
DNA Modelling

1 What Can Be Done With the cgDNA Model?

These notes can be regarded as a polycopie for the lectures given on 3.11.17 and 10.11.17. Thank you
to Alastair Flynn for typing a first draft.

The long-term goal (ideally of any mathematical model) is to predict or explain/interpret experimental
data or observations. We will discuss (briefly due to available time in the semester) two experimental
contexts in which the cgDNA model can be applied:

A Looping or cyclisation experiments

B The notion of persistence lengths

The length scale of experiments of type A is usually 100-500 basepairs or so, while the scale of type B
is usually 100-1500 basepairs, both of which are well beyond atomistic MD simulations even for short
durations in time, so a coarse-grain model is required, and we will of course use the cgDNA model
to run some simulations. Modelling looping involves estimating probabilities, which we will consider
later, while modelling persistence lengths involves estimating expectations, which we will consider
first.

Let 〈·〉 denote expectation with respect to the cgDNA pdf (for a given sequence S and parameter set
P) which we recall takes the form:

ρ(w;S,P) =
1

Z
exp

{
−1

2
(w − µ)K(w − µ)

}
.

Explicitly the expectation of any given function φ(w) is

〈φ(w)〉 :=
1

Z

∫
· · ·
∫
φ(w) exp

(
−1

2
(w − µ)K(w − µ)

)
dw.

Then (standard Gaussian integral formulas as described in Series 1 state that) 〈w〉 = µ, where µ is
just the minimum, or ground state, of the ‘free energy’

1

2
(w − µ)K(w − µ).

We will discuss units and scalings in this free energy during the parameter estimation part of the
course later in the semester.

Experimental data from both X-ray crystallography and NMR (nuclear magnetic resonance), which is
usually at the scales of 10-20 bp, provides structural data in the form of PDB files of atomic Cartesian
coordinates of an “average” structure that can be fit to a cgDNA configuration w∗. It then seems
reasonable to directly compare the configuration coordinates w∗ of such an experimentally observed
“average” structure with the cgDNA ground state µ = 〈w〉. The resulting comparison seems quite
encouraging. In particular the observed errors seem to be consistently smaller than the variation of
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the data with local sequence composition, see for example data presented in [1]. In particular in
this structural, short length scale, experimental data it is possible to make a full comparison between
experimental and coarse grain predictions for the expectations of both the intra and inter base parts
of the cgDNA configuration variables. However it is unclear how to compare experimental data of this
type with cgDNA predictions of the stiffness matrix K.

In contrast to X-ray crystallography and NMR data, both looping and persistence length experiments
only involve the rigid basepair frame orientation and position (Ri, ri) ∈ SO(3) × <3 i = 2, . . . , n,
which in turn can be reconstructed as a (highly non-linear and non-local) function of only the inter
variables in w, with one six vector for each of the (n−1) junctions, plus the values of (R1, r1). We will
therefore compute expectations 〈Ri, ri〉 by construction of the corresponding functions φ(w), where
in fact φ depends on only the inter part of w. Within the cgDNA model these expectations will be
computed numerically via Monte Carlo sampling, while in a simplified version of the cgDNA model
that corresponds to a version of the classic worm like chain, we will approximate the expectations
analytically to reveal connexions with the entries in the stiffness matrix for the simplified model that
is analogous to, but much simpler than, the cgDNA stiffness matrix K.

The fact that the cgDNA pdf ρ is Gaussian implies that we can efficiently draw an ensemble of

configurations
{
w[m]

}M
1

from the pdf. Such an algorithm is implemented in the cgDNAmc code, which
e.g. can generate a million or so samples (i.e. M = 106) in only a few minutes on a contemporary laptop
for a 300 bp fragment (of a given sequence S and for a given parameter set P). This level of efficiency
is only possible for the part of the cgDNAmc code (the only part that will be used in the course)
that implements a direct Monte Carlo method which uses linear algebra to reduce the multivariate
cgDNA Gaussian to a product of scalar normal (i.e. one-dimensional Gaussian) distributions that can
be sampled by general purpose, highly optimised, random number generators. The efficiency of the
direct sampling of cgDNAmc also depends crucially on the fact that the cgDNA stiffness matrix K
is sparse, and, more specifically, banded around the principal diagonal. There will be some further
comments about this feature later.

