1 Euler-Rodrigues parameters

(a) As discussed \(q \in S^3 \) is associated to a rotation of angle \(\phi \) and axis \(\mathbf{n} \). However, the rotation matrix \(R(\phi, \mathbf{n}) \in SO(3) \) corresponding to a rotation of angle \(\phi \) and axis along the unit vector \(\mathbf{n} \) is given by the Rodrigues formula:

\[
R(\phi, \mathbf{n}) = \cos \phi \text{Id} + (1 - \cos \phi) \mathbf{n} \otimes \mathbf{n} + \sin \phi \mathbf{n}^\times,
\]

\[
= (\cos^2 \frac{\phi}{2} - \sin^2 \frac{\phi}{2}) \text{Id} + 2 \sin \frac{\phi}{2} \mathbf{n} \otimes \mathbf{n} + 2 \cos \frac{\phi}{2} \sin \frac{\phi}{2} \mathbf{n}^\times,
\]

\[
= (q_0^2 - \mathbf{q} \cdot \mathbf{q}) \text{Id} + 2 \mathbf{q} \otimes \mathbf{q} + 2q_0 \mathbf{q}^\times = Q(q).
\]

Expanding (1) gives

\[
Q(q) = \begin{pmatrix}
q_0^2 - q_1^2 & 0 & 0 \\
0 & q_0^2 - q_2^2 - q_3^2 & 0 \\
0 & 0 & q_0^2 - q_1^2 - q_2^2 - q_3^2
\end{pmatrix} + 2 \begin{pmatrix}
q_1^2 & q_1 q_2 & q_1 q_3 \\
q_2 q_1 & q_2^2 & q_2 q_3 \\
q_3 q_1 & q_3 q_2 & q_3^2
\end{pmatrix}.
\]

(b) Simply computing \(Q(q)\mathbf{q} \) with \(Q(q) \) as defined by (3) on the exercise sheet immediately shows \(Q\mathbf{q} = \mathbf{q} \). However, note that it is even simpler to use the first equality in equation (2) of the exercise sheet. If \(\mathbf{q} = 0 \), the \(q \in S^3 \) implies \(q_0 = \pm 1 \) and \(Q = \text{Id} \).

(c) We have shown in question 2 of session 2 that

\[
\text{tr}(Q) = 1 + 2 \cos \theta,
\]

and also computing the Trace as the sum of the diagonal entries in (3) of the question sheet, we find

\[
4q_0^2 - 1 = 1 + 2 \cos \theta \iff q_0 = \pm \cos \frac{\theta}{2}.
\]

(d) The fact that any \(q \in S^3 \) corresponds to a single \(Q \in SO(3) \) is manifest from equation (3) of the exercise sheet.

Given a rotation matrix \(R \in SO(3) \), define the vector \(\mathbf{r} \in \mathbb{R}^3 \) and the unit vector \(\mathbf{n} \in S^2 \) according to \(\mathbf{r}^\times = R - R^T \) and \(\mathbf{n} = \mathbf{r}/\|\mathbf{r}\| \). Also, define \(\theta \) as the unique solution of \(1 + 2 \cos \theta = \text{tr}R \) on \([0, \pi]\).

The angle \(\theta \) and the vector \(\mathbf{n} \) completely specify \(R \). That is, if \(R_1 \) and \(R_2 \) have same \(\theta \) and same \(\mathbf{n} \), then \(R_1 = R_2 \). That is because for any vector \(\mathbf{x} \), we have \(\mathbf{x} = (\mathbf{x} \cdot \mathbf{n}) \mathbf{n} + (\mathbf{n} \times \mathbf{x}) \times \mathbf{n} \). The vector \((\mathbf{n} \times \mathbf{x}) \times \mathbf{n} \) is perpendicular to \(\mathbf{n} \) and we already showed that if \(\mathbf{v} \perp \mathbf{w} \), for \(\mathbf{w} \) along the axis of \(Q \in SO(3) \), then \(Q\mathbf{v} = \cos \theta \mathbf{v} + \sin \theta \mathbf{n} \times \mathbf{v} \) (make sure that you can close the argument). So we have

