In this exercise session, \(t \) stands for a generic parameterisation of curves. In particular, it is not necessarily the arc-length.

1. Composition of Darboux vectors

Given a curve \(\mathbf{r}(t) \) and two orthonormal framings \(\{\mathbf{d}_i(t)\} \) and \(\{\mathbf{D}_i(t)\} \) where \(\mathbf{D}_i \) and \(\mathbf{d}_i \) are column vectors, their two direction cosine matrices \(d \) and \(D \) are related by a rotation matrix \(Q \in SO(3) \)

\[
D = d Q,
\]

where each matrix can depend upon \(t \). The relation (1) implies that \(Q_{ij} = \mathbf{D}_i \cdot \mathbf{d}_j \).

Let \(\mathbf{u}(t) = u_i(t) \mathbf{d}_i(t) \) be the Darboux vector associated with the frame \(\{\mathbf{d}_i\} \) with components \(u \) satisfying

\[
\mathbf{u}^\times = d^T d',
\]

and let \(\mathbf{U}(t) = U_i(t) \mathbf{D}_i(t) \) be the Darboux vector associated with the frame \(\{\mathbf{D}_i\} \) with components \(U \) satisfying

\[
\mathbf{U}^\times = D^T D'.
\]

a) Show that

\[
\mathbf{U}^\times = Q^T \mathbf{u}^\times Q + Q^T Q'.
\]

b) Accordingly, show that

\[
\mathbf{U} = \mathbf{u} + \mathbf{D}_i \mathbf{p}_i,
\]

where the components \(\mathbf{p} \) respect \(\mathbf{p}^\times = Q^T Q' \).

(c) Simplify (2) for the case when the two frames \(\{\mathbf{D}_i\} \) and \(\{\mathbf{d}_i\} \) share a common vector \(\mathbf{D}_3(t) = \mathbf{d}_3(t) \), as would arise in the case of any two adapted framings.

d) In the further case when \(\{\mathbf{D}_i\} \) is the Frenet frame, so that \(\mathbf{D}_3 = \mathbf{t} = \mathbf{d}_3 \), find the explicit expressions of the components of \(\mathbf{u} \) in the Frenet frame in function of the curvature \(\kappa \) and torsion \(\tau \) of the curve \(\mathbf{r} \).

2. Factorisation of curves in \(SE(3) \)

Let \(\mathbf{X}(t) \) and \(\mathbf{Y}(t) \) be two curves in \(SE(3) \) with homogeneous coordinates

\[
\mathbf{X}(t) = \begin{pmatrix} \mathbf{X} & \mathbf{x} \\ 0 & 1 \end{pmatrix}, \quad \text{and} \quad \mathbf{Y}(t) = \begin{pmatrix} \mathbf{Y} & \mathbf{y} \\ 0 & 1 \end{pmatrix}.
\]

Define a third curve in \(SE(3) \) via

\[
\mathbf{Z}(t) = \mathbf{X}(t) \mathbf{Y}(t).
\]

There exist vectors \(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{a}, \mathbf{b} \) and \(\mathbf{c} \) such that

\[
\mathbf{X}' = \mathbf{X} \begin{pmatrix} \mathbf{u}^\times & \mathbf{a} \\ 0 & 0 \end{pmatrix}, \quad \mathbf{Y}' = \mathbf{Y} \begin{pmatrix} \mathbf{v}^\times & \mathbf{b} \\ 0 & 0 \end{pmatrix}, \quad \text{and} \quad \mathbf{Z}' = \mathbf{Z} \begin{pmatrix} \mathbf{w}^\times & \mathbf{c} \\ 0 & 0 \end{pmatrix}.
\]

In parallel to what you have already seen for curves in \(SO(3) \), find an expression for \(\mathbf{w} \) and \(\mathbf{c} \) as a function of \(\mathbf{X}', \mathbf{Y}', \mathbf{u}, \mathbf{v}, \mathbf{a} \) and \(\mathbf{b} \).
3. Offset of a curve in \mathbb{R}^3

Assume that

$$X(t) = \begin{pmatrix} X(t) & x(t) \\ 0 & 1 \end{pmatrix},$$

is the $SE(3)$ curve corresponding to $x(t)$, a prescribed curve in \mathbb{R}^3 equipped with the adapted frame $X(t) = [d_1 \ d_2 \ d_3]$ where t is not necessarily arc-length.

Given a real number $\epsilon > 0$, the curve

$$z(t) = x(t) + \epsilon d_1(t),$$

in \mathbb{R}^3 is called an offset of x.

a) Under what condition can you guarantee that $z'(t) \neq 0$ for all t?

b) Show that if $z'(t) \neq 0$ for all t, it is possible to equip the \mathbb{R}^3 curve $z(t)$ with an adapted frame

$$Z(t) = \begin{pmatrix} D(t) & z(t) \\ 0 & 1 \end{pmatrix},$$

where $D(t) = (D_1(t) \ D_2(t) \ D_3(t))$ and such that $D_1(t) = d_1(t)$.

c) Find the curve $Y(t) \in SE(3)$ such that

$$Z(t) = X(t)Y(t).$$

Compute the explicit form of w and c from exercise 1.

[hint: Y is of the form $Y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$]