Lbpalin ) S = GCX N : : : X 1P1P2P2P1X 1 : : : X N GC: (7.1)

Now, to be able to ful�l condition 2 we will need to �nd N in the above equation,
one for all the sequences in Lbpalin . A simple computation show that we need at
least N = 8 which implies that each sequence in the library will be of length 24 and
each palindrome will contain a palindromic tetramer and eight non palindromic
ones. Clearly, there will room for more than 120 tetramer, more precisely 128, thus 8
tetrameters will appear twice. Condition number 3 comes from the fact that GpC step
have been observed to be the most stable end dimers, meaning that that end step has
less probability of broken hydrogen bonds.
Practically to �nd a library Lbpalin which satis�es the three conditions mentioned
earlier, we developed an iterative ad hoc MATLAB algorithm that tries to �ll up all the
16 sequences starting from the middle palindromic tetramer. At each iteration it uses a
simple yet ef�cient way for updating the entire library. Before explaining the algorithm
we will make a few comments on the methodology and �x some notation. The solution
to the problem of �nding a library Lbpalin satisfying conditions 1–3 is not unique. Thus
in the algorithm it is possible to introduce a random step that will allow us to explore
the spaceof admissible libraries. As a palindrome is de�ned just by one of its halves,
the following notation will be used: let S be a palindromic sequence then

S = ( X N : : : X 1P1P2)2 = X N : : : X 1P1P2P2P1X 1 : : : X N ; Pi ; X i 2 f A; T; G; Cg: (7.2)

In our algorithm we will start just with sixteen sequences of length 2, one for each dimer.
At each iteration we will extend all the sequences by one base until we have added eight
bases to each of the sixteen initial dimers. We will denote by S(k)

i = ( X i
k : : : X i

1P i
1P i

2)2

the i–th partial palindromic sequence computed after k steps of the algorithm , with
S0

i 2 D, where D is the set of all the possible dimer steps. In order to satisfy condition
2 we have to keep track of the added tetramers, thus we introduce four tree structured
graphs, denoted tree(X ), with the following form:
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where X 2 f A; T; G; Cg. A path in tree(X ) de�nes a tetramer: for example we have

X $ A $ C $ G , 50GCAX 30:

We then give a score, denoted by

SCORE(X $ A $ C $ G) 2 N;

of zeros to each non–palindromic tetramer in each of the four trees and a score of
9999 to each palindromic tetramer. Whenever the algorithm �nds a new tetramer, the
score for that tetramer will be increased by one and the score of its complement will
be increased by 10 (to avoid selecting it in a later iteration). We �nally introduce the
notation:

T(S) = X 1X 2X 3, for S = X 1X 2X 3 : : : X N ; (7.3)

where it just select the �rst three bases of a sequence S in the 50–30direction. Equation
(7.3) is well de�ned for sequences with length larger than 3. For dimers we de�ne

T(�� ) = �� �:

We can now introduce the algorithm (3) used to �nd palindromic libraries. The step
at line number 6 in the algorithm does not always �nd a unique solution, especially
during the �rst iterations. One can introduce a random choice for the base X 4 when
the number of bases that minimise the score of the current tetramer is bigger than one.
By introducing a random step it is clear that each time the algorithm is used it can
produce a different outcome because the palindromic library satisfying conditions 1–3
is not unique. Another modi�cation one can make at line 6 is to introduce a check on
the next tetramer that will assure that by adding the current base X 4 will not arrive at
a dead end when considering the leaves of the tree X 2 $ X 3 $ X 4, meaning that by
adding X 4, there exist at least one base X next with SCORE(X 2 $ X 3 $ X 4 $ X next)=0.
We have run algorithm (3) with the mentioned modi�cations and we found 174 dif-
ferent palindromic libraries satisfying the desired conditions. Based on counting
instances of trimers, dimers, and monomers we have chosen the following library:
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Algorithm 3 Palindromic Library

1: Given: fS (0)
i g16

i =1 , initialize the score for each tree(X ), X 2 f A; T; G; Cg
2: Initialize: Lbtmp

palin = fS 0
i g16

i =1

3: for k = 1 : 8 do
4: for i = 1 : 16 do
5: De�ne: X 3X 2X 1 = T(S(k� 1)

i )
6: Find:

X 4 = argmin
X 2f A;T;G;C; g

SCORE(X 1 $ X 2 $ X 3 $ X )

7: Update scores:
SCORE(X 1 $ X 2 $ X 3 $ X 4)+ = 1

SCORE(X 4 $ X 3 $ X 2 $ X 1)+ = 10

8: Update sequence: S(k)
i = X 4 S(k� 1)

i
9: end for

10: Update library: Lbtmp
palin = fS k

i g16
i =1

11: end for
12: Finalise library: Lbpalin = f (GC Sk

i )
1
2 g16

i =1

1 GCTTAGTTCAAATTTGAACTAAGC
2 GCTCTCTGTATTAATACAGAGAGC
3 GCCCTTGGCGATATCGCCAAGGGC
4 GCTAAAGCCTTATAAGGCTTTAGC
5 GCGGTAGAAAACGTTTTCTACCGC
6 GCCAAGACATTGCAATGTCTTGGC
7 GCAGATGGTCAGCTGACCATCTGC
8 GCCTCACCGCTCGAGCGGTGAGGC
9 GCAGTGGAATCATGATTCCACTGC
10 GCTTTACTTCGTACGAAGTAAAGC
11 GCTACCTATGCTAGCATAGGTAGC
12 GCGCACTGGGGATCCCCAGTGCGC
13 GCTGAGGAGTCCGGACTCCTCAGC
14 GCTGCCGTCGGGCCCGACGGCAGC
15 GCGCACAACACGCGTGTTGTGCGC
16 GCCTAACCCTGCGCAGGGTTAGGC

Table 7.1 – The 16 palindromic sequences of the palindromic library.

In �gure 7.1 we present the aforementioned counting of instances of monomers,
dimers, and trimers. We can observe that in the occurrences for all the trimers, dimers,
and monomers no element is over represented. The latter will be useful for the cgDNA
parameter estimation in section 7.3. Moreover, by reading the sequences from only

66



7.2. The palindromic training sets

one strand in each oligomer each of all possible 256 tetramers appears at least once.
In fact the non–palindromic tetramers appear at least twice while the palindromic
tetramer appear only once.
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Figure 7.1 – The total number of trimers, dimers, and bases counting on only one
strand.

7.2 The palindromic training sets

We have performed MD simulations of the palindromic library presented in the previ-
ous section, see table 7.1, using the standard ABC protocol, see appendix C, but with
the bsc1 force �eld [24]. We have chosen a simulation time of 3� for each sequence in
the training library plus an additional accumulation of 10� s of simulation, for just three
sequences: (1,5,11), see table 7.1. For the additional 10� s trajectories we computed 10
independent parallel simulations using random initial velocities. In the next section
we will explain how to use Crick–Watson symmetry to gain insight of the convergence
of these MD simulations of the palindromic sequences.

7.2.1 Assessing convergence of MD simulations

The physical Crick–Watson symmetries for the ground–state and the covariance matrix
of a palindromic sequence S are:

� (S) = E2n� 1� (S); (7.4)

C(S) = E2n� 1C(S)E2n� 1: (7.5)

When the mean and the covariance, are estimated from an MD time series the latter
two conditions are not in general satis�ed due to lack of complete convergence of the
time series. We can thus introduce the following error functions for the mean and the
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covariance to measure deviation from palindromy of both estimators:

ERR(� ) = k� � E2n� 1� k; (7.6)

and for the covariance we can introduce the error function

ERR(C) = kC � E2n� 1CE2n� 1k; (7.7)

where for the sake of simplicity we have dropped the dependence on the sequence S.
For the covariance matrix we can moreover re�ne the error function by considering
only the entries inside the cgDNA stencil (due to the banded reconstruction technique
(4.12) ) and, as the covariance matrix is symmetric, we can just consider the diagonal
entries plus, for example, the upper triangular part. We introduce then the following
notation: Let C be a covariance matrix, we de�ne by Csym the matrix de�ned by

(Csym) ij = 0 ; if ij are outside the stencil or if i < j; (7.8)

(Csym) ij = ( C) ij otherwise. (7.9)

Moreover, we introduce the notation H = E2n� 1CE2n� 1. We can then rede�ne the
error function for covariance matrices as follow

ERR(C) = kCsym � Hsymk: (7.10)

The norm in (7.10) is the Frobenius norm introduce in chapter (2) which is equivalent
to the classic 2–norm for vectors. Thus both error functions can be seen as an error
function in Rn . This property will be useful for the interpretation of different values
of (7.6) and (7.10).Now, suppose that w(S) = f wi (S)gM

i =1 is a time series of internal
coordinates for a n base–pair long palindromic sequence. We say that the time series
w(S) converges as function of M when

ERR(� ) �!
M ! + 1

0; (7.11)

ERR(C) �!
M ! + 1

0; (7.12)

where � and C are the respectively the estimators (3.6) and (3.7) computed from w(S),
and the error functions are respectively de�ned in (7.6) and (7.10). The �rst question
we want to pose is:

Do the Crick–Watson errors (7.6) and (7.10) decrease as the
total number of snapshots increases?