Once we have a (sufficiently large) ensemble
{
w[m]

}M
1

of configurations drawn from the cgDNA pdf, we
can easily approximate both probabilities (as necessary for modelling looping experiments, essentially
by counting how many configurations satisfy some event, more comments later), and expectations.
An expectation 〈φ(w)〉 is estimated as:

〈φ(w)〉 ≈ 1

M

M∑
j=1

φ(wj) (1)

where wj : j = 1, . . . ,M are the samples. Two classic choices of φ leading to the notion of persistence
length are:

1. φ(w) = RT
1 (rn − r1) i.e. the components of the end-to-end chord vector with respect to the first

basepair frame. These triples of numbers are called Flory vectors. Note that for components
with respect to the lab (or simulation cell) frame, we have automatically that 〈rn − r1〉 = 0
by invariance of the free energy of the structure with coordinates w under an overall rotational
symmetry in the absence of any external loading, while (rn− r1) changes under such a rotation.
In other words there is a uniform pdf to overall rotations, and therefore 〈rn−r1〉 = 0. In contrast
the triple φ(w) are the components of the relative end-to-end displacement in the first basepair
frame, which are unchanged by an overall rotation, so their average can be non vanishing.

2. φ(w) = RT
1Rn, which is the relative rotation (on the right) from the first base-pair orientation

R1 to the nth base-pair orientation Rn. As before the average 〈Rn〉 of the absolute orientation of
the nth base pair frame must vanish, while (for fixed n) the expectation of the relative rotation
〈RT

1Rn〉 need not a priori vanish. However we will see that as n → ∞ 〈RT
1Rn〉 does in fact

vanish in a very specific manner.

2



The functions φ given in 1 & 2 comprise a 3-vector and a 3×3 matrix for each base pair n = 2, . . . , N ,
and 〈R1, r1〉 can be regarded as fixed to eliminate the overall translation and rotation. The functions
φ can be evaluated relatively efficiently using the linear algebra associated with SE(3) that was
introduced earlier. Specifically let

Xn =

(
Rn rn
0 1

)
∈ SE(3) n = 2, . . . N,

be the absolute orientation and position of the nth base pair and

An =

(
Qn qn
0 1

)
∈ SE(3) n = 1, . . . N − 1,

be the junction displacements so that we have the recursion

Xn = Xn−1An−1, n = 2, . . . N.

Then Xn = X1A1 · · ·An−1 so

X−1
1 Xn =

n−1∏
k=1

Ak.

And finally for any given configuration w we have (for n ≥ 3 with n = 2 being a simple special case
in which the summation notation for δn−1 degenerates)[

RT
1Rn RT

1 (rn − r1)
0 1

]
= X−1

1 Xn =

n−1∏
k=1

Ak =

[∏n−1
k=1 Qk(uk) δn−1

0 1

]
where

δn−1 = q1(u1,v1) +

n−2∑
k=1


k∏
j=1

Qj(uj)

qk+1(uk+1,vk+1)

= q1(u1,v1) +Q1(u1)q2(u2,v2) + · · ·+ {Q1(u1) · · ·Qn−2(un−2)}qn−1(un−1,vn−1),

and we have explicitly added the dependence of each quantity on the configuration variable w with the
notation that ui is the Cayley vector in the ith junction and vi is the translation coordinates in the ith
junction i.e. the six inter variables in the ith junction. Each matrixQk(uk) ∈ SO(3) depends only on its
junction Cayley vector, while each vector qk(uk,vk) depends on all six junction coordinates. Note also
that multiplication of rotation matrices does not in general commute (in fact only if there is a common
rotation axis). This means that the product notation

∏n−1
k=1 Qk has to imply a prescribed ordering,

which we take to mean indices increasing from left to right, so
∏n−1
k=1 Qk = Q1Q2 . . . Qn−1. These

formulas are easily verified by induction on the number of basepairs using block matrix multiplication.

