
Part of the supporting material of: Sequence-dependent persistence
lengths of DNA (Mitchell, Glowacki, Grandchamp, Manning, and

Maddocks)

J. of Chemical Theory and Computation (2016)
DOI: 10.1021/acs.jctc.6b00904

S.1 Computation of coarse-grain approximations to the tangent
The unit tangents t[k]i (where for simplicity we only take k odd) to the straight lines that are the best least squares
linear approximation to a consecutive run of (k + 1) base-pair locations ri, . . . , ri+k can be computed for any
configuration, t[k]i as follows. First calculate the (geometrical) centre of mass cki = (

∑j=i+k
j=i rj)/(k + 1). Then t

[k]
i

is the unit eigenvector (with positive projection on the chord ri+k − ri) corresponding to the largest eigenvalue of
the (local gyration) matrix

∑j=i+k
j=i (rj − cki )⊗ (rj − cki ). The case k = 1 reduces analytically to the unit tangent to

the junction chord between two consecutive base pair origins t
[1]
i = (ri+1 − ri)/ ‖ri+1 − ri‖, while nonlocal coarse

grain choices k > 1 must be computed numerically.

S.2 Details regarding the cgDNAmc code

S.2.1 Downloading the software
The C++ code cgDNAmc, along with two libraries it depends upon, algebra3d and cgDNArecon, is freely available
with online instructions on how to download, compile, and run it.1 The user has to supply any desired problem-
specific, post-processing code fragments implementing specialised techniques such as the sliding-window average
used in modelling cryo-EM experimental data.

The remainder of this section describes our Monte Carlo implementation in further detail. The simulations
described here are not particularly intensive, nevertheless we have taken some efforts to make cgDNAmc code
efficient. Benchmark results presented below were obtained on a mid-range laptop computer.

S.2.2 Direct Monte Carlo sampling
As described in the main text, a key step in our direct Monte Carlo sampling is the Cholesky decomposition
K = LLT of the sparse stiffness matrix K. For efficient sampling, the key property of the Cholesky factorization is
that if K has bandwidth m (meaning that all nonzero entries are within m rows of the diagonal, so for us m = 17),
then L also has bandwidth m After this step, a new energy E(y) = 1

2y
Ty with y = LT (w− ŵ) yields a probability

density function on y that is the product of uncoupled univariate normal distributions:

py(y) =

12n−6∏
i=1

(
β

2π

) 1
2

e−
β
2 y2
i . (S.1)

To make a single draw y from this distribution, each component yi is taken as a random number from the normal
distribution with mean 0 and standard deviation β− 1

2 . Note that units of the stiffness matrix K in the cgDNA
model are such that β = 1. For the sake of efficiency uniform deviates are generated using the xorshift1024*
implementation2 of the xorshift algorithm to normal deviates using the ZIGNOR implementation3 of the Ziggurat
algorithm

The draw of the internal coordinates w corresponding to y is obtained from the equation y = LT (w − ŵ) by
solving LT z = y for z (taking advantage of the upper triangular, banded structure of L using an appropriate solver
from LAPACK and then setting w = z+ ŵ.

An alternative approach to obtain direct sampling would involve a spectral decomposition of K in place of the
Cholesky factorisation, i.e.

K = PDPT , (S.2)
1see http://lcvmwww.epfl.ch/cgDNA
2http://arxiv.org/abs/1404.0390
3http://www.doornik.com/research/ziggurat.pdf

1

http://lcvmwww.epfl.ch/cgDNA
http://arxiv.org/abs/1404.0390


with P orthogonal andD diagonal. Here a similar change of variable y = D
1
2PTw can be used so thatw = PD− 1

2y.
This has been successfully exploited by Czapla et al. for the case where K is block diagonal. However in our setting
with a (potentially large) banded K that approach is significantly less efficient, since the matrix PD

1
2 would not

be sparse, and a dense matrix-vector multiply must be carried out in the construction of each draw. To give an
example a simulation calculating 〈t[0]i · t

[0]
0 〉 for 1 million configurations of the λ3 sequence of length 300 bp using

Cholesky decomposition takes just above 3 minutes, while using spectral decomposition the running time is around
2 hours.

