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Question 1

(a) ∂S = C1 ∪ C2 where C1 is the elipse x2 + 4y2 = 4 in the 2nd, 3rd and 4th quadrants
of the x-y plane and C2 is the line x+ 2y = 2 in the first quadrant.

C1 and C2 can be parametrised as
C1 = α1(t) = (2 cos(t), sin(t)) where π

2 < t < 2π and
C2 = α2(t) = (2(1− t), t) where 0 < t < 1.

Both C1 and C2 are smooth since α′1,2(t) exist and are continous.

α′1,2(t) 6= (0, 0)⇒ α is a regular parametric representations.

(b) Let f(x, y) = (xy2 − xy, x2y)

Now, I1 =
∫
∂S f(x, y) · ds =

∫
C1

f(x, y) · ds +
∫
C2

f(x, y) · ds

We then write the integral along the curve in terms of the parametric representa-
tion as∫
C1

f(x, y) · ds =
∫ 2π

π
2
〈f(α1(t)), α

′
1(t)〉dt and∫

C2
f(x, y) · ds =

∫ 1
0 〈f(α2(t)), α

′
2(t)〉dt

Since the orientation of the tangent is not mentioned in the question, full points
are awarded for either orientation.

I2 =
∫
∂S f(x, y) · ds =

∫
C1

f(x, y) · ds +
∫
C2

f(x, y) · ds

∫
C1

f(x, y) · ds =

∫ 2π

π
2

〈f(α1(t)), α
′
1(t)〉dt

=

∫ 2π

π
2

〈(2 cos(t) sin2(t)− 2 cos(t) sin(t), 4 cos2(t) sin(t)), (−2 sin(t), cos(t))〉dt

=

∫ 2π

π
2

−4 cos(t) sin3(t) + 4 cos(t) sin2(t) + 4 cos3(t) sin(t)dt

=

[
− sin4(t) +

4

3
sin3(t)− cos4(t)

]2π
π
2

=− 4

3

1



∫
C1

f(x, y) · ds =

∫ 1

0
〈f(α1(t)), α

′
1(t)〉dt

=

∫ 1

0
〈(2(1− t)t2 − 2(1− t)t), 4(1− t)2t), (−2, 1)〉dt

=

∫ 1

0
(−4(1− t)t2 + 4(1− t)t+ 4(1− t)2t)dt

=

∫ 1

0
(4t3 − 4t2 − 4t2 + 4t+ 4t3 − 8t2 + 4t)dt

=

∫ 1

0
(8t3 − 16t2 + 8t)dt

=

[
2t4 − 16

3
t3 + 4t2

]1
0

=
2

3

Now we have I2 = −4
3 + 2

3 = −2
3

(c) Let C be a simple closed, piece-wise smooth curve C in a 2D x-y plane and S be the
surface on the plane bounded by C. Let f(x,y) and g(x,y) be functions with continous
partial derivatives, defined on the plane. Now,∫

S

(
∂g

∂x
− ∂f

∂y

)
dxdy =

∫
C
fdx+ gdy

where the integration along C is done along positive orientation.

(d) Given that ρ(x, y) = 1. Mass M is given by

M =

∫
S
dxdy

If one takes f = y and g = 3x, ∂g
∂x −

∂f
∂y = 2 and applies Green’s theorem one

can write

M =
1

2

∫
∂S

(y, 3x) · ds

=
I1
2

Centre of mass along x, xc is given by

xc =
1

M

∫
S
xdxdy
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Now, taking f = xy2 − xy and g = x2y and applying the Green’s theorem, one
gets

xc =
1

M

∫
∂S

(xy2 − xy, x2y) · ds

=
2I2
I1

Similarly one finds

yc =
2I3
I1

3



Question 2

(a) S1 is the face of the tetrahedron with vertices at (0,0,0), (1,0,0), (0,1,0) and (0,0,1),
that is opposite to the origin and bounded by the planes x=0, y=0 and z=0. A simple
regular parametric representation of S1 is
S1 = α(x, y) = (x, y, 1− x− y) where 0 < x < 1 and 0 < y < 1− x.

∂1α(x, y) = (1, 0,−1) and ∂2α(x, y) = (0, 1,−1).

N =
∂1α× ∂2α
||∂1α× ∂2α||

=
1√
3

(1, 1, 1)

(b) Flux of f across S1 in the direction of N1 = N is given by
∫
S 〈f ,N〉dσ.

This can be written in terms of the parametric representation as∫
S
〈f ,N〉dσ =

∫ 1

0

∫ 1−x

0
〈f(α),N〉||∂1α× ∂2α||dydx

=

∫ 1

0

∫ 1−x

0
〈((1− x− y)x, (1− x− y)y), 1− (1− x− y)2), (1, 1, 1)〉dydx

=

∫ 1

0

∫ 1−x

0

(
−2y2 + (3− 4x)y − 2x2 + 3x

)
dydx

=

∫ 1

0

(
2

3
x3 − 3

2
x2 +

5

6

)
dx

=
1

2

(c) ∇ · f = 0

∇× f = (−y, x, 0)

(d) See lecture notes
(e) By (c), f is incompressible. Since R3 is star-shaped, there exists a vector field g ∈

C1(R3,R3) such that f = ∇× g.