We want to compute [
〈RT

1Rn〉 〈RT
1 (rn − r1)〉

0 1

]
=

[
〈
∏n−1
i=k Qk(uk)〉 〈δn−1〉

0 1

]
, (2)

where

〈δn−1〉 = 〈q1(u1,v1)〉+
n−2∑
k=1

〈
k∏
j=1

Qj(uj)

qk+1(uk+1,vk+1)

〉

for expectations 〈·〉 with respect to a given pdf (and the locations of the expectation brackets 〈·〉 should
be noted carefully, they distribute over + but not over any form of matrix-matrix or matrix-vector
multiplication). For the cgDNA model pdf the distribution of each set of junction variables (uk,vk) is
not independent of all the other junction variables. Consequently the only currently known possibility
of evaluating these formulas is to approximate the expectations numerically using the cgDNAmc code
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to a) generate a sample ensemble
{
w[m]

}M
1

, b) for each w[m] carry out all the matrix and vector
multiplications to reconstruct the frames (Ri, ri) ∈ SO(3) × <3, c) average over all reconstructions,
i.e. implement the approximation (1). The cgDNAmc code is all set up to do this automatically, and
the approximate benchmarks stated above include the reconstruction computations. In the exercises
you will run cgDNAmc and plot as output ln〈RT

1Rn〉(3,3) and 〈RT
1 (rn − r1)〉 as functions of n. You

will observe that for many sequences the former scalar semi-log plot is close to a linearly decreasing
function (which provides an exponential rate at which 〈RT

1Rn〉(3,3) vanishes), while the latter vector
tends to a fixed point 0 6= δ ∈ <3, both as n→∞ (which means in practice for n sufficiently large).

It turns out that these two behaviours are features of linear chains of rigid body frames that are quite
robust to changes in the precise model, i.e. to the specific pdf that is assumed to describe the statistics
of the polymer chain, and which is used in the evaluation of the expectations 〈·〉. To obtain more
insight into why the behaviours arise, we can actually derive formulas implying both observations, but
only in the context of a simpler model, which is finally a version of the Helical Worm Like Chain (or
HWLC) of Yamakawa [2] which is itself a slightly more detailed version of the Twisted Worm Like
Chain (TWLC) or just the Worm Like Chain (WLC) models that are discussed in many places in the
polymer physics literature. The following discussion is largely based on Chapters 2 and 7 of [3].

The main simplifying assumption that can be made (and which was proposed by Schellman and Flory
if not earlier) is that the statistics of each junction are independent one from another. In other words
each junction is independently distributed or i.d. When the junctions are i.d. (which we stress is not
the case for the cgDNA model pdf) then (2) simplifies (greatly) to assume the form[

〈RT
1Rn〉 〈RT

1 (rn − r1)〉
0 1

]
=

〈
n−1∏
k=1

Ak

〉
=

n−1∏
k=1

〈Ak〉 =

[∏n−1
i=1 〈Qi〉 〈δn−1〉
0 1

]
where now

〈δn−1〉 = 〈q1〉+
n−2∑
k=1


k∏
j=1

〈Qj〉

 〈qk+1〉 .

If in addition the chain is uniform (which we again emphasize is also not the case for the cgDNA
model pdf), the statistical behaviours of each junction are both independent and identical. That is
the junction statistics are i.i.d., which means that there is a single matrix 〈Q〉 and vector 〈q〉 such
that 〈Qi〉 = 〈Q〉 and 〈qi〉 = 〈q〉, ∀i. Now (2) reduces to[

〈RT
1Rn〉 〈RT

1 (rn − r1)〉
0 1

]
=

[
〈Q〉n−1 〈δn−1〉

0 1

]
where now 〈δn−1〉 =

(∑n−1
k=1〈Q〉k−1

)
〈q〉 (and where we have now adopted the notation 〈Q〉0 = I).