S.2.3 Rigid base pair marginals
We remark that many expectations of interest involve only the inter part of the configuration variable w so that
the number of degrees of freedom can be reduced by one half by computing the marginal distribution for the inter
variables. As the original distribution is Gaussian its marginals are also Gaussian, but the resulting marginal
stiffness matrix is now dense, so that sparse computations can no longer be used. As a consequence a calculation of
〈t[0]0 · t

[0]
i 〉 for 1 million configurations of the λ3 fragment using the marginal distribution takes around 23 minutes,

nearly 7 times slower than generating ensembles in the full w space and discarding all the intra variables.

S.2.4 Reconstruction of 3D shapes
The first step in calculating our observables is reconstructing a 3D shape of a molecule from a given internal coordi-
nate vector w as detailed in As mentioned in the previous section, the calculation of tangent-tangent correlations,
arclengths and Flory vectors require only the inter part of w. As a result we only reconstruct base pair positions
ri and orientations Ri, which takes only half the time of reconstructing a full 3D configuration of rigid bases. The
reconstruction procedure, implemented by the cgDNArecon library, involves evaluating half rotations, composing
rotations, applying rotations to vectors and adding vectors.

A careful numerical study of efficiency of different parametrisations of rotations (namely Cayley vectors, unit
quaternions and rotation matrices) using the algebra3d library has been performed. An explicit half-rotation formula
for unit quaternions proved to be 60% faster than a similar formula for Cayley vectors. (For rotation matrices,
the analogous calculation would require, e.g., an iterative algorithm of computing the principal square root and so
was not considered). As expected, for composition of rotations, quaternion multiplication was faster than matrix
multiplication, with our observed difference being 20%. On the other hand, in the case of applying a rotation to
a vector, the matrix-vector product was 5 times faster than a specialised quaternion multiplication. In fact the
fastest way to apply a rotation given as unit quaternion to a vector was to convert the quaternion to a rotation
matrix first (this takes only twice the time of the matrix-vector product). Efficiency of converting between all
three parametrisations was also analysed. This suggested, for example, that the formula for computing a rotation
matrix for a given Cayley vector of times slower than conversion of a Cayley vector to quaternion and subsequent
conversion of the quaternion to a rotation matrix.

Considerations similar to the above suggested two approaches to the reconstruction procedure. The first one
uses directly the Cayley vectors of the configuration variable w to calculate half rotations and converts to rotation
matrices for all subsequent calculations. The other one, that finally proved to be 30% faster, begins with converting
the Cayley vectors to quaternions, then computes half rotations using quaternions, and finally converts quaternions
to matrices when rotations need to be applied to vectors.

S.2.5 Remarks on parallelisation
We first note that in cgDNAmc pseudo-random numbers are generated sequentially to ensure reproducibility of
results. Also the reconstruction procedure is inherently sequential. The conversion of the decoupled normal deviates
y to an internal coordinate vector w depends on the underlying LAPACK routine, that might already be optimized
to use available multiple cores, but the cgDNAmc code has no other explicit parallelisation. In part this is because
each configuration can be generated and analysed independently of all others, so that the suggested solution for
generating large ensembles is to run multiple independent simulations at the same time, with a different seed for the
pseudo-random number generator in each instance. By linearity, expectations from multiple runs can be aggregated
as a weighted average with weights proportional to the number of configurations generated in each independent
run. As an example we achieved a 2.4 speed up in this way by running four independent threads on a single laptop.

2



S.2.6 Run-times of key steps of algorithm
A simple profile of run times for the key steps of a simulation that calculates five expectations using 1 million
configurations of the 300 bp λ3 oligomer is:

Operation Run time [s] % of simulation
Generation of y 59.08 12.66%

Transformation to w 74.75 16.02%
Shape reconstruction 41.41 8.87%
Calculating 〈t[0]0 · t

[0]
i 〉 6.63 1.42%

Calculating 〈t[11]0 · t[11]i 〉 273.28 58.55%
Calculating 〈s[1]i 〉 3.72 0.80%
Calculating 〈s[11]i 〉 0.61 0.13%

Calculating Flory vecs 6.12 1.30%
Other 1.14 0.24%

Entire simulation 466.74 100.00%
The time necessary to evaluate most of the expectations is a negligible fraction of the total, except for the generalized-
chord expectation 〈t[11]0 · t[11]i 〉, where the computation of the principal eigenvector of the local gyration matrix is
quite costly.

3


	Computation of coarse-grain approximations to the tangent
	Details regarding the cgDNAmc code
	Downloading the software
	Direct Monte Carlo sampling
	Rigid base pair marginals
	Reconstruction of 3D shapes
	Remarks on parallelisation
	Run-times of key steps of algorithm


