1 Framings of closed curves (revisiting material from last lecture)

Let \(x : s \in [0, L] \mapsto x(s) \in \mathbb{R}^3 \) be a regular, closed curve. Assume throughout that for any closed framing of \(x \) the CFW theorem holds. We have only proven this for \(C^3 \) curves although results with weaker assumptions are known.

1. Show that there exists a closed (adapted) framing of \(x \).

 a) Pick a framing, any framing. That is in fact, following question 3 in session 2, pick a function \(u_3(s) \) and an initial condition for the third component of the Darboux vector.

 b) Show how you can pick a different function \(U_3 \) so that the associated framing is closed.

2. We defined a Writhe framing as a framing the twist of which is \(u_3(s) = -\frac{1}{2} \int_0^L \text{wr}(s, \sigma) \, d\sigma \). Show that a Writhe framing is always closed.

 a) Define the register angle\(^1\) \(\varphi(s) \) between a Writhe framing and the closed framing of question 1.

 b) Use \(Lk = Tw + Wr \) to show that the difference of register between the beginning and end of \(x \) must be an integer multiple of \(2\pi \).

3. Show that a Writhe framing always has zero \(Lk \).

4. a) Show that any (adapted) framing of a curve is closed if and only if \(Tw + Wr \) is an integer.

 b) Show that the natural framings of a closed curve are closed if and only if the writhe is an integer.

 c) More generally, show that if \(D(s) \) is a natural framing of \(x \), then \(D(L) = D(0) R_{3, \varphi} \) where

\[
R_{3, \varphi} = \begin{pmatrix}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad \text{and} \quad \varphi = 2\pi \left(\text{Wr}(x) \mod 1 \right).
\]

This suggests a method to accurately calculate writhe without having to compute a double integral.

Turn the page ...

\(^1\)This is the angle between two framings.
2 Writhe of a figure 8 curve (this is an example more than an exercise)

Consider the figure of eight curve
\[
x(t) = \begin{pmatrix}
\cos t \\
\sin 2t \\
\frac{2}{\nu} \sin t
\end{pmatrix},
\]
represented in Fig. 1. Note that when \(\nu = 0 \), \(x \) self-intersects so that Writhe is not defined. Here we study the limiting cases of \(\nu \to 0 \) from either side.

By direct application of the double integral definition of Writhe, you could show (but beware: this is somewhat tedious) that
\[
Wr(x; \nu) = \frac{\nu}{\pi} \int_0^\pi \frac{\cos \mu \, d\mu}{\left(\nu^2 \cos^2 \frac{\mu}{2} + \sin^2 \frac{\mu}{2}\right) \sqrt{\nu^2 \cos^2 \frac{\mu}{2} + \sin^2 \frac{\mu}{2} + \cos^2 \mu}},
\]
(2)

1. Show that for all \(\nu \in (0, 1) \) and for all \(\mu \in (0, \pi/2) \), we have
\[
\frac{\cos \mu}{\sqrt{\nu^2 \cos^2 \frac{\mu}{2} + \sin^2 \frac{\mu}{2} + \cos^2 \mu}} \leq 1,
\]
(3)
\[1 - \left(\nu^2 \cos^2 \frac{\mu}{2} + \sin^2 \frac{\mu}{2} \right) \leq \frac{1}{\sqrt{\nu^2 \cos^2 \frac{\mu}{2} + \sin^2 \frac{\mu}{2} + \cos^2 \mu}}. \quad (4) \]

2. Accordingly, show that
\[\lim_{\nu \to 0^+} W_r(x; \nu) = 1. \quad (5) \]

3. What can you say about \(\lim_{\nu \to 0^-} W_r(x; \nu) \)?

It is also possible to (numerically) compute the Writhe framing of each of these curves and those are displayed on Fig. 1.

3 Writhe Framing of a trefoil

![Figure 2: Writhe framing of a trefoil knot.](image)

A Writhe framing of a trefoil is shown in Fig. 2. Show that \(Lk = 0 \) by counting crossings.

4 Writhe of an offset curve

Given a regular, closed curve \(x : s \in [a, b] \mapsto x(s) \in \mathbb{R}^3 \) and \(X(t) = (d_1(s) \ d_2(s) \ d_3(s)) \) an adapted and closed framing of \(x(s) \), let \(u(s) = u_i(s) \ d_i(s) \) be the Darboux vector of \(X(s) \) and define the offset curve
\[z(s) = x(s) + \eta \ d_1(s), \quad (6) \]

where \(\eta \) is sufficiently small such that for all \(\epsilon \in (0, \eta] \) there is no intersection between the curves \(x(s) \) and the curve \(x(s) + \epsilon \ d_1(s) \). Note that whilst \(z \) is an offset curve of \(x \), \(x \) is also an offset curve of \(z \).

The aim of this exercise is to prove that
\[W_r(z) = W_r(x) + \frac{1}{2\pi} \int_a^b u_3(s) \left(1 - \frac{||x'(s)||}{||z'(s)||} \right) ds. \quad (7) \]

This can be done in essentially two steps:

1. Recall from question 3, session 3 that you know a particular adapted framing of \(z \) and compute the third component of the Darboux vector of that frame.

2. Apply \(Lk = Tw + W_r \) twice together with the fact that \(Lk(x, z) = Lk(z, x) \).