\[
R \mathbf{x} = R\left[(\mathbf{x} \cdot \mathbf{n}) \mathbf{n} + (\mathbf{n} \times \mathbf{x}) \times \mathbf{n}\right],
\]

\[
= (\mathbf{x} \cdot \mathbf{n}) R \mathbf{n} + R[(\mathbf{n} \times \mathbf{x}) \times \mathbf{n}],
\]

\[
= (\mathbf{x} \cdot \mathbf{n}) \mathbf{n} + \cos \theta (\mathbf{n} \times \mathbf{x}) \times \mathbf{n} + \sin \theta \mathbf{n} \times ((\mathbf{n} \times \mathbf{x}) \times \mathbf{n}),
\]

\[
= (\mathbf{x} \cdot \mathbf{n}) \mathbf{n} + \cos \theta (\mathbf{n} \times \mathbf{x}) \times \mathbf{n} + \sin \theta (\mathbf{n} \times \mathbf{x}).
\]
The point of this last equation is that the action of R on \mathbb{R}^3 is completely specified by \mathbf{n} and θ. Accordingly, if two matrices in $SO(3)$ have same \mathbf{n} and same θ, they must be equal.

Now we show that for any $R \in SO(3)$, $\exists q \in S^3$: $Q(q) = R$. Given a matrix $R \in SO(3)$ we compute θ and \mathbf{n} and build the matrix $Q((\cos \theta/2, \sin \theta/2 n_1, \sin \theta/2 n_2, \sin \theta/2 n_3))$. By construction $\theta(R) = \theta(Q)$ and $\mathbf{n}(R) = \mathbf{n}(Q)$ and it must therefore be that $Q = R$.

Finally we prove the following

Propostion 1. Let $p, q \in S^3$, then

$$Q(p) = Q(q) \iff p = \pm q.$$ \hfill (6)

Proof.

$$Q(p) = Q(q) \iff \begin{pmatrix} p_1^2 - p_2^2 - p_3^2 + p_0^2 & 2(p_1p_2 - p_3p_0) & 2(p_1p_3 + p_2p_0) \\ 2(p_1p_2 + p_3p_0) & -p_1^2 + p_2^2 - p_3^2 + p_0^2 & 2(-p_1p_0 + p_2p_3) \\ 2(p_1p_3 - p_2p_0) & 2(p_1p_0 + p_2p_3) & -p_1^2 - p_2^2 + p_3^2 + p_0^2 \end{pmatrix}$$ \hfill (7)

$$= \begin{pmatrix} q_1^2 - q_2^2 - q_3^2 + q_0^2 & 2(q_1q_2 - q_3q_0) & 2(q_1q_3 + q_2q_0) \\ 2(q_1q_2 + q_3q_0) & -q_1^2 + q_2^2 - q_3^2 + q_0^2 & 2(-q_1q_0 + q_2q_3) \\ 2(q_1q_3 - q_2q_0) & 2(q_1q_0 + q_2q_3) & -q_1^2 - q_2^2 + q_3^2 + q_0^2 \end{pmatrix}. \hfill (8)

The equalities between the diagonal entries imply that $q_i^2 = p_i^2$. Accordingly, there exist four number $s_0, s_1, s_2, s_3 \in \{-1, +1\}$ such that $p_i = s_i q_i$. Next the equalities between the off-diagonal terms are satisfied iff $s_0 = s_1 = s_2 = s_3$. \hfill \square

(e) The result comes from computing the 10 possible scalar products between pairs among $\{q, B_1 q, B_2 q, B_3 q\}$.