We will answer this question by considering the 10� s trajectories computed for the
palindromic sequences (1,5,11). We start by evaluating the error function (7.6) for
these three sequences as function of simulation duration. In the following table we
show the errors for the mean estimator:
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# S 1� s 2� s 3� s 4� s 5� s
1 0.5775 0.4596 0.3655 0.3638 0.2425
5 0.7932 0.3603 0.3232 0.3304 0.3527
11 0.7140 0.3146 0.2796 0.2233 0.2163

6� s 7� s 8� s 9� s 10� s
1 0.1957 0.1941 0.1784 0.1976 0.1740
5 0.4120 0.4009 0.3057 0.2883 0.2204
11 0.2008 0.1996 0.1990 0.1864 0.1631

Table 7.2 – Palindromic error for the mean estimator for palindromic sequence (1,5,11)
as function of simulation duration.

We stress here that the simulation lengths considered are the same for each sequence
but the actual number of snapshots used in the computations varies between sequence
as it depends upon hydrogen bond or HB �ltering. Hereafter we have reported the
percentage of trajectories accepted after �ltering out the broken HB for the three
sequences (1,5,11) for the simulation lengths considered in (7.2):

# S 1� s 2� s 3� s 4� s 5� s
1 0.90 0.91 0.90 0.90 0.90
5 0.94 0.89 0.88 0.90 0.91
11 0.74 0.83 0.84 0.85 0.82

6� s 7� s 8� s 9� s 10� s

1 0.91 0.90 0.90 0.90 0.90
5 0.89 0.89 0.89 0.90 0.90
11 0.84 0.85 0.85 0.86 0.86

Table 7.3 – Percentage of accepted snaphots per simulation lengths

We recall that the writing rate from the MD simulation is each 1 ps, thus a 1� s simula-
tions should lead to a maximum of one million snapshots before HB �ltering.
Returning to table (7.2), we notice that the general trend for each sequence is that both
error functions decreases with the increased number of snapshots. We can actually
see a strong convergence for the mean estimators. Now that we have observed that
effectively the convergence error decreases by increasing the number of snapshots
considered a last question arises naturally:

How big is the obtained error?

We have de�ned the error function (7.6) using the classic 2-norm for vectors, also called
the euclidean norm , thus the convergence errors we have computed can be interpreted
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as an average error per degree of freedom by simply assuming that each component
contribute the same to the norm, meaning that the average error is just the actual
error divided by the square root of the total number of components. For example in
table (7.2) for sequence 1 at 10� s we have computed an error of 0.1740: the associated
average per degree of freedom error is 0.0104. Now by considering that the entries in
the mean are translations measured in angstroms, and rotations in �fth of radiants
we obtain that on averaged the mean estimator is off by approximately 1/100Å and
1/100 rad

5 , which can be considered as small. A further analysis that can be done is to
consider separately each helical parameter because for example the rise and the twist
tend to have a larger magnitude compared to any of the intra translations and rotations.
Thus in percentage the average error per degree of freedom will be smaller for these two
quantities. Hence in �gure 7.2 we show the difference j� (S) � E2n� 1� (S)j for sequence
1 at 10� s where the entries of each helical parameters are plotted separately. We can
observe that the helical parameters buckle, twist , shift and slide have the highest
errors among all the helical parameters and probably not coincidentally the inter
variable twist, shift, and slide are the three variable known to sometimes have bimodal
distributions. Moreover in �gure 7.3 we show the comparison between estimated and
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Figure 7.2 – Entry-by-entry palindromic error in the mean estimator at 10 � s for se-
quence 1.

palindromic symmetrized buckle, shift, twist, and slide, for sequence 1 at 10 � s. We can
visually see that the Crick–Watson symmetry after 10 microseconds is achieved to a
rather small tolerance for all the degrees of freedom.
We can continue with the analysis of the convergence for the covariance matrix C. The
result for the palindromic error of the covariance matrix as a function of simulation
duration are:
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Figure 7.3 – Estimated (est.) and palindromic means (palin.) for four selected helical
parameters at 10� s for sequence 1. Top left: buckle, top right: shift, bottom left: twist,
bottom right: slide.

# S 1� s 2� s 3� s 4� s 5� s
1 0.5496 0.4013 0.3144 0.3303 0.2262
5 0.6165 0.4204 0.2894 0.2537 0.2573
11 0.7499 0.3635 0.2923 0.2429 0.2567

6� s 7� s 8� s 9� s 10� s
1 0.1790 0.1643 0.1490 0.1564 0.1418
5 0.2557 0.2440 0.2039 0.1961 0.1598
11 0.2366 0.2154 0.2036 0.1897 0.1602

Table 7.4 – Palindromic error in the estimator of the covariance as function of simula-
tion length

Thus for the covariance matrix the trend of the error function (7.10) is to decrease
when the simulation duration increases. However the interpretation of the errors in
table (7.4) using the same reasoning as for the error function of the mean make less
sense because the entries of the covariance are correlations between different degrees
of freedom and thus do not have a direct physical interpretation. But to judge how big
the obtained error is we can introduce a relative covariance error de�ned by

ERR(C) =
ERR(C)
kHsymk

; (7.13)

where ERR(C) has been de�ned in (7.10). For example for sequence 1 we have com-
puted the following relative errors for different simulations lengths:
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1� s 2� s 3� s 4� s 5� s
0.0764 0.0564 0.0440 0.0458 0.0314

6� s 7� s 8� s 9� s 10� s
0.0248 0.0228 0.0207 0.0217 0.0197

which shows that after 10 microseconds the relative error is slightly less than 2%. We
want to stress here that already for 1 � s the error is lower than 10 % which is already
acceptable and it drops down to less than 5 % in the �rst 3 � s of simulation.
In tables (7.5-7.6) we show respectively the error in the mean and the error in the
covariance for each sequence in the palindromic training library at different simulation
duration. Moreover in table (7.7) we indicate the percentage of accepted snapshot
for each entries in tables (7.5–7.10). We notice that some of the sequences are more
converged than others, but �nally we can reasonably conclude that both estimators
are well converged. Certainly it would be better to extend the simulations of all the
palindromic sequences to 10� s, or more, but for the purpose of this work we use the
palindromic training data with 3� s simulations length.

# S 100ns 1� s 2� s 3� s
1 0.8337 0.5308 0.2104 0.2359
2 1.3790 0.6458 0.3709 0.3544
3 1.1501 0.5190 0.2964 0.2364
4 0.8125 0.7620 0.4284 0.4409
5 3.1382 0.8064 0.4879 0.3797
6 3.1841 0.6203 0.3461 0.2837
7 0.8542 0.8194 0.5507 0.4538
8 0.9575 0.4286 0.3121 0.2786
9 2.1321 0.3649 0.3690 0.2635
10 1.2389 0.4776 0.3570 0.5034
11 2.9449 1.2054 0.6228 0.5478
12 1.4374 0.7056 0.4854 0.4680
13 1.0173 0.3367 0.3293 0.2257
14 0.6689 0.4699 0.2723 0.2348
15 1.6356 0.8731 0.3359 0.3278
16 1.1962 0.5761 0.6560 0.3892

Table 7.5 – Palindromic error in the estimator of the mean as function of simulation
length. In table (7.7) one can �nd the actual percentage of accepted trajectories for
each simulation length and each sequence.

