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Review of Matrix Factorisation (or should be a review depending on
what Linear Algebra courses you have followed, or wikipedia is your
friend)

In the course and exercises, we will use various matrix factorisation of a matrix M that is a) square
and b) has real entries. Most of the factorisations apply for more general M, and for complex entries,
but we will not use those cases in the course.

M = LU (1)

where L is unit lower triangular (i.e. lower triangular and all diagonal entries are equal to one)
and U is upper triangular. Most basic factorisation used in Gaussian elimination and solving linear
systems. When M is symmetric, it specializes to

M = LDLT (2)

with D a diagonal matrix. And when M is symmetric positive definite each dii > 0. This leads to
the Cholesky factorisation of a symmetric positive definite matrix

M =KKT , (3)

with K ∶= L
√
D lower triangular. When M is banded and symmetric both L, and therefore K, are

also banded, which is important for our Monte Carlo code to be seen later in the course.
For M symmetric, there is also the spectral decomposition which arises because M has n real

eigenvalues (counting algebraic multiplicity) and n real eigenvectors (i.e. geometric and algebraic
multiplicities are equal) such that the eigenvectors ξi can be chosen orthonormal, ξi ⋅ ξj = δij . The
eigenvalue relations then become

MP = PΛ (4)

where the columns of P are the eigenvectors ξi and Λ is diagonal with diagonal entries the eigenvalues
λi of M . Orthonormality of the ξi means that the matrix P ∈ O(n) i.e. P −1 = P T (and by taking
±ξi can always generate P ∈ SO(n) i.e. detP = +1). The eigenvalue equation (4) then immediately
gives the spectral decomposition

M = PΛP T (5)

When M is positive definite λi > 0, so
M = K̃K̃T (6)

where K̃ = P
√

Λ. However in general, and even if M is banded, the matrix P with eigenvectors as
columns is dense, so in contrast to the Cholesky factor K, the matrix K̃ is also dense and not even
lower triangular, never mind banded.

For normal matrices (i.e. ∃ n linearly independent eigenvectors) the spectral decomposition
takes the form

M = PΛP −1 (7)

where now the matrix P of eigenvectors is no longer orthonormal (but is still invertible by the
assumption of normality).



We will use another generalisation for any non-symmetric matrix (normal or not) - the Singular
Value Decomposition or SVD. (The SVD is also often used for non-square matrices, but we will
only use the version for square, but generally non-symmetric matrices). Both MMT and MTM are
square symmetric positive semi-definite matrices (which are positive definite if M is of full rank).
MMT and MTM are generally different matrices with different matrices of eigenvectors, U ∈ O(n)
for MMT and V ∈ O(n) for MTM . However, one can easily show that MMT and MTM have the
same eigenvalues λi ≥ 0, i = 1,2, ..., n. The singular values of M are σi ∶=

√
λi ≥ 0, and the SVD of

M is
M = UΣV T ,Σ = Diag{σi} (8)

(so that MV = UΣ and UTM = ΣV T and MMTU = UΣ2, MTMV = V Σ2). Usual convention is
to order the singular values σi in decreasing order, which is unique in the case that all the σi are
distinct. Consequently with this convention it is possible that either det(U) or det(V ) are negative,
so that while U and V are orthogonal they may not be proper orthogonal.

Finally, we will use the (least standard) polar decomposition factorisation of M,

M =WP (9)

with W ∈ O(n), WW T = Id and P = P T ≥ 0. The factorisation always exists, and is unique if M
is full rank/invertible in which case P > 0, then W ∈ SO(n) if and only if detM > 0. The polar
decomposition can be proven directly, but it follows immediately if you know the SVD.

M = UΣV T
= UV TV ΣV T

=WP, (10)

where UV T = W ⇒ W TW = Id and V ΣV T = P ⇒ P = P T ≥ 0. In fact (9) is sometimes called
the right polar decomposition. The left polar decomposition is M = UΣV T = UΣUT UV T . Do not
confuse the polar decomposition with the so called QR factorisation. M = QR where Q ∈ O(n) and
R upper triangular, which arises e.g. in the Gram-Schmidt orthogonalisation procedure.
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