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Goal of the semester project

bBDNA software: ‘ Find a procedure to find a
o . good initial guess for the
» significant computational cost energy minimization

. without using bBBDNA
» necessary for the initial guess software




Previous works

» cgDNA+ E—) dsDNA structure

» CgDNA+mMin  eo——) dsDNA minicircle structure




cgDNA+

@ Rigid base model: each base is represented by a frame in

SE(3).

@ Gaussian pdf:

p(w; S, P) = g BUWS,P)

(w = u(S.P)) T K(S. P)(w — u(S. P)).
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@ Coordinates:

_ c W c W c W 24n—18
W= (xl:xlﬂyl'axzaxz:rxzﬂyz: ey X s Xy X o Vig ooy Yn=1, X, ,In) eR

where x;,xf,x?,y; € R®,



ceDNA+

Rigid bodies

Relative coordinates w.r.t.
a midway frame
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cgDNA+

Three assumptions made on the energy:

» has a shifted quadratic form

» the total energy is a sum over level X -
junctions energies N -

»The coefficient in the local junction — 7 X
energy depends on the local dimer 3
sequence step | | | | |

(a) Interactions among the neighbours. (b) Stiffness matrix construction.



cgDNA+ Periodicity

1 2 N STIFFNESS MATRIX

Xy Xy X o Xy o Xy o X,
| J |\ ] | J

@ Periodic cgDNA coordinates
=~ closed loop !

@ Extra set of inter
coordinates: inter between
base pairs n and 1

BASE SEQUENCE

@ Extra block split in four
corners: interactions
between bases n and 1




cgDNA+mMIn

@ Uses quaternions

o 1 quaternion & 1 vector in R> for each base pair
o Benefits: simple expression for the closure assumption
o Cost: extra transformation to recover inters

@ New coordinate vector
@ Z= (X1;01,Q1,X2;02,Q2; -3 Xn—1, On—l:Qn—l:Xn)
o Locally recover original cgDNA inter coordinates:
Yi = f(o,-, di; Oi+1, QH—I) = (9}:'8;2! 9?! il: ;25C;3)a
_ 10q,‘£18aqi
B Ci',-ilq;

R(q) is the rotation matrix induced by q and B, are matrices used
to form an orthonormal base for the quaternions.

07

,a=123, C,-T = (0i+1 — 0i)R(gi+1 + qi).

o global transformation w = F(z),
Energy U(z) = 3(F(2) — 1) "K(F(2) — )



cgDNA+mMIn

) Construct periodic stiffness matrix and periodic ground-state (parameter set)
) Run bBDNA software to obtain a continuum initial guess
) Discretize the initial guess

J Run the energy minimization starting in the initial guess:
* Assumptions for the continuum model are slightly different than the ones of the discrete case
* During the discretization process, errors are induced.

) Convert quaternions into inter variables



cgDNA+mMIn

Assumptions on energy and quaternions:
» has a shifted quadratic form

» the total energy is a sum over level junctions 1 n
energies — L@ =5(F@ - KFE@-w+2 ) (gl 1)
i=1

» The coefficient in the local junction energy
depends on the local dimer sequence step

» Contraint: ||lgj|I> =1Vi=1...,n




Construct an initial guess

Two main steps:

» generate special helicoidal configuration that have specific integer link number m

» deform the helicoidal equilibrium into a twisted circle




Helicoidal configuration

_ 24n
w= (X1, U,V, X2, U, V,..., X, U, V) €ER

> the vectors u, v € R3 (inter variables) are always the same

» uniformity of inter variables

» rotation axis (u) is parallel to the helix axis

» each base pair frame origin has the same distance (p) from the axis center-line

» relative distance between two consecutive base pairs is the same



Helicoidal
configuration

base pairs frame axis
rotate through u

v, = translation in the
plane u

v = translation along
direction u

@ = angle of rotation

Plane u
T
i+3




Helicoidal configuration

— — ENERGY:
2= (X1, X2, eeny Xy U, V) € RIPO
|
-
Pz=w - U*(Z)=§(PZ—/U) K(Pz — p)
s O 0 0 VU*(z) =0 < P'KPz=PKu
0 0 0 I i o ‘ ' -
0 Iy 0 0 l
p— 0 0 I c R24nx18n+6
: : : : Solve this equation to
0 0 ... It O find the global minimum
0O O 0 I




Helicoidal configuration

— 0 0O O
» the number of links between the 0 0 0
two ends must be an integer .
umber m ___ ZTEZ — ||Lt||2 E = : c R18n+6x18n+6
| 0 L 0
on = 2mm 0 0 0
]l = 10 tan “10—0 Lz ) = U'(2) + ()
\ l
| VL(z,) =0 < (PTKP-1E); = PKu
m
llu|| = 10 tan — l
n
— Solve this equation to

find the minimum



Kahn-Crothers Widom 601
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Pyne 251bp Pyne 339bp
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In general we should
check that the matrix is
symmetric and positive
definite

(PTKP—AE); = PKu
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Analysis on initial guesses

If we change inter variables of the periodic ground-state, while intras and
phosphate are left as they are, we can find a good initial guess for the energy
optimization

!