7.2.2 Estimation of 1st and 2nd moments using palindromic symmetry

In statistics it common to take advantage of known symmetries in the analysis of time
series of data. More precisely it is good practice to compute estimators from a times
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# S 100ns 1� s 2� s 3� s
1 0.7350 0.5820 0.2928 0.2181
2 1.4683 0.5765 0.3530 0.3328
3 0.9808 0.3813 0.3006 0.2560
4 0.8838 0.9820 0.4589 0.4274
5 2.3520 0.7814 0.5258 0.4302
6 1.4567 0.5847 0.3588 0.2689
7 1.0474 0.6137 0.4657 0.4062
8 0.9003 0.4028 0.2604 0.2264
9 1.7451 0.3943 0.3885 0.3129
10 1.3966 0.4018 0.2478 0.3549
11 1.9304 0.9960 0.5543 0.5571
12 1.3977 0.6904 0.5096 0.4084
13 1.0167 0.3396 0.3234 0.2613
14 0.8852 0.4616 0.3311 0.2753
15 1.2996 0.8019 0.3354 0.2977
16 1.3265 0.6571 0.6327 0.3853

Table 7.6 – Palindromic error in the estimator of the covariance as a function of simula-
tion duration. In table (7.7) one can �nd the actual percentage of accepted trajectories
for each simulation length and each sequence.

series of data that satisfy the physical symmetries of the underlying object. In our
context the interpretation of the mean as a ground–state of the considered sequence
makes it sensible to take into account the Crick–Watson symmetry of palindromes. We
can actually de�ne two estimators one for the mean and one the covariance that will
account for Crick–Watson symmetry and that consequently can enhance the quality
of both estimators. Let � and C be the standard estimators for, respectively, mean
and covariance computed from a time series of a simulated palindrome S of length n.
We introduce the following palindromic symmetrised �rst moment, where for sake of
compactness we have dropped the dependence on S:

� palin =
1
2

(� + E2n� 1� ) ; (7.14)

where E2n� 1 2 R12n� 6� 12n� 6 has been introduced in (4.3). In the estimator (7.14) we
have basically doubled our time series by considering also the estimation of the mean
of the complementary sequence. For the symmetrized covariance matrix we �rst
compute the symmetrized second moment

Spalin =
1
2

(S + E2n� 1SE2n� 1) ; where S = C + �� T ; (7.15)

and then we compute the symmetrized centred second moment as

Cpalin = Spalin � � palin (� palin )T : (7.16)
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# S 100ns 1� s 2� s 3� s
1 0.84 0.79 0.85 0.87
2 0.91 0.92 0.90 0.90
3 0.81 0.84 0.88 0.90
4 0.91 0.92 0.92 0.92
5 0.62 0.91 0.92 0.93
6 0.63 0.90 0.90 0.79
7 0.96 0.93 0.90 0.91
8 0.94 0.94 0.93 0.93
9 0.95 0.94 0.88 0.90
10 0.94 0.92 0.93 0.93
11 0.89 0.89 0.90 0.91
12 0.85 0.92 0.93 0.93
13 0.88 0.92 0.78 0.82
14 0.94 0.94 0.93 0.94
15 0.95 0.90 0.92 0.93
16 0.92 0.93 0.93 0.93

Table 7.7 – The actual percentage of accepted snapshots per simulation for each
sequence in the training library.

From Cpalin (S) we then compute a banded stiffness matrix K palin using the algorithm
(1).

7.3 Palindromic cgDNA parameter set

In section (7.2.1) we have introduced a notion of convergence for MD simulations
of palindromic sequences based on the classical estimators and we gave also an in-
terpretation of the values of the convergence error that help in understanding how
big the error actually is. For palindromic error we would like to conclude that after
three microseconds all the 16 sequences are rather well converged even if after having
analysed the three sequences with 10 � s long trajectories it would clearly be better to
extend the simulation lengths for every single palindrome. We also would like to stress
here that the original cgDNA parameter set has been computed on the ABC training set
that contains sequences simulated for a duration from 50 to 100 ns, thus a 3� s training
set is already an extreme enhancement in the quality of the data. Thus, for the purpose
of this work we will consider the 3 � s palindromic data set along with the palindromic
symmetric oligomer–based statistics and in the next section we will compute and show
prediction of the best-�t cgDNA parameter �t. For the sake of simplicity we drop the
notation

� palin (S) , Cpalin (S) and K palin (S)
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to identify the palindromic symmetric estimation of respectively the mean and the
covariance for palindromic sequence S and use the classic notation � (S) and C(S).
Thus, in what follows all oligomer–based statistics should always be interpreted as
palindromically symmetrized.
Before deriving the best–�t parameter set we introduce a new format for the cgDNA
parameter set that we will refer to as the dimer–based parameter set. We no longer
consider the monomer–based stiffness metric blocks and sigma vectors, but add
dedicated independent blocks for each 5' end dimers. In detail the dimer–based
cgDNA parameter set has the following format:

P =
n

� 50�� ; � �� ; K 50�� ; K ��
o

�� 2 D; 50�� 2 D
; (7.17)

and the reconstruction scheme for an arbitrary DNA sequence S = X 1X 2; : : : ; X n reads
simply

K (P; S) = PT
d K dPd; (7.18)

� (P; S) = PT
d � d; (7.19)

� (P; S) = K (P; S) � 1� (P; S); (7.20)

(7.21)

where

K d = diag(K 50X 1X 2 ; : : : ; K X i X i +1 ; : : : ; K X n � 1X n 30
);

� d = ( � 50X 1X 2 ; : : : ; � X i X i +1 ; : : : ; � X n � 1X n 30);

with Pd the matrix de�ned in (4.15). Moreover the 30end parameter set elements are
computed from the corresponding 50ones using the Crick–Watson symmetry.
Clearly we have increased considerably the number of independent unknowns in the
parameter set P. The reasons behind this choice can be summarized in two points: 1)
it is rational to have that each local energy (monomer–based and dimer–based) has a
positive de�nite stiffness matrix. But that is in fact not the case for the current cgDNA
parameter set where the set of conditions (5.20) and (5.21) must be satis�ed in order to
prove its positiveness. The conditions themselves suggested a way for transforming
the old cgDNA parameter set format into a dimer–based model one. 2) Dimers at
the ends have been observed to have quite different statistics compared to the same
dimers in the interior. Thus allowing a speci�c end element in the parameter set can
certainly enhance the quality of the predictions, especially for non GpC ends that have
in general less instances, and thus less data.
We can now compute two best-�t cgDNA parameter: one using the parameter set
format (4.9) and the other using the parameter set (7.17). For sake of simplicity we
will refer to the cgDNA parameter set (4.9) as the old one while the cgDNA parameter
set (7.17) will be called the new one. We recall that the cgDNA parameter set is the
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solution of the optimization problem (5.17), where the objective function is de�ned by
(5.18). The differences between the two computations will just be in the reconstruction
scheme and in the total number of unknowns. The algorithm (2) implements a param-
eter continuation approach for computing a cgDNA parameter set starting from an
already computed one. We have used this approach to compute the best-�t parameter
set for the old format, denoted by Pold . For the new format a less direct computation
has been used to construct an admissible initial guess. Once the initial guess has been
computed a combination of gradient descent and Broyden method have been adopted
in order to compute the �rst cgDNA parameter for the new format, denoted by Pnew .
All the latter computations were carried by O. Gonzalez. On the other hand the new
format was actually proposed in light of the cgDNA+ model implemented in chapter 9
where the end blocks are actually of a different dimension from interior blocks.
With both parameter sets Pold and Pnew in hand we start by �rst comparing the pre-
diction of the ground–state shape vectors at the ends of oligomers for non GpC
dimer ends. For example in �gure 7.4 we show the �rst four bases of the sequence
S = AAGCAAACTAGC which was used for deriving the end block 50AA . We can see
that in general the approximation of the helical parameters at the end dimer 50AA is
better for the new format of the parameter set. The same results can be observed in any
of the other �fteen non GpC ends. By following the same comparison technique used
in chapter 6, we can compute the averaged Kullback-Leibler divergence per degree
of freedom (6.5) for Pold and Pnew and separately the palindromic sequence library,
denoted PALIN, and the ends sequence library, denoted ENDS:

Format Library D D y M
New PALIN 2:09� 10� 2 1:31� 10� 2 0:78� 10� 2

New ENDS 2:25� 10� 2 1:34� 10� 2 0:91� 10� 2

Old PALIN 2:29� 10� 2 1:43� 10� 2 0:86� 10� 2

Old ENDS 3:00� 10� 2 1:79� 10� 2 1:20� 10� 2

We can �rst observe that for the end data we have a better approximation for the
new format which con�rms the improved choice of having dedicated parameter set
elements for the end dimers. Secondly we observe that even for the palindromic
sequences the new format of the parameter set is better at predicting the data. We
would like to point the reader to the tables presented in chapter 6 and observe that the
average per degree of freedom values of the Kullback-Leibler for the PALIN Pnew is the
lowest obtained value between all the other parameter sets and libraries.
In �gure 7.5 we show an example of predictions for sequence number 1 of PALIN using
the parameter set Pnew . As the sequence is a palindrome, and as cgDNA reconstruction
and the MD mean estimator de�ned by (7.14) both satisfy perfectly the palindromic
symmetries we show the helical parameters for just the half of the sequence. For
Pnew we also compute the spectra of apparent and dynamic persistence length but
over an ensemble of one million randomly generated DNA sequences each of length
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Figure 7.4 – Comparisons of internal coordinates of MD ground–state (black) and
cgDNA predictions with the old parameter set format (blue) and the new format (red).

220. In �gure 7.6 we show the two histograms and the values of `p and `d for the
six independent poly dimers. The �rst observation is that the overall features of the
histograms are in general the same as the spectra showed in chapter 6, meaning that for
the apparent persistence lengths the histogram is more wide with a long tail spreading
to the low values region of `p, while the histogram for `d is more peaked around the
mean, with a thin tail spreading in the direction of high values.