(f) Let us denote the columns of $Q(q)$ as $\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3$ respectively. Moreover, we define $B(q) := \sum_{i=1}^{3} \mathbf{e}_i \otimes B_i q$ and $F(q) := \sum_{i=1}^{3} \mathbf{d}_i \otimes B_i q$ using the matrices $B_i, i = 1, 2, 3$ introduced in (e). Then we compute

$$F(q)B(q)^T = \begin{pmatrix} \sum_{j=1}^{3} \mathbf{d}_j \otimes B_j q \\ \sum_{i=1}^{3} \mathbf{e}_i \otimes B_i q \end{pmatrix}^T = \begin{pmatrix} \sum_{j=1}^{3} \mathbf{d}_j \otimes B_j q \\ \sum_{i=1}^{3} B_i q \otimes \mathbf{e}_i \end{pmatrix}. \hfill (9)$$

In (e) we have shown that $\{q, B_1 q, B_2 q, B_3 q\}$ is an orthonormal basis for \mathbb{R}^4 and expression (9) immediately reduces to

$$F(q)B(q)^T = \sum_{k=1}^{3} \mathbf{d}_k \otimes \mathbf{e}_k = Q(q)$$

Finally, by explicit computation, we have

$$B(q) = \begin{pmatrix} -q_1 & q_0 & q_3 & -q_2 \\ -q_2 & -q_3 & q_0 & q_1 \\ -q_3 & q_2 & -q_1 & q_0 \end{pmatrix} \hfill (10)$$

$$+1$$
and
\[F(q) = \begin{pmatrix} -q_1 & q_0 & -q_3 & q_2 \\ -q_2 & q_3 & q_0 & -q_1 \\ -q_3 & -q_2 & q_1 & q_0 \end{pmatrix}. \tag{12} \]

\[B(q) = \begin{pmatrix} -q_1 & q_0 & q_3 & -q_2 \\ -q_2 & -q_3 & q_0 & q_1 \\ -q_3 & q_2 & -q_1 & q_0 \end{pmatrix}, \quad F(q) = \begin{pmatrix} -q_1 & q_0 & -q_3 & q_2 \\ -q_2 & q_3 & q_0 & -q_1 \\ -q_3 & -q_2 & q_1 & q_0 \end{pmatrix}. \tag{13} \]

\section{Composition rule for Euler-Rodrigues parameters}

(a)(b) From Session 12 we know that

\[B(q) = \begin{pmatrix} -q_1 & q_0 & q_3 & -q_2 \\ -q_2 & -q_3 & q_0 & q_1 \\ -q_3 & q_2 & -q_1 & q_0 \end{pmatrix}, \quad F(q) = \begin{pmatrix} -q_1 & q_0 & -q_3 & q_2 \\ -q_2 & q_3 & q_0 & -q_1 \\ -q_3 & -q_2 & q_1 & q_0 \end{pmatrix}. \]

Then we have

\[B(q)p := (q, B(q)^T)p = \begin{pmatrix} q_0 & -q_1 & -q_2 & -q_3 \\ q_1 & q_0 & -q_3 & q_2 \\ q_2 & q_3 & q_0 & -q_1 \\ q_3 & -q_2 & q_1 & q_0 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix}, \]

\[= p_0 \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix} + p_1 \begin{pmatrix} -q_1 \\ q_0 \\ q_3 \\ -q_2 \end{pmatrix} + p_2 \begin{pmatrix} -q_2 \\ -q_3 \\ q_0 \\ q_1 \end{pmatrix} + p_3 \begin{pmatrix} -q_3 \\ q_2 \\ -q_1 \\ q_0 \end{pmatrix}, \]

\[= p_0q + \sum_{i=1}^{3} p_i B_i q. \]

In the same way, replacing $B(q)$ with $F(q)$ we find also

\[F(q)p := (q, F(q)^T)p = p_0q + \sum_{i=1}^{3} p_i F_i q. \]

(c)

\[F(q)^T B(q)v = \begin{pmatrix} q^T \\ F(q) \end{pmatrix} (q, B(q)^T)v = \begin{pmatrix} q^T q & q^T B(q)^T \\ F(q)q & F(q)B(q)^T \end{pmatrix} \begin{pmatrix} 0 \\ v \end{pmatrix} = \begin{pmatrix} q^T B(q)^T v \\ F(q)B(q)^T v \end{pmatrix} = \begin{pmatrix} 0 \\ Q(q)v \end{pmatrix}. \tag{14} \]

Notice that the last equality in (14) is derived from properties 1(e) and 1(f) of exercise sheet 12.

