1 Unknotted curves and the Whitehead link

If \(y(\sigma) \) and \(x(s) \) can be moved by homotopy, while keeping \(C_1 \cap C_2 = \emptyset \), to opposite sides of a plane (in particular if \(y \) and \(x \) are not linked to each other in an intuitive sense), then \(\text{Lk}(y, x) = 0 \). This is obviously true if we consider the definition of \(\text{Lk} \) based on signed crossings.

To prove this from the point of view of the integral definition, show that \(\text{Lk} \) can be bounded from above by an arbitrarily small number by the homotopy in which \(x(s) \) (say) is moved to infinity by translation along the normal to the separating plane.

Unfortunately the converse is not true. Use the method of counting signed crossings to show that the Whitehead link shown in the figure below, and for any choices of orientations, has \(\text{Lk} = 0 \) despite the fact that the two strands are physically linked i.e. they cannot be moved arbitrarily far apart under a homotopy respecting \(x, y \neq x, y \) \(\forall \sigma \neq \sigma \). How could you use the result of Problem 2, week 4 to show (without counting signed crossings) that the Whitehead link integral vanishes?

For the Whitehead link \(\text{Lk}=0 \), as by crossing one curve with itself, you can ‘physically unlink’ the two curves. As seen in the correction introduction of week 4 this deformation doesn’t change the link.

2 Properties of the surface \(y(\sigma) - x(s) \)

Given two smooth closed oriented curves \(x(s) \) and \(y(\sigma) \) parameterised by their respective arc-length and such that \(x''(s) \) and \(y''(\sigma) \) never vanish, consider the surface \(r(s, \sigma) = y(\sigma) - x(s) \). Whenever \(r_s \wedge r_\sigma \neq 0 \), the unit normal \(n \) to \(r \) is defined by

\[
 n(s, \sigma) = \frac{r_s \wedge r_\sigma}{\|r_s \wedge r_\sigma\|} \tag{1}
\]

1. **Taylor expansion warm up.** Compute the Taylor expansion of \(r \) around a prescribed point \((s_0, \sigma_0) \) up to second order. Then, express your result as a function of the Frenet frames and curvatures of \(x \) and \(y \). Also compute the Taylor expansion of \(r_s \wedge r_\sigma \) to first order.

2. **In general, it is not possible to define a continuous field of unit normals on \(r \).** Prove that if there exists a point \((s_0, \sigma_0) \) such that the tangent to \(x \) at \(s_0 \) is parallel to the tangent to \(y \) at \(\sigma_0 \), then it is impossible to complete the definition (1) of \(n \) in a continuous way. What do you think \(r \) looks like close to such a point?

3. **Such pathological points are isolated provided that \(x_{ss}(s_0) \wedge y_{\sigma\sigma}(\sigma_0) \neq 0 \).** Given a point \((s_0, \sigma_0) \) such that the tangent to \(x \) at \(s_0 \) is parallel to the tangent to \(y \) at \(\sigma_0 \) and \(x_{ss}(s_0) \wedge y_{\sigma\sigma}(\sigma_0) \neq 0 \), prove that it is not possible to choose a positive number \(a > 0 \) and a regular curve

\[
 \gamma : t \in (-a, a) \rightarrow (s(t), \sigma(t)),
\]
such that both $\gamma(0) = (s_0, \sigma_0)$ and $r_s(\gamma(t)) \wedge r_\sigma(\gamma(t)) = 0$ for all $t \in (-a, a)$.

4. Provided that the two curves x and y never share an osculating plane\(^1\), points subtending tangent rays from the origin\(^2\) form smooth curves on r. Define the function $f(s, \sigma) = r(s, \sigma) \cdot (r_s(s, \sigma) \wedge r_\sigma(s, \sigma))$. Show that if $f(s_0, \sigma_0) = 0$, then there exists an (unique) open curve γ such that (s_0, σ_0) is in the image of γ and $f(\gamma) = 0$.

5. Provided that the two curves x and y do not share an osculating plane, the pathological points are contained in curves on r subtending tangent rays from the origin. Given a point (s_0, σ_0) such that the tangent to x at s_0 is parallel to the tangent to y at σ_0 and $x_{ss}(s_0) \wedge y_{\sigma\sigma}(\sigma_0) \neq 0$, show that there exists a curve $\gamma(t) = (s(t), \sigma(t))$ and a positive number a such that $f(\gamma(t)) = 0$ for all $t \in (-a, a)$.

\(^1\)The osculating plane is the plane spanned by the tangent vector and the normal vector.

\(^2\)These are points p on the surface r such that the ray from the origin through p is tangent to the surface r.