7.3.1 Positiveness of the new format

In the previous section we have presented a new format of the cgDNA parameter set
which in particular is composed of only dimer–based units blocks for the stiffness
matrices and vectors for the weighted shapes. This particular format implies that
there is not an unique solution to the optimization problem (5.17). More precisely, the
linear transformation that maps a parameter set P and a training library Lb to their
respectively reconstruction, is not injective. This concept will be better explored in the
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Figure 7.5 – Comparison between cgDNA ( solid ) and MD ( dashed) ground–states for
sequence 1 in the palindromic library.

context of the cgDNA+ model in chapter 9. In this section we want just to make the
following point: with parameter set format (7.17) the suf�cient conditions (5.20) and
(5.21) become simply that each dimer–based stiffness block must be positive de�nite.
For the best-�t palindromic cgDNA parameter the latter condition is fully satis�ed and
thus we can refer to P trained on the palindromic data set as a positive de�nite cgDNA
parameter set.
In chapter 9 we will discuss the case when the stiffness parameter set blocks are not
positive de�nite and thus the suf�cient conditions are not satis�ed. We will then show
how to take advantage of the non–uniqueness of the parameter set in order to be able
to recover the positiveness.
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Figure 7.6 – Histograms of apparent (blue) and dynamic (red) persistence lengths
computed using cgDNA, trained on the Palindromic data set, over a sequence ensemble
of 1 million randomly generated sequences of length 220 base pairs. We report the
averaged values (Avg) of both spectras: italic font for the apparent and bold font for the
dynamic persistence length. The values of the persistence lengths for six independent
poly–dimers of length 220 are reported: italic for the apparent and bold for the dynamic.
The positions of the values of the apparent persistence length is given by a circle while
the positions for the dynamic is given by a square.
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8 Coarse–grain con�guration variables for
double stranded DNA

In this chapter, we coarse–grain double–stranded DNA by considering both strands as
single unit chains composed by a repeating pattern of a composite unit comprising a
phosphate group rigid–body and a nucleic rigid–body. We introduce two representa-
tions of coarse–grain double–stranded DNA: two interacting strands and the tetrachain .
The two coarse–grained models are in analogy with, respectively, the double chain
and bichain description presented in [21]. The main difference between the bichain
and the tetrachain is in the composition of a base–pair level which, for the tetrachain,
is formed by four rigid–bodies and not two as in the bichain model. Consequently,
the de�nition of the microstructure will also be different. For the tetrachain model,
we de�ne then an internal elastic energy describing nearest–neighbour interactions
and we compute its coordinate free �rst variation. From the �rst variation, we then
compute the formulas for the total external loads acting on a single phosphate group,
again, in a coordinate free framework. Finally, we de�ne the internal coordinates for
the tetrachain representation by parametrising the inter– and intra–base–pair relative
displacement using the Cayley transformation for the rotation part and by writing the
translational part in the mid frames. The microstructure of the tetrachain is composed
of two base–to–phosphate group rigid–body transformations which are parametrised
using, again, the Cayley transformation for the rotation part and the translational part
written in the base frame. Thanks to the choice of internal coordinates we can write
explicit formulas for the total external loads acting on a single phosphate group.

8.1 Double stranded DNA con�gurations with explicit back-
bone treatment

We will consider a double–stranded DNA (dsDNA) molecule as the interaction of two
rigid body chains representing the anti–parallel strands. Each rigid body chain is
formed by the repetition of a phosphate group followed by a nucleic base in the 50 ! 30

direction, as shown in �gure 8.1. Let us consider a DNA fragment with sequence
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Chapter 8. Coarse–grain con�guration variables for double stranded DNA

Figure 8.1 – Schematic representation of single stranded DNA S fragment composed by
three consecutive nucleotides. In the �gure the sugar ring is shown but is only treated
implicitly in the model.

S = X 1; X 2; : : : ; X N , X i 2 f A; T; G; Cg. Mathematically, we will de�ne by S 2 SE(3)2N

the reading strand and by S 2 SE(3)2N the complementary strand . By using , g+
2 SE(3)

for the nucleic bases and p+
2 SE(3), for the phosphate group we formally have that the

two strands can be written as

S+ = ( p+ ; g+ ) = ( p+
1 ; g+

1 ; p+
2 ; g+

2 : : : : ; p+
N ; g+

N ) 2 SE(3)2N ; (8.1)

and

S
+

= ( p+ ; g+ ) = ( p+
1 g+

1 ; p+
2 ; g+

2 ; : : : ; p+
N ; g+

N ) 2 SE(3)2N ; (8.2)

where for sake of compactness, each rigid–body associated to a base, on both strands,
is in fact related to the considered sequence as the bases have different atomistic
composition depending on their base type. For example for the reading strand we
should have written

S+ = ( p+ ; g+ ) = ( p+
1 ; g+

1 (X 1); p+
2 ; g+

2 (X 2); : : : ; p+
N ; g+

N (X N )) 2 SE(3)2N : (8.3)

On the other hand, all the phosphate groups have the same chemical structure thus
they have no explicit dependence on the sequence. For what follows we have decided
to drop the dependence on the sequence for all the base rigid–bodies in the notation.
We can introduce now the two backbone rigid body displacements a�

n , a�
n 2 SE(3),

along the reading strand, describing the rigid body motion from g+
n to g+

n+1 through
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8.1. Double stranded DNA con�gurations with explicit backbone treatment

the phosphate group p+
n as

g+
n+1 = g+

n a+ �
n a+ �

n ;

where
a+ �

n = [ g+
n ]� 1p+

n+1 ;

a+ �
n = [ p+

n+1 ]� 1g+
n+1 :

With the latter notation we have directly the following relation to the double chain
inter rigid body displacement a+

n = a+ �
n a+ �

n introduced in [21] For the complementary
strand the notation will be the same but with an over line. The two strands interact at
the level of the bases. Thus we introduce an intra–base–pair rigid–body displacement.
As both strands are oriented in the 50 ! 30 direction we apply a transformation to
every single base frame on the complementary strand to avoid rotations close to
� in the intra–base–pair rigid–body displacement. We denote the intra rigid-body
displacement by bn 2 SE(3) de�ned as

bn = [ g+
N � n+1 t]� 1g+

n = t[g+
N � n+1 ]� 1g+

n ;

where t 2 O(3) � R3� 3 is the re-framing transformation

t =

2

6
6
6
4

1 0 0 0
0 � 1 0 0
0 0 � 1 0
0 0 0 1

3

7
7
7
5

; (8.4)

which satis�es t = t � 1. For sake of simplicity we introduce the frame

g�
n = g+

� (n) ;

and the corresponding intra rigid–body transformation

bn = t[g�
n ]� 1g+

n ; (8.5)

where � (n) = N � n + 1 . We can also introduce an equivalent transformation for the
phosphate frames on the complementary strand which simply reorder them in the
30 ! 50direction, namely:

p �
n = p+

� (n) :

We �nally obtain that a dsDNA can be coarse grained using two interacting single
chains (S� ; S+ ), where S� = ( g�

1 ; p �
1 ; : : : ; p �

N � 1; g�
N ) with direct interactions at base–

pair level given by (8.5). The coarse grain model (S� ; S+ ) will be called two interacting
strands. In �gure (8.2) we show a schematic representation of a two interacting strands
con�guration. The two interacting strand point of view, is an extension of the double-
chain representation of the dsDNA where the phosphate group were not explicitly
included in the model. Thus, we can continue the analogy, by introducing an equiva-

85
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Figure 8.2 – Schematic representation of two the interacting strands representation of
double stranded DNA. The sugar ring is shown but is not explicitlty modelled.
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8.1. Double stranded DNA con�gurations with explicit backbone treatment

lent point of view to the bichain model, see for instance section (2.4), by introducing a
macrostructure and a microstructure . The macro structure will be identi�ed with the
ensemble of base–pair rigid–bodies g 2 SE(3)N de�ned as

gn = g�
n tPH

n = g+ P � H
n ;

where PH
n 2 SE(3) is de�ned by

PH =

2

4([R�
n ]T R+

n )
1
2

1
2

[R�
n ]T (r +

n � r �
n )

0 1

3

5 :

The micro structure associated to the two interacting strands con�guration contains
the intra–base–pair rigid body displacement introduced in (2.4), just as for the bichain
model, but now additionally with two base–to–phosphate group rigid body displace-
ments. As a nucleic acid base is covalently bonded to two adjacent phosphate groups,
we need to consider two possible different de�nitions for the microstructure.