(d) For point (c) we can write

\[\begin{pmatrix} 0 \\ Q(p)Q(p^*)v \end{pmatrix} = F(p)^T B(p)F(p^*)^T B(p^*)v. \]
and using some algebraic manipulation (here is hidden the very computation complexity) we derive the following series of identities:

\[
\mathcal{F}(p)^T \mathcal{B}(p) \mathcal{F}(p^*)^T \mathcal{B}(p^*) v = \mathcal{F}(p)^T \mathcal{F}(p^*)^T \mathcal{B}(p) \mathcal{B}(p^*) v \\
= [\mathcal{F}(p^*) \mathcal{F}(p)]^T \mathcal{B}(p) \mathcal{B}(p^*) v \\
= \mathcal{F}(\mathcal{F}(p^*) p)^T \mathcal{B}(p) \mathcal{B}(p^*) v \\
= \mathcal{F}(\mathcal{F}(p^*) p)^T \mathcal{B}(\mathcal{B}(p) p^*) v \\
= \mathcal{F}(\mathcal{B}(p) p^*)^T \mathcal{B}(\mathcal{B}(p) p^*) v
\]

Applying again point (c) we can finally write

\[
\begin{pmatrix} q \\ Q(p)Q(p^*) v \end{pmatrix} = \begin{pmatrix} 0 \\ Q(p)Q(p^*) v \end{pmatrix}
\]
and consequently \(q = \mathcal{B}(p) p^* = p_0^* p + \sum_{i=1}^3 p_i^* B_i p \).

3 Composition rule for Cayley vectors

During class we have seen that the relation between the Euler parameters \(q \) and the Cayley vector \(c \) parametrizing the same rotation (of axis \(n \) and angle \(\theta \)) can be obtained by mean of the stereographic projection. Namely, we have

\[
q = (q_0, \mathbf{q})^T = \left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \mathbf{n} \right)^T, \quad \mathbf{n} = \frac{\mathbf{c}}{\| \mathbf{c} \|}.
\]

Since \(\| \mathbf{c} \| = \tan \left(\frac{\theta}{2} \right) \), then the explicit relation is \(\mathbf{c} = \frac{\mathbf{q}}{q_0} \).

Consequently, if \(Q(q) = \text{Cay}(\mathbf{c}^\times) = \text{Cay}(\mathbf{u}^\times) \text{Cay}(\mathbf{u}^\times) \) with \(Q(p) = \text{Cay}(\mathbf{u}^\times) \) and \(Q(p^*) = \text{Cay}(\mathbf{u}^\times) \), then \(\mathbf{u} = \frac{\mathbf{P}}{p_0} \) and \(\mathbf{u}^* = \frac{\mathbf{P}^*}{p_0^*} \). Moreover, the previous exercise is giving the composition rule for Euler parameter, which is

\[
q = \mathcal{B}(p) p^* = \left(\begin{array}{ccc} p_0 & -p_1 & -p_2 & -p_3 \\ p_1 & p_0 & -p_3 & p_2 \\ p_2 & p_3 & p_0 & -p_1 \\ p_3 & -p_2 & p_1 & p_0 \end{array} \right) \left(\begin{array}{c} p_0^* \\ -p^T \\ p_0^* + p^\times \end{array} \right) = \left(\begin{array}{c} p_0^* + p_0 p^* - \mathbf{p} \cdot \mathbf{p}^* \\ p_0^* + p_0 p^* + \mathbf{p} \times \mathbf{p}^* \end{array} \right)
\]

and the final result is

\[
\mathbf{c} = \frac{q}{q_0} = \frac{p_0^* p + p_0 p^* + \mathbf{p} \times \mathbf{p}^*}{p_0^* p - \mathbf{p} \cdot \mathbf{p}^*} = \frac{\mathbf{u} + \mathbf{u}^* + \mathbf{u} \times \mathbf{u}^*}{1 - \mathbf{u} \cdot \mathbf{u}^*}.
\]