Using the matrix version of the summation formula for a finite geometric series we have

〈δn−1〉 = (I − 〈Q〉)−1(I − 〈Q〉n−1)〈q〉.

The proof of the matrix geometric series summation formula is identical to the better known scalar case
that you see in secondary school. Its validity depends only on the assumption that the matrix (I−〈Q〉)
is invertible. We note that for any Q ∈ SO(3), (I−Q) is certainly not invertible, because Q has λ = 1
as an eigenvalue so that (I−Q) has a one-dimensional null space. However Q ∈ SO(3) 6⇒ 〈Q〉 ∈ SO(3).
In fact if any two Qi in the ensemble generating 〈·〉 have different axes of rotation then ||〈Q〉|| < 1
(where || · || is the spectral radius norm) so that (I−〈Q〉)−1 exists and entry-wise 〈Q〉k → 0 as k →∞.
The norm inequality can be seen from the following argument. Suppose 〈Q〉 =

∑M
1 Qi/M . Then for

any unit vector x, 〈Q〉x =
∑M

1 Qix/M =
∑M

1 yi/M where for each i, yi := Qix is a unit vector,
because it is a rotation of a unit vector. But the unit sphere is convex in the sense that any convex
linear combination of two or more distinct unit vectors on the surface of the sphere lies strictly in the
interior of the unit ball. And there will be at least two (and usually many) distinct vectors yi unless
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all of the Qi have x as a common rotation axis. Consequently except in this degenerate case 〈Q〉x is
strictly in the interior of the unit ball for any unit vector x, so that ||〈Q〉|| = supx ||〈Q〉x||/||x|| < 1
as desired. Just with this bound on ||〈Q〉|| we may therefore conclude:[

〈Q〉n−1 〈δn−1〉
0 1

]
→
[

0 δ
0 1

]
as n→∞ where δ := (I − 〈Q〉)−1〈q〉 is called the Flory vector.

The above conclusions are rather strong. They are based on the rather strong hypothesis that the
junction statistics are i.i.d. In fact similar results are obtainable even for non-uniform chains, i.e. the
case where the junction statistics are independent but not identical. But we will not pursue that line
further. It is also the case that the conclusions are quite general in the sense that they assume almost
nothing about the actual i.i.d. junction distribution, only the very weak restriction that ||〈Q〉|| < 1
which is essentially a non-degeneracy condition. In particular it is not assumed that the junction
statistics are of any particular functional form, e.g. Gaussian.

We next show that if the junction statistics are in fact Gaussian, and the chain is sufficiently stiff (in
a sense that will be made precise below), then we can approximate the entries in 〈Q〉 (and therefore
the decay rates in 〈Q〉n) as an explicit function of the coefficients in the Gaussian pdf. This will make
a connexion to the classic notion of persistence length in a polymer.

We will assume that the junction displacements A ∈ SE(3) are identically and independently dis-
tributed in the form

A(u,q) =

[
Q(u) q
0 1

]
where q ∈ <3 is constant and

Q(u) =
1− ‖u‖2

1 + ‖u‖2
I +

2

1 + ‖u‖2
u× +

2

1 + ‖u‖2
u⊗ u (3)

where u is drawn from the multivariate, but decoupled or factorisable or diagonal, Gaussian distribu-
tion

ρ(u) =
1

Z
exp

(
−1

2
(K1u

2
1 +K2u

2
2 +K3(u3 − û3)2)

)
. (4)

We allow a non-zero shift in u3 because DNA is highly twisted, ad we will study the consequences of
the presence of û3, which need not be small. On the other hand DNA is only believed to be slightly
bent, so in this simple model the shifts in u1 and u2 are in the first instance assumed to vanish. This
is just the Euler-Rodrigues formula (of Series 3) for the rotation matrix Q as a function of the Cayley
vector u for the junction, where u is distributed according to the Gaussian (4). This model has seven
constant parameters K1, K2, K3, û3 and the three components of q. It falls in the family of Helical
Worm Like Chains, as its ground state has the points ri lying on a circular helix. The model is not
an immediate special case of cgDNA in part because assuming q constant breaks the Crick-Watson
symmetry that is carefully built in to cgDNA. Assuming q = Q(u)

1
2 v̂, for v̂ constant would restore

Crick-Watson symmetry and would correspond to freezing the cgDNA inter translation variables to
be constant. It is possible to make analogous computations to what follows in such more complicated
cases, including allowing a nondiagonal Gaussian with a more general shift instead of the specific case
(4) (see for some examples [3]) but we will restrict attention to the simpler case, as it is quite standard
in the literature.