8.1.1 Microstructure with explicit treatment of the phosphate group

In order to integrate the phosphate groups into the de�nition of the micro structure we
have to include two base–to–phosphate group rigid body displacements per base-pair
level. We will use the notion of base–pair level to refer to a unit composed of four rigid
bodies: two complementary bases and two phosphate groups, one on the reading
strand and the other on the complementary strand. Is clear from the schematic repre-
sentation of dsDNA 8.1 that each base is in fact covalently bonded to two phosphate
groups, a 30one and a 50one. The �rst possible choice is to consider two units formed
by a base – sugar ring – 30–phosphate group, formally composed by the following
rigid–body frames:

(p �
n� 1; g�

n ; g+
n ; p+

n+1 ) 2 SE(3)4; (8.6)

while the second option is to consider the base–pair level as the set of two nucleotide,
base – sugar ring –50–phosphate group. With this approach the nth base–pair level is
formed by the following rigid-body frames:

(p �
n ; g�

n ; g+
n ; p+

n ) 2 SE(3)4: (8.7)

For simplicity of the Crick–Watson symmetry transformation (discussed later) it is
important that in both cases the de�nition of the units has precisely the same chemical
structure on both strands. We de�ne now the local micro structure con�guration as
the following ensemble of three rigid–body, motions associated to the chain of four
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rigid–bodies forming the base-pair:

M n = ( B�
n ; Pn ; B�

n ) 2 SE(3)3; (8.8)

where Pn is the standard intra-base-pair displacement, and B�
n represents the nth base

to phosphate group rigid–body motions, according to the strand, + or � , and to the
de�nition of base–pair level, I or II. In detail:

for I : B+
n = [ g+

n ]� 1p+
n+1 ; B�

n = [ g�
n ]� 1p �

n� 1; (8.9)

for II : B�
n = [ g�

n ]� 1p �
n ; (8.10)

Without lost of generality we will assume that the base–pair level is always formed by
four rigid bodies, which implies that the composition of the strand should be adapted
according to the base–pair level type. Thus we can introduce tetrachain con�gurations
(g; M ) for double stranded DNA where

M = ( M 1; : : : ; M N ) 2 SE(3)N ; and g = ( g1; : : : ; gN ) 2 SE(3)N : (8.11)

In general, independent of the composition of the base-pairs level, we will have an
invertible mapping between two interacting strand con�gurations and tetrachain
con�gurations, i.e,

(S+ ; S� ) $ (g; M ):

8.2 Internal energy for tetrachains

We introduce now the notion of internal energy for tetrachain con�gurations. The
�rst assumption on our energy is that the interaction are physical local, and more
precisely, we will consider only nearest neighbour interactions . This assumption of
only local interactions, and thus local contribution to energies, has been already used
for previous models of DNA such as the cgDNA model [55, 19] and the rigid–base–
pair model [51, 78]. In both coarse grain models the total energy of the molecule is
expressed as a sum of local energies de�ned at the level of single junction (two base-
pairs level). In the previous paragraph we extended the notion of base–pair level from
two complementary bases to two complementary bases plus two phosphate groups.
In fact, this new notion of base–pair level can be seen as an ensemble of two units,
where each unit is composed of a base and an adjacent phosphate group. With the
latter point of view a junction, in a double strand con�guration is composed by four
units, and the nearest neighbour assumption will lead to the following statement: each
unit has �ve nearest neighbours just as in the cgDNA rigid–base model, see chapter 4.
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Mathematically the internal energy E : SE(3)4N �! R takes the following form

E(g; M ) =
N � 1X

n=1

wn (M n ; an ; M n+1 ); (8.12)

where g = ( g1; : : : ; gN ), M = ( M 1; : : : ; M N ), M n are de�ned in (8.8), and an =
g� 1

n gn+1 . In equation (8.12) the local contributions wn to the energy E are given in gen-
eral form but in the context of DNA modelling these contributions will be chosen to be
quadratic in the internal coordinates and, moreover, with local sequence–dependence.

8.2.1 Equilibrium con�gurations and variational principle

We compute the �rst variation of the internal elastic energy (8.12) with respect to the
macro structure g and the micro structure M :

D l E(� g; � M ) = D l E� g + D l E� M : (8.13)

For sake of compactness we will use the short notation wn � wn (M n ; an ; M n+1 ). The
expression for the �rst quantity has already been computed in (2.74) and (2.76), thus
we only focus on the �rst variation of the energy with respect to the microstructure:

D l E� M =
NX

n=1

T �
�

@B+
n

(wn + wn� 1)[B+
n ]T

�
� � +

n

+ T � (@Pn

�
wn + wn� 1)PT

n

�
� � P

n

+ T � (@B�
n

�
wn + wn� 1)[B�

n ]T
�

� � �
n

=
NX

n=1

� +
n � � +

n + � P
n � � P

n + � �
n � � �

n ; (8.14)

where

� �
n = T �

�
@B�

n
(wn + wn� 1)[B�

n ]T
�

;

� P
n = T � �

@Pn (wn + wn� 1)PT
n

�
; (8.15)

and, by convention, wM
0 = wM

N = 0 . We want to emphasize here that the expressions
(8.15) are completely coordinate free, in the sense that no explicit parametrisation
of the relative rigid–body transformation has been introduced yet. This implies a
high level of generality. On the other hand for the computation of (8.14) the use of
exponential coordinates has been adopted for the rigid–body absolute coordinates
representing the bases and the phosphate groups.
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8.3 Total force and torque acting on a single phosphate group

The derivation of a close form expression of the total external load acting on a single
phosphate group is obtained as the simpli�cation of the �rst variation (8.14) under the
following constraints:
8n = 1 ; : : : ; N

gn is �xed ) � gn = T � ngn = 0 ) � n = 0 ;

g�
n is �xed ) � g�

n = T � �
n g�

n = 0 ) � �
n = 0 :

The latter constraints implies that each intra–base–pair rigid body displacement is also
�xed which, moreover, implies that
8n = 1 ; : : : ; N

Pn is �xed ) � Pn = T � nPn = 0 ) � n = 0 ;

If now one wants to consider the total external load acting on the m–th phosphate
group on the Watson strand, and thus one wants to compute the variation of the energy
(8.12) with respect to the rigid–body p+

m , two additional constraints should be added:
8n = 1 ; : : : ; N

p �
n is �xed ) � p �

n = T #�
n p �

n = 0 ) #�
n = 0 ;

and
8n 6= m

p+
n is �xed ) � p+

n = T #+
n p+

n = 0 ) #+
n = 0 :

Again by combining the constraints on the bases and on the phosphate groups we can
conclude that,
8n = 1 ; : : : ; N

B�
n is �xed ) � B�

n = T � �
n B�

n = 0 ) � �
n = 0 ; (8.16)

and
8n 6= m

B+
n is �xed ) � B+

n = T � +
n B+

n = 0 ) � +
n = 0 : (8.17)

Thus expression (8.14), under the latter constraint, becomes

(D l E)#+
m = Ad� T

g+
m

� +
m � #+

m : (8.18)
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By using the relation between left and right in�nitesimal variations

#+
m = Adp+

m
' +

m ; (8.19)

we obtain that the variation, on the right of the energy (8.12) with respect to the m–th
phosphate group on the Watson strand p+

m can be written as:

(D r E)' +
m = Ad� T

B+
m

� +
m � ' +

m : (8.20)

Now we can de�ne the total external load acting on p+
m by

� +
m = � Ad� T

B+
m

T �
�

@B+
m

(wm + wm� 1)[B+
m ]T

�
2 R6: (8.21)

with

� +
m =

"
c+

m + [ r p
m ]+ � f +

m

f +
m

#

; (8.22)

where c+
m is the external couple, around the phosphate position [r p

m ]+ , and f +
m is the

total external force acting on p+
m = ([ Rp

m ]+ ; [r p
m ]+ ).

8.4 Internal coordinates for tetrachain con�gurations

In practice the internal energy will be given as a function of internal coordinates and
not as a function of rigid body internal displacements. In this paragraph we de�ne
the internal coordinates associated to tetrachain con�gurations. First we recall the
notation of the internal coordinates for the intra– and inter– base–pair of bichain
con�gurations:

yn = ( � n ; wn ) $ P (yn ); � P n

xn = ( un ; vn ) $ a(xn ) � an :

For the base-to-phosphate group coordinates we recall that two de�nitions are pos-
sible, and, in particular, a base–pair level is composed by three internal coordinates.
For both de�nitions we have that, in internal coordinates, the micro structure at each
base–pair level is

mn = ( z�
n ; yn ; z�

n ); (8.23)

where

z�
n = ( � �

n ; w�
n ) $ B �

n (z�
n ) � B �

n : (8.24)
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The parametrisation of the base–to–phosphate rigid–body displacement has a different
de�nition than the one chosen in the inter– and intra– rigid body transformations.
In fact, we have decided to simplify the de�nition by writing the base–to–phosphate
translation directly in the base frame. We recall that for the cgDNA internal coordinates
the translational parts are written in the mid–frame: i.e. the junction frame for the
inters and the base–pair frame for the intras. The motivation behind the introduction
of the mid–frames in the de�nition of the translation rely primarily on the fact that
such coordinates lead to a simple linear change of reading strand transformation, see
for instance chapter 4. For the phosphate degrees of freedom the choice of writing
the translation in the base frame will also lead to a simple change of reading strand
transformation that will be detailed in the next section (8.4.1).
In general, let g = ( R; r ) 2 SE(3) be a base frame and let p = ( Rp; r p) 2 SE(3) be a
phosphate group frame. The base–to–phosphate rigid–body transformation is de�ned
by