Notice that in the previous computations we always assumed \(q_0, p_0, p_0^* \) different from zero. This is equivalent of saying that that the rotations \(Q(q), Q(p), Q(p^*) \) are not rotations through an angle \(\pi \). We prove this statement for \(Q(q) \), assuming \(p_0, p_0^* \) different from zero. The proof for \(Q(p) \) and \(Q(p^*) \) is analogous.

If we denote with \(\theta \) the angle of rotation of \(Q(q) \), then

\[
q_0 = p_0 p_0^* - \mathbf{p} \cdot \mathbf{p}^* = p_0 p_0^* (1 - \mathbf{u} \cdot \mathbf{u}^*) = \cos \left(\frac{\theta}{2} \right).
\]
Reminding that $\theta \in [0, \pi]$ we have

$$q_0 = 0 \iff 1 - u \cdot u^* = 0 \iff \theta = \pi.$$

4 Darboux vector in terms of Euler-Rodrigues parameters

If $v = \begin{pmatrix} 0 \\ v \end{pmatrix}$ with $v \in \mathbb{R}^3$, then we have

$$\begin{pmatrix} 0 \\ Q'(q(s))v \end{pmatrix} = \left[F(q(s))^T B(q(s)) \right]' \begin{pmatrix} 0 \\ v \end{pmatrix},$$

with

$$\begin{pmatrix} 0 \\ v \end{pmatrix} = \left[F(q(s))^T B(q(s)) \right]^T \begin{pmatrix} 0 \\ Q(q(s))v \end{pmatrix},$$

$$= B(q(s))^T F(q(s)) \begin{pmatrix} 0 \\ Q(q(s))v \end{pmatrix}.$$

All together reads as

$$\begin{pmatrix} 0 \\ Q'(q(s))v \end{pmatrix} = \left[F(q(s))^T B(q(s)) \right]' B(q(s))^T F(q(s)) \begin{pmatrix} 0 \\ Q(q(s))v \end{pmatrix},$$

$$= \left[F(q'(s))^T F(q(s)) + B(q'(s))B(q(s))^T \right] \begin{pmatrix} 0 \\ Q(q(s))v \end{pmatrix},$$

$$= \left[F \left(\begin{pmatrix} 0 \\ F(q(s))q'(s) \end{pmatrix} \right)^T + B \left(\begin{pmatrix} 0 \\ F(q(s))q'(s) \end{pmatrix} \right) \right] \begin{pmatrix} 0 \\ Q(q(s))v \end{pmatrix},$$

$$= \left[2F(q(s))q'(s) \right]^\times Q(q(s))v.$$

We finally obtain the relation

$$Q'(q(s))v = \left[2F(q(s))q'(s) \right]^\times Q(q(s))v = Q(q(s)) \left[2B(q(s))q'(s) \right]^\times v \Rightarrow u(s) = 2B(q(s))q'(s).$$

5 Euler-Rodrigues parameters of particular curves in $SO(3)$

5.1 Euler-Rodrigues parameters associated with the Frenet frame of a helix

The Frenet frame to α can be recovered from the reference frame $(e_1 \ e_2 \ e_3)$ by the following sequence of (right) rotations:

$$\begin{pmatrix} n & b & t \end{pmatrix} = (e_1 \ e_2 \ e_3) R_{3,s/\pi+c} R_{1,\phi}, \quad (15)$$

where the matrices $R_{i,\alpha}$ were defined in the lecture and where $\phi = \arctan(a/b)$. In particular,

$$\cos \phi/2 = \sqrt{\frac{c + b}{2c}}, \quad \text{and} \quad \sin \phi/2 = \sqrt{\frac{c - b}{2c}}. \quad (16)$$
As suggested in the exercise sheet (expression (9)), it is possible to derive the following composition rule for Euler parameters. Let us assume that \(Q(q) = Q(p)Q(p^*) \), then \(q \) can be written in terms of \(p \) and \(p^* \) as

\[
q = p_0^* p + \sum_{i=1}^{3} p_i^* B_i p.
\]