We also concentrate on computing the specific matrix entry 〈RT
1Rn〉3,3 = 〈d[1]

3 ·d
[n]
3 〉, which is called the

tangent-tangent correlation, because it is assumed that the d
[n]
3 , i.e. the third columns of the rotation

matrices Rn have been chosen in such a way that they are an approximation to the tangents of a curve

interpolating the points rn. Because the d
[n]
3 are unit vectors for all n, the expectation 〈d[1]

3 · d
[n]
3 〉

can be re-written as 〈cos θ1,n〉, where cos θ1,n := d
[1]
3 · d

[n]
3 is just the cosine of the angle between
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the two unit vectors. Numerical simulations with cgDNAmc reveal that for the cgDNA model pdf of
many sequences S, semi-log plots in the form of ln〈cos θ1,n〉 versus n are reasonably close to linear.
We will show that such a relation is exact in the HWLC model described above, and compute an
approximation for the slope of the line in terms of the model parameters, provided that the stiffnesses
Ki are sufficiently large.

We first show that in our simplified HWLC model the sparsity pattern of 〈Q〉 is of the form

〈Q〉 =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 ,

which is sufficient to show that 〈Q〉n is of the form

〈Q〉n =

∗ ∗ 0
∗ ∗ 0
0 0 〈Q〉n3,3

 .

And this implies that
ln〈cos θ1,n〉 = n ln〈Q〉3,3

which is an exactly linear function of n with a negative slope provided that 0 < 〈Q〉3,3 < 1.

To prove the sparsity pattern we observe that

u× =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 , u⊗ u =

 u2
1 u1u2 u1u3

u1u2 u2
2 u2u3

u1u3 u2u3 u3
3

 .

Considering first the entry 〈Q〉1,3 we see from (3) that we have to evaluate the sum of the two

expectations
〈

u2
1+‖u‖2

〉
and

〈
u1 u3

1+‖u‖2

〉
. Explicitly〈

u2

1 + ‖u‖2

〉
=

1

Z

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

u2

1 + ‖u‖2
exp

(
−1

2
K2u

2
2

)
du2︸ ︷︷ ︸

=0

exp

(
−1

2
(K1u

2
1 +K3(u3 − û3)2)

)
du1 du3,

where we have used the fact that the diagonal Gaussian pdf (4) factors so that the expectation can be
written as nested single integrals in whatever order we choose. And for this ordering of the integration,
the interior du2 integral vanishes because (for each u1 and each u3) the integrand is the product of

an even and odd function of u2 and the range of integration is all of <. Similarly 2
〈

u1 u3
1+‖u‖2

〉
= 0 by

an even-odd argument applied to the ordering in which the interior one-dimensional integral is with
respect to du1. Similar odd-even arguments imply that both contributions to the 〈Q〉2,3 entry vanish.
Then trivially the arguments extend to the 〈Q〉3,1 and 〈Q〉3,2 entries, so that we may conclude the
desired sparsity pattern of 〈Q〉. Regarding 〈Q〉1,2 we note that odd-even arguments also imply that

2
〈

u1 u2
1+‖u‖2

〉
= 0. However the contribution 2

〈
u3

1+‖u‖2

〉
from u× does not vanish whenever û3 6= 0,

because then there is no single integrand that is a product of an even and odd function. The value
of this entry can be approximated when the stiffnesses are large by the method we introduce next,
but we do not pursue that computation. In fact a slightly more refined version of the above argument
shows that the sparsity pattern of 〈Q〉 actually does not depend on the assumed diagonal form of the
stiffness matrix K in (4); the sparsity pattern only depends on the vanishing of the offsets or shifts in
the Gaussian free energy û1 = û2 = 0. However in the next step our formulas would be slightly more
complicated in the non-diagonal case.