B = g� 1p =

"
RT Rp RT (r p � r )

0 1

#

:

Let z = ( �; w) 2 R6 such that B � B (z), or,

� = cay� 1
� (RT Rp); (8.25)

w = RT (r p � r ); (8.26)

where cay� 1
� : SO(3) ! R3 is the inverse Cayley transformation de�ned by

cay� 1
� (R) =

2�
1 + trace(R)

vec(R � RT ); (8.27)

with vec (S) = ( S32; S13; S21) and � = 5 in our context.
Finally the internal coordinates for tetrachain con�gurations can be concatenated in
the following way, independent of the de�nition of base–pair level:

! = ( m1; x1; m2; x2; : : : ; xn� 1; mn ) 2 R24N � 18: (8.28)

The internal energy (8.12) can then be written in term of the internal coordinates !
associated to the coarse–grained representation (g; M ). In fact we have simply the
following relationship

E(g; M ) =
N � 1X

n=1

wn (M n ; an ; M n+1 ) =
N � 1X

n=1

w!
n (mn ; xn ; mn+1 ) = E(! ); (8.29)

with the additional property that

wn (M n ; an ; M n+1 ) = w!
n (mn ; xn ; mn+1 ); 8n = 1 ; : : : ; N � 1: (8.30)

92



8.4. Internal coordinates for tetrachain con�gurations

The term-by-term equivalence (8.30) is important for example in order to derive a
tractable expression for (8.15). More precisely, we will derive an analytical expression
for the micro structure internal loads that will depend on the geometric con�guration,
the ground–state, and the stiffness matrix. The key to derive such expression is the
linearisation of the expansion of the element of the algebra se(3) in term of the internal
coordinates. More precisely, let B 2 SE(3) and consider the following expansion of B
around B

B = ( I 4 + T �) B + o(j� j): (8.31)

Consider now that B � B (z) and B � B(z), with z; z 2 R6, thus we have that � � �( z).
We then linearise the latter equation, meaning that there exist L z 2 R6� 6 such that

�( z) = L z(z � z) + o(jz � zj): (8.32)

For the cgDNA coordinates, the matrix L was computed in [21] and is reported in (2.87).
For the base–to–phosphate internal coordinates presented in this section, the de�ni-
tion of the matrix L z is straightforward because the rotational and the translational
parts of the coordinates are decoupled. The linear mapping L z, for z = ( �; w) 2 R6, is
simply de�ned by

L z =

"
P1(� ) 0

0 I

#

2 R6� 6; with P1(� ) =
4� 2

4� 2 +
�

j � j
2

� 2

�
I +

1
2�

[� � ]
�

: (8.33)

Finally we compute the �rst variation on the left for the left–hand side term in (8.30)
and the partial derivative of the right–hand side term of the same equation with respect,
for example, to B+

n � B + (z+
n ):

D l (wn )� +
n = @B+

n
wn : T � +

n B+
n = @B+

n
wn [B+

n ]T : T � +
n = T �

�
@B+

n
wn [B+

n ]T
�

� � +
n ;

(8.34)

D(w!
n )�z +

n = @z+
n

w!
n � �z +

n :

We use now the linearisation assumption (8.32)

� +
n = L z+

n
�z +

n ;

and replace it in (8.34), to �nally obtain

LT
z+

n
T �

�
@B+

n
wn [B+

n ]T
�

� �z +
n = @z+

n
w!

n � �z +
n ;

and

T �
�

@B+
n

wn [B+
n ]T

�
= L � T

z+
n

@z+
n

w!
n : (8.35)
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The coordinate version of (8.15) reads

� �
n = L � T

z�
n

@z�
n

�
w!

n + w!
n� 1

�
; (8.36)

� P
n = L � T

yn
@yn

�
w!

n + w!
n� 1

�
;

where L z�
n

is de�ned in (8.33) while L yn is de�ned in (2.87). Consequently we have also
derived explicit formulas for the total external loads acting on a single phosphate by
using (8.36) in (8.18-8.20). We can also rewrite the total external load acting on a single
phosphate as

� �
n = � Ad� T

B�
n

L � T
z�

n
@z�

n

�
w!

n + w!
n� 1

�
2 R6; (8.37)

8n = 1 ; : : : ; N .

8.4.1 Change of reading strand transformation

In chapter 4 we showed the relation between internal coordinates of a sequence S and
its complementary S in the context of bichain con�gurations. We now just discuss
the analogous relation for the case of tetrachain con�gurations. In particular the
intra– and the inter– base–pair coordinates still satisfy the linear relations given by
the matrix E = diag(� 1; 1; 1; � 1; 1; 1), see for instance (4.2). Formally, for tetrachain
con�gurations of DNA, the change of reading strand reads:

S
+

is the reading strand ) g�
n = g+

� (n) and p �
n = p+

� (n) ; 8n = 1 ; : : : ; N; (8.38)

where � (n) = N � n + 1 and (S
+

; S
�

) denote the double stranded con�guration of the
DNA molecule with sequence S. This implies that, for example in the case of base–pair
level of type I, see for instance (8.9):

B
�
n = [ g�

n ]� 1p �
n = [ g�

� (n) ]
� 1p �

� (n) = B�
� (n) ; 8n = 1 ; : : : ; N: (8.39)

which implies the following relation of the internal coordinates:

z�
n = z�

� (n) ; 8n = 1 ; : : : ; N: (8.40)

In the case of the base-pair level type II , see 8.10, the change of reading strand relations
are the same as for type I, and a similar computation, to that leading to (8.39), can be
used to obtain the relations (8.40). Finally, the change of reading strand transformation
for tetrachain internal coordinates is given by:

when (S+ ; S� ) 7! (S
+

; S
�

)

(x; m) 7! (z�
N ; E2yN ; z�

N ; E2xN ; z�
N � 1; : : : ; z�

1 ; E2y1; z�
1 ) (8.41)
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9 A sequence–dependent coarse–grain
model of B-DNA with explicit treatment
of the phosphate groups

The cgDNA+ model is a sequence–dependent coarse–grain model of double stranded
B-form DNA with explicit treatment of bases and phosphate groups. The parameters
of the model will be trained on the Palindromic data set. The main goal of the cgDNA+
model is to predict the sequence–dependent ground–state and �exibility of double–
stranded B–form DNA. The cgDNA+ model is a natural extension of the cgDNA model
which relies on the same assumptions presented in section 4.1 with the only addition
assumption on the rigidity of the atoms forming the phosphate group. In this chapter
we present the entire process that goes from extensive molecular dynamics simulations
of palindromic sequences to the estimation of the parameter set of the cgDNA+ model.
Given a parameter set P and an arbitrary DNA sequence S, cgDNA+ predicts a Gaussian
equilibrium probability density function in the con�guration space by reconstructing
the ground–state � � � (P; S) 2 RM and the stiffness matrix K � K (P; S) 2 RM � M :

� (w; S; P) =
1
Z

exp
�

�
1
2

(w � � ) � K (w � � )
�

; (9.1)

where M = 24N � 18, with N the length in base–pairs of the sequence S. Any con�gu-
ration w 2 R24N � 18 can be divided into N � 1 inter–base–pair internal coordinates, N
intra–base–pair internal coordinates, and 2(N � 1) base–to–phosphate internal coordi-
nates. As a single internal is represented by a six dimensional vector the total number
of components in the con�guration w are 24N � 18. The inter– and intra–base–pairs
coordinates have been already introduced in chapter 2 while the base–to–phosphate
internal coordinates have been introduced in chapter 8 and further discussed in the
next section.
From the MD trajectories we extract time series for the two interacting strand con�gu-
ration, denoted by (S+ ; S� ), where each strand is coarse–grained at the level of base
and phosphate groups. The only atom group that is not explicitly treated in the model
is the sugar ring. For this purpose, we generalize the de�nitions (2.51) and (2.52). Let
p(S) 2 R3L be the vector containing all the Cartesian coordinates of the atoms of the
DNA molecule with sequence S of length N. The main modelling decision underlying
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the cgDNA+ model is to coarse–grain the bases and the phosphate group, therefore we
can rede�ne (2.51) as follow

r(S) ! (pS+ ; p
S

+ ) = ( pX 1 ; pb1 ; : : : ; pbN � 1 ; pX N ; pX 1 ; pb1 ; : : : ; pbN � 1 ; pX N ) 2 R3` ; (9.2)

where pX i = ( pX i
1 ; : : : ; pX i

n i
) 2 R3n i is the atom group considered for the base X i of

S and pbi = ( pbi
1 ; : : : ; pbi

m i
) 2 R3m i is the atom group for the i–th phosphate group.