Consider two different initial guesses for the energy optimization:
»configuration obtained with the bBDNA software

» configuration in which the intra and phosphate coordinates are the same of the
periodic ground-state, while the inter coordinates are the ones of the configuration
obtained with the bBDNA software



Analysis on initial guesses

Seqguences: MatLab fminunc:
»Kahn-Crothers » Trust Region
» Widom 601 » Quasi-Newton

» Pyne 251bp
» Pyne 339bp




Results

Abs. difference: 1.0e-3

» Kahn-Crothers (4 i.g.): they all converge to the same mmm) Neaative ei | 0
egative eigenvalues:

solution, and they are all local minima

> Pyne 251 (4 i.g.): they all converge to the same mm)  Abs. difference: 1.0e-2
solution, and they are all local minima Negative eigenvalues: 0



Results

» Widom 601 (4i.g.): '
= GUESS 1: absolute difference 1.0e-3, but one has a mm)  Abs. difference: 1.0e-3

negative eigenvalue (-1.3285e-05 ) and the other one Negative eigenvalues: {1,0}
has all positive eigenvalues (minimum is 3.4011e-05 )

= GUESS 2: converge to the same point which is not a =) Abs. difference: 1.0e-3
minimum (Quasi-Newton + Trust Region) Negative eigenvalues: 2

Abs. difference: 1.0e-3

= GUESS 3: converge to the same saddle point ) Negative eigenvalues: 1

= GUESS 4: they all converge to the same solution, and ‘ Abs. difference: 1.0e-3
they are all local minima (Quasi-Newton + Trust Region) Negative eigenvalues: 0



Trust Region

G 4 W . d 60 1 b bBDNA bBDNA with gd-intras
uess 4, Widom o e
» If we run Trust Region =
method we find two different
solutions:
= one equal to M. Beaud one Energy: 213 oot e ey it st e S
o o4 ,-"0._ "".
= one closer to the initial guess  Energy: 280 ’-/-/.’7/&,
Y-Z
» If we run Quasi-Newton +
Trust Region method they
both converge to the one e
Beaud found % §-ﬂwd%
- - \ VY S
> X-Z § ;;'i_: ;E__
Abs. difference: 1.0e-4 (&) Linkes &, Bnergy: 1293 Z% _' : ’7'/;,’/ e g. 3
Negative eigenvalues: 0 bBDNA Initial guess i SN



Results

» Pyne 339 (4i.g.): _
" GUESS 1: they all converge to the same solution,  mmm) Abs. difference: 1.0e-4
and they are all local minima Negative eigenvalues: 0

(Quasi-Newton + Trust Region)
' Abs. difference: 1.0e-2

= GUESS 3: they all converge to the same solution, Negative eigenvalues: 0

and they are all local minima

= GUESS 6: they all converge to the same solution, —> Abs. difference: 1.0e-2
and they are all local minima Negative eigenvalues: 0

= GUESS 9: converge to the same point which is not a ‘ Abs. difference: 1.0e-4
minimum Negative eigenvalues: +5



Guess 9, Pyne
339bp

Trust Region method is really
slow

fminunc stops because step-size
is too short

Might be that in the starting
point the function is too different
from a quadratic so the algorithm
need a really small region for the
model to be adequate

Using Quasi-Newton we obtain
a configuration closer to the
initial guess but with much lower

energy

SN i, B PRS
§ .;,\é\}\\ﬁ\\‘.*'fé’fl'ﬂr %z’ ) bBDNA Initial guess
= oad %r% Energy: 65140
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M. Beaud solution Quasi-Newton solution

Energy: 1206
Wit




Conclusions

» Minimum eigenvalue of the Hessian always really small (1.0e-08 ~ 1.0e-04)
» Maximum eigenvalue of the Hessian always really big ( ~ 1.0e+4)
» Condition number of the Hessian really big (1.0e+09 ~ 1.0e+14)

» This leads to oscillations and might be the reason why the convergence to the
exact solution is really slow

» The solutions with many negative eigenvalues also have gradients that are not
close to the zero value

» All energy optimization converge to the same configuration with the two
different initial points



‘ﬂ Thank you for
1 listening!