Now we compute 〈Q〉3,3. We will make use of:
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Remark. (One-dimensional Gaussian expectation formulae)

1

Z

∫ ∞
−∞

up exp

(
−1

2
Ku2

)
du =

{
0 p is odd
(2j)!
2j j!

K−j p = 2j

where the partition function is (see Series 1)

Z =

∫ ∞
−∞

exp

(
−1

2
Ku2

)
du =

√
2π√
K
.

We will use the above formulas to conclude that for K � 1, and p ≥ 3, 〈up〉 is negligible compared to
〈u2〉. In fact the (multi-variate) version of the cases p = 1, 2 already appeared in Series 1, and for all
p odd the integrals vanish by even-odd arguments. Formulas for the multi-variate case for even p also
exist for p ≥ 4, but the notation becomes a little intricate, and we only need the uni-modal versions.
We will also introduce the technique of parameter differentiation (which was apparently a favourite of
Richard Feynman) to derive the expressions. Explicitly the expression for the partition function can
be differentiated in two ways

√
2π

(
−1

2

)
1

K
3
2

=
∂Z

∂K

=

∫ ∞
−∞

∂

∂K
exp

(
−1

2
Ku2

)
du

= −1

2

∫ ∞
−∞

u2 exp

(
−1

2
Ku2

)
du

Therefore after multiplying both sides by −2, and dividing both sides by Z (using its explicit expres-
sion) we find the case p = 2 or j = 1:

1

Z

∫ ∞
−∞

u2 exp

(
−1

2
Ku2

)
du =

1

K
.

The general formula for j + 1 follows by induction after differentiating with respect to K the identity
for the case j in the form:

(2j)!
√

2π

2j j!
K−(j+ 1

2
) =

∫ ∞
−∞

u2j exp

(
−1

2
Ku2

)
du,

and simplifying (including dividing both sides by Z using its known expression).

Remark. We will also make use of the trivial algebraic identity for any two vectors u and û:

‖u‖2 = ‖(u− û) + û‖2 = ‖û‖2 + 2û · (u− û) + ‖u− û‖2 .

We are now ready to compute an approximate expression for 〈Q(u)〉3,3. From (3) we have that

Q(u)3,3 =
1− ‖u‖2

1 + ‖u‖2
+

2

1 + ‖u‖2
u2

3

=
1 + u2

3 − u2
1 − u2

2

1 + u2
3 + u2

1 + u2
2

=
1 + û2

3 + 2û3(u3 − û3) + (u3 − û3)2 − u2
1 − u2

2

1 + û2
3 + 2û3(u3 − û3) + (u3 − û3)2 + u2

1 + u2
2

=
1 + β(

a−︷ ︸︸ ︷
2û3(u3 − û3) + (u3 − û3)2 − u2

1 − u2
2)

1 + β(2û3(u3 − û3) + (u3 − û3)2 + u2
1 + u2

2︸ ︷︷ ︸
a+

)
, (†)
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where

0 < β :=
1

1 + û2
3

≤ 1.

Now if Ki � 1 for i = 1, 2, 3 then the general idea of the Laplace Method for approximating integrals
with an exponential in the integrand is that the only significant contribution to 〈Q(u)〉3,3 will be
when a+, and therefore also a− are small, because then the integration variable will be close to the
maximum of the pdf (4) and there is rapid decay away from the peak. This means that it is plausible
(and error bounds can be constructed) that we can approximate the integrand in 〈Q(u)〉3,3 by making
a Taylor expansion in a+ of the denominator in (†) to obtain

(†) ≈ (1 + βa−)(1− βa+ + β2a2
+ − β3a3

+ + · · · )
= 1 + β(a− − a+)︸ ︷︷ ︸

−2β(u21+u22)

+β2(a2
+ − a−a+)︸ ︷︷ ︸

cubic + H.O.T.