Straight away we can introduce a simpli�cation because all the phosphate groups are
composed of the same group of atoms independent of the sequence. Thus we can set
pbi = pb 8i = 1 ; : : : ; N � 1. The atoms on the complementary bases are distinguished
by the over line notation. We recall that both strands are read in the 50 ! 30direction
and thus the numbering of the atoms groups in (pS+ ; p

S
+ ) follow the same rule. Now

we can generalize (2.52) in the following way

R ) (pS+ ; p
S

+ ) = ( S+ ; S
+

) 2 SE(3)4N ;

where S+ is the coarse–grain representation of the reading strand of S while S
+

is the
representation of the complementary strand. We recall that the �tting procedure is
described in section 2.3 and the detail about ideal atoms and ideal frames for both
base and phosphate groups can be founded in section 1.3 and in appendix A. For
convenience we can actually use transformation introduced in section 8.1 that maps
(S+ ; S

+
) ! (S+ ; S� ) to rede�ne R ) as follows:

R ) (pS+ ; p
S

+ ) = ( S+ ; S� ) 2 SE(3)4N :

9.1 On the base–to–phosphate degrees of freedom

9.1.1 Two possible de�nitions of internal coordinates

In section (8.4) we introduced the general invertible relationship between internal co-
ordinates and tetrachain con�gurations and we have explicitly written the two possible
ways of de�ning the coordinates of the microstructures of tetrachain con�gurations.
In �gure 9.1 we show a schematic representation of the two possible de�nitions of
the base–to–phosphate degree of freedom. We recall hereafter the general notation
for internal coordinates of tetrachain con�gurations of double stranded DNA of N
base–pairs:

! = ( m1; x1; m2; x2; : : : ; mN ) 2 R24N � 18;

where xn 2 R6 parametrise the inter–base–pair displacement, mn is the coordinates of
the microstructure de�ned by

mn = ( z� ; yn ; z� ) 2 R18; (9.3)
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yn 2 R6 parametrise the intra–base–pair displacement, and z�
n 2 R6 parametrise the

base–to-phosphate displacements. We recall that the two possible internal coordinates,
denoted by I and II in section 8.1.1 are respectively related to the base–to– 30phosphate
coordinates and base–to– 50phosphate. In order to choose which one of the two internal

Figure 9.1 – Schematic representation of the two possible base–to–phosphate relative
displacements. One way is base–to–3' phosphate (square), called version 1, and the
second is the base–to–5' phosphate (circle), called version 2.

coordinate de�nitions to use for the cgDNA+ model we will compute oligomer–based
statistics based on the palindromic data set. In particular we will extract time series
of both internal coordinates from the MD trajectories. Thus, the �rst simple thing
one can compare between the two version is the one dimensional histogram of all
the components of the coordinates. For the seek of compactness we show just one
example. We have chosen the sequence

S11 = GCTACCTATGCTAGCATAGGTAGC; (9.4)

of the Palindromic Library and in particular the phosphate located in the 16–th junction
ApT. We recall that for version 1 the internal coordinates parametrise the relative
displacement between the base A and the phosphate group in the ApT junction while
for version 2 the relative displacement is between the base T and the phosphate unit.
In �gures (9.2) we show the one dimensional histograms for each component of the
internal coordinates mentioned above. In the �rst row we can observe the histograms
for version 1 while the ones for version 2 are in the second row. In the �rst column
one can �nd the rotational components while in the second columns the translational
one. We can notice that the internal coordinates vary substantially between the two
versions. In particular the translational components for version 2 are way more non-
Gaussian compared to version 1. It is clear here that a direct comparison between the
two versions is not possible but, by looking at the histograms in (9.2), we can gain
some insight about the difference in parametrising a relative displacement between
two rigid bodies that are separated by a different number of covalent bonds, see �gure
(9.1) for details about the chemical structure. After a more careful analysis of all the
phosphate coordinates in all the junctions of all the 16 sequences we can conclude that
version 2 of the internal coordinates tend to have one–dimensional histograms of base–
to–phosphate degree of freedom that deviate more from Gaussianity, and in many
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cases, for the translational part, a clear bi–modality is present. This outcome could
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Figure 9.2 – For sequence S11 in the palindromic library we show the one dimensional
histogram of both versions of the base–to–phosphate internal coordinate for the phos-
phate in the 16th junction: ApT. The �rst row is version 1 and the second version 2. In
the �rst column the rotational components, in the second the translational ones.

have been guest beforehand as the extra covalent bond that is parametrised by the
version 2 is related to the BI–BII state already introduced in section 1.1. By recalling,
the transitions between the states BI and BII can be related to the formation of a
sequence– and context–dependent hydrogen bond between a phosphate group and
its 5' base. In the context of our coarse–grained model we do not have a direct relation
between the percentage of occupancy of BI and BII and internal coordinates, but it is
not really surprising that the version 2 of coordinates leads to bi–modal behaviour of,
in particular, the translational components.
Moreover, in �gure (9.3) we show also the observed stiffness matrix for sequence

S11 and, in particular, its sparsity pattern. One can notice that the major difference
between the two stiffness matrices is in the magnitude of the entries. In fact for version
2 the entries seems to have a bigger magnitude compared to the same entries in
the version 1 stiffness. We can also remark that in both stiffness there are 6 times
6 dimensional blocks with almost zeros entries. We will come back to this remark
later on in this chapter, but at the moment the important thing is that both choices
of internal coordinates bring to stiffness with holes in the same place. On top of the
comment about the differences between the two de�nition of internal coordinates
we would like to focus the attention of the reader to the particular sparsity pattern of
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Figure 9.3 – Example of the sparsity pattern of observed stiffness matrices obtained
from times series of both internal coordinates: left version 1, right version 2. The
sequence is S11 from the palindromic training library.

both stiffness matrices. In particular, compared to the one showed in �gure (3.2) for
the cgDNA internal coordinates, the locality assumption is even more clear when the
phosphate degrees of freedom are explicitly treated. A more detailed description of the
sparsity pattern will be presented later on in this chapter.
Now that we have observed the qualitative differences between the two de�nitions of
internal coordinates in reproducing some observable of the system we can introduce
the following quantitative procedure. We will �rst compute the parameters, mean and
banded stiffness, of the banded Gaussian for all sequences in the palindromic data set
and then we will use the Kullback–Leibler divergence, with the maximum likelihood
order for the input arguments, for computing the approximation error between banded
Gaussian and observed Gaussian for both de�nitions of internal coordinates. First,
the mean of the banded stiffness is the mean of the observed Gaussian, so that in the
KLd the Mahalanobis part (5.4) will be zero. Thus, we can focus our attention only on
the stiffness part and in particular we can use the following sequence averaged per
degrees of freedom de�nition of the Kullback–Leibler divergence:

D y(� obs; � band ) =
1

M

MX

i =1

1
ndofs

D y(� (x; � (obs;i ) ); � (x; � (band;i ) )) : (9.5)

For helping the reader we have labelled by band the parameter of the banded Gaussian
and by obs the parameter of the observed, raw, Gaussian. The algebraic expression of
D y for two Gaussian can be found in (5.4).
Before going any further we recall that the marginal of a Gaussian distribution is
another Gaussian distribution. For example, let � (! ) be a multivariate Gaussian dis-
tribution with mean � = ( x; y; z) 2 Rn+ m+ p with x; y; z vectors of dimension n; m; p,
and covariance matrix C 2 R(n+ m+ p)� (n+ m+ p) . The marginal of � (! ) over the compo-
nents y is the Gaussian de�ned by the mean � y = ( x; z) 2 Rn+ p and the covariance
Cy 2 R(n+ p)� (n+ p) de�ned by extracting the x–x, x–z and z–z blocks of C.
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The methodology for quantifying the difference between the two versions involved
also two different level of marginalisations of the Gaussian distributions � (x; � (obs;i ) )
and � (x; � (band;i ) . The �rst marginalisation is over the base–to–phosphate degrees of
freedom and will be denoted using the super script m. The second marginalisation is
over the base–to–phosphate degree of freedom and the intra–base–pair coordinates
and will be denoted using the super script m2. The reason behind the decision of
comparing also the marginals of the original distribution is to test how much informa-
tion, about the inter– and intra–base-pair degree of freedom, is carried by the banded
stiffness in both cases. In table 9.1 we show the value of (9.5) for the three proposed
comparisons. We can observe that version 2 of coordinates leads to a smaller value

Version D y(� obs; � band ) D y(� m
obs; � m

band ) D y(� m2

obs; � m2

band )
1 7:9 � 10� 3 2:9 � 10� 3 2:7 � 10� 3

2 6:4 � 10� 3 2:0 � 10� 3 2:0 � 10� 3

Table 9.1 – Values of D y, de�ned in (9.5) for distributions with different degrees of
freedom. The values in the �rst column quantify the error in the banded approximation
of the observed Gaussian for both cgDNA+ internal coordinates. The Gaussian denoted
by the super script m, second column, are the marginalisation over the phosphate
components and the Gaussian denoted by the super script m2, third column, are the
further marginalisation over the intra–base–pair coordinates.

of (9.5) for all of the three proposed computations. As the �rst value in table (9.1) is
smaller for version 2 we can conclude that the observed stiffness matrix for that partic-
ular choice of coordinates is in fact closer to the banded assumption. By marginalising
the �rst and the second time we actually quantify the information that the banded
approximation is carrying. Again from table (9.1) we can conclude that version 2 is
actually a better choice in this sense.
After the considerations made in this section we chose version 2 as the de�nition of
the internal coordinates for the cgDNA+ model. The motivation underlying the these
decision are summarized as:

1. Version 2 lead to one dimensional marginals for the phosphate degrees of free-
dom that are noticeably more non–Gaussian compared to version 1, but the latter
phenomena can be explained by the BI/BII transition. For future development
of the cgDNA+ model the version 2 seems to be the natural choice of internal
coordinates for the study of these transitions.

