1. Given an orthonormal basis \(\{ e_1, e_2, e_3 \} \) and a particular vector \(u \) in \(\mathbb{R}^3 \), denote by \(\text{Sk}(u) \) the operator that gives \(\text{Sk}(u)v = u \wedge v \). Show that for any invertible matrix \(M \in \mathbb{R}^3 \times \mathbb{R}^3 \),
\[
\text{Sk}(Mu) = |M| M^{-T} \text{Sk}(u) M^{-1}.
\]
Show that if \(M \in SO(3) \) then this formula simplifies to
\[
\text{Sk}(Mu) = MSk(u)M^{-1}
\]
Now let \(\tilde{u} \) be the Darboux vector of a curve \(R \in SO(3) \) so \(d'_i = \tilde{u} \wedge d_i \) where \(d_i \) are the columns of \(R \) and let \(v \) be a vector such that \(\tilde{u} = Rv \). Show that
\[
R' = \text{Sk}(\tilde{u})R = RSk(v)
\]

2. Rotations in three dimensions.
Consider any matrix \(Q \in SO(3) \).

a) Show that all the eigenvalues of \(Q \) are on the unit circle in the complex plane.

b) Show that \(Q \) always has an eigenvalue of unity, and so there is a unit vector \(w \) such that \(Qw = w \). This vector defines the axis of rotation of \(Q \) and is parallel to the axial vector of the skew matrix \(Q - Q^T \). Can a proper rotation have more than one axis?

c) Let \(v \) be any unit vector orthogonal to \(w \). Show that \(Qv \) is also a unit vector orthogonal to \(w \) and that the angle \(0 \leq \theta \leq \pi \) between \(v \) and \(Qv \) satisfies the relation
\[
1 + 2 \cos \theta = \text{tr}(Q).
\]
[Hint: Express \(\text{tr}(Q) \) in terms of the eigenvalues.]

d) Given a unit vector \(n \) along the axis of a right-handed rotation of angle \(\phi \), the matrix \(Q \in SO(3) \) associated with the rotation in the basis \(\{ e_1, e_2, e_3 \} \) is given by
\[
Q = \cos \phi \text{Id} + (1 - \cos \phi) n \otimes n + \sin \phi n^x.
\]
Show that (2) can also be expressed as
\[
Q = \text{Id} + \sin \phi n^x + (1 - \cos \phi) n^x n^x.
\]
[Hint: First distribute the triple product \(n \times (n \times v) \) for arbitrary vector \(v \).]

Given a smooth curve \(r(s) \) and a function \(u_3(s) \), where \(s \) is the arclength parameter, we will show that
\[
\xi' = (u_3 r' + r' \times r'') \times \xi
\]
with initial condition
\[
\xi(0) \cdot r'(0) = 0, \quad |\xi(0)|^2 = 1,
\]
generates an orthonormal framing \((\xi, (r' \times \xi), r') \) of \(r(s) \).
Verify and calculate
a) That $|\xi(0)|^2 = 1 \implies |\xi(s)|^2 = 1 \ \forall s$.

b) That $\xi(0) \cdot r'(0) = 0 \implies \xi(s) \cdot r'(s) = 0 \ \forall s$.

c) Now, by picking an initial value of $\xi(0)$ satisfying (5) we have an orthonormal frame $(\xi, (r' \times \xi), r')$ of $r(s)$. What is the Darboux vector

d) Note that $y = r'$ and $z = r' \times \xi$ must be two other solutions of (4). Check!

e) If $r'' \neq 0$, what are the components of the Darboux vector in the Serret-Frenet frame?

f) If $r \in C^3$ and $r''(s) \neq 0$ for all s, show that the principal normal n to r solves (4) when $u_3 = \tau$, where τ is the torsion of r.

The facts (a) and (b) say that $|\xi|^2$ and $\xi \cdot r'$ are integrals of the system (4).

4. Frenet-Serret equations in \mathbb{R}^n. (optional, not examinable)

Given a curve $r : \mathbb{R} \rightarrow \mathbb{R}^n$ parameterised by arc-length and such that the n vectors $\{r', r'', \ldots, r^{(n)}\}$ are linearly independent, prove that there exists an orthogonal basis of $\mathbb{R}^n \{t = r', n_1, \ldots, n_{n-1}\}$ such that

$$
\begin{pmatrix}
0 & -\kappa_1 & 0 & \ldots & 0 & 0 & 0 \\
\kappa_1 & 0 & -\kappa_2 & \ldots & 0 & 0 & 0 \\
0 & \kappa_2 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & -\kappa_{n-2} & 0 \\
0 & 0 & 0 & \ldots & \kappa_{n-2} & 0 & -\kappa_{n-1} \\
0 & 0 & 0 & \ldots & 0 & \kappa_{n-1} & 0
\end{pmatrix}
$$

(6)

In this lecture, we prefer to have the tangent to the curve as the last entry, how does equation (6) adapt if we consider the basis $(n_1, n_2, \ldots, n_{n-1}, t)$?