−β3(· · · ) + · · ·︸ ︷︷ ︸
cubic + H.O.T.

where we note that in the β term all dependence on (u3 − û3) cancels because of the particular
expressions for a+ and a−, to leave the simple explicit expression that is given. Similarly in the β2

term the dependence on (u3− û3)2 cancels because of the particular expressions for a+ and a− to leave
only cubic and higher order terms (or H.O.T.) where we count the total degree of the multi-variate
polynomials in (u3 − û3), u1 and u2 that arise. The β3 and higher terms are cubic plus H.O.T. by
definition.

Now we can evaluate the approximation to 〈Q〉3,3 using the factored form of the Gaussian (4) and the
explicit formulas for univariate expectations to obtain

〈Q〉3,3 ≈ 〈1− 2β(u2
1 + u2

2)〉+O
(

1

K2
min

)
= 1− 2β

(
1

K1
+

1

K2

)
+O

(
1

K2
min

)
= 1− 2

1

1 + û2
3

(
1

K1
+

1

K2

)
︸ ︷︷ ︸

=:α

+O
(

1

K2

)
,

where the two quadratic expectations take the explicit values shown, and we use the facts that any
term with an odd degree factor in (u3− û3), u1 or u2 integrates to zero for the diagonal Gaussian (4),

and any remaining fourth-order terms are O
(

1
K2

min

)
where Kmin is the smallest of the Ki � 1 for

i = 1, 2, 3. We further note that the quantity α defined here is also small being O
(

1
Kmin

)
(and in fact

independent of K3). Therefore we can Taylor expand ln(1− α) = −α+O
(
α2
)

to conclude that

ln〈Q〉3,3 = −α+O
(

1

K2
min

)
,

so that finally we find that

ln〈t[1] · t[n]〉 ≡ ln〈cos θ1,n〉
by sparsity︷︸︸︷

= n ln〈Q〉3,3
by stiff Gaussian︷︸︸︷

≈ −nα+O
(

n

K2
min

)
.

The tangent-tangent persistence length (here measured in units of number of base pairs) is defined to
be the negative reciprocal of the gradient of this straight line, or `p = 1

α . It is a measure of the rate of

the exponential decay in the correlations 〈t[1] ·t[n]〉. For DNA its value is accepted to be approximately
150bp. which is dimensionless.

In the case of a stiff Gaussian, all of the entries of 〈Q〉 can be similarly (and now straight forwardly)
approximated (merely by permuting indices in the case û3 = 0), so that the Flory vector δ := (I −
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〈Q〉)−1〈q〉 can similarly be approximated. We will not do this explicitly, but the case q = (0, 0, `) is
a standard one in which we can immediately conclude that δ = (0, 0, `/α) = (0, 0, ` `p). Here ` is the
distance, in some units of length, between two adjacent basepair origins. Therefore the product ` `p is
just the length of one step times a number of steps, that is it is the arc length along the polymer chain,
which shows that the Flory persistence vector has expectation δ = (0, 0, `/α) = (0, 0, ` `p) = (0, 0, `F ),
where `F is a persistence length with dimension of length and measured in whatever units ` is measured
in. For DNA ` ≈ 0.33nm so `F ≈ 150 × 0.33nm or `F ≈ 50nm. The tangent-tangent decay can also
be written in terms of the dimensionfull `F

ln〈t(0) · t(s)〉 ≈ −s/`F

where s = n` is the arc-length along the polymer chain in n steps, and now t[n] ≈ t(s)|s=n `. This
notation and approximation naturally leads to a continuum limit where the discrete chain of base pair
frames is replaced by a curve

X(s) =

(
R(s) r(s)
0 1

)
∈ SE(3) s ∈ (0, L),

but we do not consider that model here. In fact some authors start from a continuous model for the
WLC and discretize it in arc-length to obtain a discrete chain.
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