(17)

Since \((e_1, e_2, e_3)\) is the identity, \(R_{3,s/c+c} = Q(p(s)) \) and \(R_{1,\phi} = Q(p^*) \), with

\[
p(s) = \left(\cos \left(\frac{s}{2c} + \frac{\pi}{2} \right), \ 0, \ 0, \ \sin \left(\frac{s}{2c} + \frac{\pi}{2} \right) \right)^T = \left(-\sin \left(\frac{s}{2c} \right), \ 0, \ 0, \ \cos \left(\frac{s}{2c} \right) \right)^T,
\]

\[
p^* = \left(\cos (\phi/2), \ \sin (\phi/2), \ 0, \ 0 \right)^T = \left(\sqrt{\frac{c+b}{2c}}, \ \sqrt{\frac{c-b}{2c}}, \ 0, \ 0 \right)^T,
\]

then using (17) we find that the Euler parameters associated to the rotation from the lab frame \((e_1, e_2, e_3)\) to the Frenet-Serret frame \((n, b, t)\) is

\[
q(s) = \left(-\sin \frac{s}{2c} \sqrt{\frac{c+b}{2c}}, \ -\sin \frac{s}{2c} \sqrt{\frac{c-b}{2c}}, \ \cos \frac{s}{2c} \sqrt{\frac{c-b}{2c}}, \ \cos \frac{s}{2c} \sqrt{\frac{c+b}{2c}} \right)^T.
\]

5.2 Euler-Rodrigues parameters of the multiply covered circle

1. We simply take the Euler parameters of the previous question in the case \(b = 0 \) and \(a = c \) the radius of the circle:

\[
q(s) = \left(-\sin \frac{s}{2c} \sqrt{2}, \ -\sin \frac{s}{2c} \sqrt{2}, \ \cos \frac{s}{2c} \sqrt{2}, \ \cos \frac{s}{2c} \sqrt{2} \right)^T
\]

\[
q(s) = \cos \frac{s}{2a} \left(0, \ 0, \ \frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}} \right)^T - \sin \frac{s}{2a} \left(\frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}}, \ 0, \ 0 \right)^T.
\]

(18)

The fact that the circle is covered \(n \) times is encoded in the domain of \(s \in [0, 2\pi n] \). Also \(\left(0, \ 0, \ \frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}} \right)^T \) and \(\left(\frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}}, \ 0, \ 0 \right)^T \) are themselves Euler parameters so that the image of \(q(s) \) is a great circle in \(S^3 \). It is covered \(n/2 \) times: closed if \(n \) is even and open if \(n \) is odd.

2. The register angle \(\psi \) from the frame of the previous question to a frame with prescribed twist \(u_3(s) \) is

\[
\psi(s) = \int_0^s u_3(\sigma) \ d\sigma + \psi(0).
\]

(19)

Accordingly the Euler parameters that we are looking for are given by the composition rule (17), where

\[
p(s) = \left(-\sin \frac{s}{2c} \sqrt{2}, \ -\sin \frac{s}{2c} \sqrt{2}, \ \cos \frac{s}{2c} \sqrt{2}, \ \cos \frac{s}{2c} \sqrt{2} \right)^T
\]

\[
p^*(s) = \left(\cos \left(\psi(s)/2 \right), \ 0, \ 0, \ \sin \left(\psi(s)/2 \right) \right)^T,
\]

in order to obtain

\[
q(s) = \left(-\sin \frac{\psi(s) + s/a}{2}, \ \sin \frac{\psi(s) - s/a}{2}, \ \cos \frac{\psi(s) - s/a}{2}, \ \cos \frac{\psi(s) + s/a}{2} \right)^T.
\]