2. It is rational to chose the internal coordinates that minimize the banded approxi-
mation error as in any case for the purpose of this work we will deal only with the
Gaussian model and the banded approximation represent the data that is used
for the estimation of the cgDNA+ parameter set. Thus, the closer the banded
distributions are to the observed data, the more accurate the predictions of the
cgDNA+ model should be.

100



9.1. On the base–to–phosphate degrees of freedom

Finally the cgDNA+ internal coordinates we will consider read

! = ( m1; x1; m2; x2; : : : ; mN ) 2 R24N � 18: (9.6)

for a N base–pair long arbitrary sequence, where the microstructure is de�ned by
mn = ( z+

n ; yn ; z�
n ). The phosphate degrees of freedom are de�ned as follow

z�
n = C

�
B�

n

�
= C

�
[g�

n ]� 1p �
n

�
= ( � � p

n ; w� p
n ); (9.7)

where, Cis de�ned by

C(B+
n ) =

�
cay([R+

n ]T [Rp
n ]+ ); [R+

n ]T ([r p
n ]+ � r +

n )
�

2 R6: (9.8)

with g+
n = ( R+

n ; r +
n ) 2 SE(3), p+

n = ([ Rp]+n ; [r p
n ]+ ) 2 SE(3) and

B+
n = ([ R+

n ]T [Rp
n ]+ ; [R+

n ]T ([r p
n ]+ � r +

n )) :

The Crick–Watson symmetry for the internal coordinates (9.6) has already been in-
troduced in section (8.4.1), here we just recall that the phosphate coordinates of the
ground–state of a palindromic sequence satisfy

z+
n = z�

� (n) ; (9.9)

where � (n) = N � n + 1 , N being the total number of base–pair of the sequence.
From the palindromic data set we can extract oligomer–based mean of the internal
coordinates (9.6) and compute the sequence averaged mean of the phosphate degrees
of freedom. In the following table we report the values:

Coord. type Seq. Avg. MD

� p
1 0.9534 rad

5
� p

2 -3.3880 rad
5

� p
3 -1.7000 rad

5
wp

1 -0.5302 Å
wp

2 9.5188 Å
wp

3 -1.7211 Å

Table 9.2 – Sequence–averaged values of the base–to-phosphate components com-
puted from the palindromic 3 � s long data set. We drop the � notation because we
also averaged Crick and Watson degrees of freedom as all the sequences in the training
library are palindromic.
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9.1.2 On the cgDNA+ sparsity pattern

As anticipated in the previous section, the cgDNA+ degrees of freedom lead to some
interesting properties that we will describe in this section. The �rst property is actually
inherited from the cgDNA degrees of freedom namely the topological tree structure of
the internal coordinates as in scheme (9.4). It basically shows the connectivity between
rigid–bodies de�ned by the internal coordinates and it de�nes also the composition
of a base–pair level. We recall here that Crick and Watson phosphate groups that are
in the same base–pair level are not in the same junction. The latter comment seems
to introduce an asymmetry, but in fact the choice to integrate the phosphate group
through a relative displacement from a base actually preserves the natural orientation
of both strands. The most interesting property of the internal coordinates is the sparsity

Figure 9.4 – Tree structure of the cgDNA+ internal coordinates. The white blocks
represent the bases while the dark grey represent the phosphate groups. The light gray
blocks containing a base and a phosphate group represent a base–phosphate unit.

pattern of the observed stiffness matrix computed as the inverse of the covariance
matrix. In �gure (9.5) we show a dinucleotide in the matrix shown on the right–hand
side of �gure 9.3. By only considering the entries inside the stencil de�ned by the
black lines, we can start by presenting the overlap highlighted on the left–hand side
part of �gure 9.5 by the green box: its dimension is 18 times 18 and the degrees of
freedom involved are Crick base–to–phosphate, intra–base–pair, and Watson base–to–
phosphate forming the a base–pair level. It is clearly a natural extension of the cgDNA
model in the sense that the overlap is actually composed by the coupling related to the
degrees of freedom de�ning the base–pair level, or equivalently, the micro structure:

mn = ( z+
n ; yn ; z�

n ):

The cyan highlights the inter–base–pair block which lays in the middle of the 42 times
42 block. Let now �x the attention on the yellow block. This block is related to the
base-to–Crick phosphate group degrees of freedom. On the same line of the matrix
we show in red all the phosphate blocks in the stencil that are coupled with the yellow
base–to–Crick phosphate group mentioned above. Being on the same line of the matrix
means that the entries quantify the coupling between the related degrees of freedom.
From left to right each odd red blocks is the coupling between Crick phosphate in
the downstream and up stream base–pair level, while the even ones are the Watson
phosphate also in the downstream and up stream base–pair level. It is interesting to
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notice that the Crick–Watson physical coupling is really close to be zero, meaning that
Crick phosphate group does not see any of the Watson phosphate from the elastic
interaction point of view. Finally, the big orange box contains the interaction between
three base–pair level that can be interpreted as follow: each base–phosphate unit on
the Watson or Crick strand, interacts with its �ve nearest neighbour units. For example
if one consider again the schematic representation of the internal coordinates in �gure
9.4 the latter comment can be visually explained by �xing, for example, the middle
right light gray box. Its �ve nearest neighbour are just the other light gray boxes in
the scheme. We recall that a light gray box is in fact a unit composed by a base and a
phosphate group attached to it. The main properties of the interactions between units
is that there is very weak physical coupling between phosphate groups on different
strands.
The last point we want to present is shown in �gure 9.6 where we compare the banded
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Figure 9.5 – Left, details of the covariance matrix estimated from time series of internal
coordinates (9.6) for sequence S11, see sequence list (7.1). Right, we show the same
detail, but for its inverse, the stiffness matrix. Some parts of the stiffness matrix are
highlighted as explained in the text.

stiffness estimation and the observed one. One can remark that the holes correspond-
ing to the Crick phosphate– Watson phosphate degrees of freedom interactions are still
present in the banded stiffness. We recall that in algorithm 1 used for the computation
of the best �t banded stiffness is not possible to impose constraints on the values of the
entries inside the desired stencil. Hence, the fact that the banded stiffness preserves
the physical properties observed in the data could indicate that the origin of this weak
coupling can be explained by the entries of the covariance matrix just inside the stencil.
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Figure 9.6 – Left: observed stiffness matrices Right: banded stiffness best estimate. The
sequence is S11 from the palindromic training library.

9.2 Convergence of the phosphate degrees of freedom

In this section we will generalize the de�nition of convergence error, in the sense of
palindromic symmetry, of the �rst and centred second moment estimator given by

ERR(� ) = k� � E +
N � k; (9.10)

ERR(C) = kC � E +
N CE +

N k; (9.11)

for MD time series of internal coordinates (9.6). The matrix E +
N represent the linear

map of the change of reading strand transformation and its de�nition has not yet been
explicitly given, it will be discussed in detail in section 9.3. Before proceeding with the
convergence study of the Palindromic sequences in the context of cgDNA+ internal
coordinates, we �rst consider sequence S11 and focus attention on the phosphate in
the 16–th junction ApT on the reading strand which in fact is the coordinates from base
T to the 50phosphate. We recall that for this particular sequence we have simulated
10� s which are a total of 10 million snapshots before hydrogen–bond �ltering. For
more detail about HB �ltering see section 3.3.1. In �gure (9.7) we show, in solid lines,
the histograms over all the accepted snapshots for the base–to–phosphate internal
coordinates in the ApT junction. In dashed line we plot its palindromic complement
which actually is the base–to–phosphate degrees of freedom on the Crick strand on
the 8–th base–pair level, see equation (9.9). From the histograms we can observe that
both rotational and translational parts of the coordinates are extremely well converged
even if most of the coordinates present a clear bi-modal behaviour. We now compute
the palindromic error for the mean (9.10 ) for sequences (1,5,11) for which we have up
to 10� s of trajectories. In the following table we report the results:
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