Observe that since ∂S1 = ∂S2 =: ∂S, we have that S1 ∪ S2 ∪ ∂S forms the boundary
of a volume W ⊂ R3. Let N2 be the vector field normal to S2, pointing toward the
interior ofW . Let N1 be the vector field normal to S1 defined in (b). Applying Stokes’
theorem twice, we get :

∫
S2

〈f ,N2〉dσ =

∫
S2

〈∇ × g,N2〉dσ =

∫
∂S2

g · dl

=

∫
∂S1

g · dl =

∫
S1

〈∇ × g,N1〉dσ =

∫
S1

〈f ,N1〉dσ =
1

2

by (b). Here ∂Si is positively oriented with respect to Ni, i = 1, 2. Similarly, for N2

pointing outward W , we have

∫
S2

〈f ,N2〉dσ = −1

2
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Question 3

I. (a) Firstly we apply the standard separation of variables assumption un(x, y) =
f(x)g(y) then

1

f

∂2f

∂x2
= λ = −1

g

∂2g

∂y2

Then f ′′ = λf .
In order to satisfy the given boundary conditions for x = 0 and x = 1 we must
have λ < 0.
So f is of the form f(x) = C sin(nπx) +D cos(nπx).
Also g′′ = −λg.
Therefore g is of the form

g(y) = A sinh(nπ(1− y)) +B cosh(nπ(1− y))

= P e
√
−λny +Qe−

√
−λny

Using the boundary conditions we see that B = 0 and D = 0. Some equivalent
forms for g are

g(y) = A
(

enπ(1−y) − e−nπ(1−y)
)

= A
(
enπ−nπy − e−nπ+nπy

)
= A

(
e2nπ−nπy − enπy

)
= A

(
e−nπy − e−2nπ+nπy

)
Therefore un = cn sinh(nπ(1− y)) sin(nπx).
Now we seek a series solution u =

∑
cnun. The coefficients cn are given by

cn =
2

sinh(nπ)

∫ 1

0
φ(x) sin(nπx) dx

(b) The corresponding solutions are vn = dn sinh(nπy) sin(nπx).

II. (a) Firstly ∆un = 0 therefore, clearly, ∆∆un = 0.
The Dirichlet boundary conditions are satisfied by I.(a).
Now we have

∂2un
∂x2

= f ′′(x)g(y) = λun(x, y) and
∂2un
∂y2

= f(x)g′′(y) = −λun(x, y)

with λ 6= 0. Therefore, at any boundary with zero Dirichlet boundary condition,
we also have zero second derivative.
Equivalently, at any boundary with non-zero Dirichlet boundary condition, we
also have non-zero second derivative.

(b) We have
gxx(x, y) = (ax+ by + c)wxx(x, y) + 2awx(x, y)

and
gyy(x, y) = (ax+ by + c)wyy(x, y) + 2bwy(x, y)
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Therefore

∆g = (ax+ by + c)∆w + 2awx(x, y) + 2bwy(x, y) = 2awx(x, y) + 2bwy(x, y)

Alternatively, let f(x, y) = ax+ by + c then

∆g = ∇ · (∇g) = ∇ · (f∇w + w∇f)

= (∇f) · (∇w) + f (∆w)︸ ︷︷ ︸
=0

+(∇w) · (∇f) + w (∆f)︸ ︷︷ ︸
=0

= 2(∇f) · (∇w)

which, in general, is not equivalent to 0.
Finally

∆∆g = ∆(2(∇f) · (∇w)) = ∇ · ∇(2(∇f) · (∇w))

= 2∇ · (H(f)︸ ︷︷ ︸
=0

∇w +H(w)∇f)

= 2∇ ·
(
awxx + bwxy
awyx + bwyy

)
= 2awxxx(x, y) + 2bwxxy(x, y) + 2awxyy(x, y) + 2bwyyy(x, y)

= 2a
∂

∂x
(∆w) + 2b

∂

∂y
(∆w) = 0

(c) We look for solutions of the form hn(x, y) = αnyun(x, y) + βn(1 − y)vn(x, y)
where un, vn are the solutions found in parts I.(a) and I.(b) respectively.
By II.(b) and the principle of superposition we can see that ∆∆hn = 0.
By construction, hn satisfies both the conditions on the boundaries x = 0 and x =
1. Also, by construction, hn satisfies the Dirichlet conditions on the boundaries
y = 0 and y = 1. All that remains is to satisfy the second order derivatives on
the top and bottom.
We calculate the derivatives of hn

∂hn
∂y

= αn

(
y
∂un
∂y

+ un

)
+ βn

(
(1− y)

∂vn
∂y

+ vn

)
∂2hn
∂y2

= αn

(
y
∂2un
∂y2

+ 2
∂un
∂y

)
+ βn

(
(1− y)

∂2vn
∂y2

− 2
∂vn
∂y

)
Substituting the forms from parts I.(a) and I.(b) and evaluating at the boundaries
gives

∂2hn
∂y2

(x, 0) = (−2αnnπ cosh(nπ)− 2βnnπ) sin(nπx)

∂2hn
∂y2

(x, 1) = (−2αnnπ − 2βnnπ cosh(nπ)) sin(nπx)

The second derivative at the boundary y = 1 is zero so αn + βn cosh(nπ) = 0.
Using this to substitute for αn at the boundary y = 0 we get

∂2hn
∂y2

(x, 0) = 2βnnπ
(
cosh2(nπ)− 1

)
sin(nπx) = 2βnnπ sinh2(nπ) sin(nπx)
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Then

hn(x, y) = −βn cosh(nπ)y sinh(nπ(1−y)) sin(nπx)+βn(1−y) sinh(nπy) sin(nπx)

For the series solution to given boundary value problem the coefficients are given
by

βn =
1

2nπ sinh2(nπ)

∫ 1

0
ψ(x) sin(nπx) dx
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