Differential Geometry of Framed Curves

Prof. John Maddocks Session 12: Exercises

A. Flynn

1 Quaternions of particular curves in SO(3)

1.1 Quaternion associated with the Frenet frame of a helix

Come back to the helix defined during the first question of the exercise session 1:

$$\alpha(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, \frac{b}{c}s\right),\tag{1}$$

where a > 0, b > 0 and $c = \sqrt{a^2 + b^2}$.

The Frenet frame F(s) of $\alpha(s)$ is a curve in SO(3). Show that it can be described by the quaternion

$$q(s) = -\sin\frac{s}{2c}\sqrt{\frac{c+b}{2c}} - \sin\frac{s}{2c}\sqrt{\frac{c-b}{2c}}i + \cos\frac{s}{2c}\sqrt{\frac{c-b}{2c}}j + \cos\frac{s}{2c}\sqrt{\frac{c+b}{2c}}k.$$
 (2)

1.2 Quaternion of the multiply covered circle

- 1. What is the quaternion describing a twist-less adapted frame to a n times covered circle (i.e the Frenet-Serret frame of a helix with 0 pitch)?
- 2. What is the quaternion describing an adapted frame to a n times covered circle if the local twist of the frame is prescribed by a function $u_3(s)$ where s is the arc-length along the circle.

2 Cayley transforms

Let $N \in \mathbb{R}^{n \times n}$ such that $|I - N| \neq 0$. The Cayley transform of N is the matrix M defined by

$$M = (I+N)(I-N)^{-1}, (3)$$

where I is the identity matrix in $\mathbb{R}^{n \times n}$.

2.1 A few general properties

- **1.** Show that if M is the Cayley transform of some matrix N, then the matrix I+M is invertible. [Hint: I+M is not invertible iff $\exists \mathbf{v} \neq \mathbf{0} : (I+M)\mathbf{v} = \mathbf{0}$.]
- **2.** Show that if M is the Cayley transform of some matrix N, then $N = (M+I)^{-1}(M-I)$.
- **3.** Assume that Q is the Cayley transform of S. Show that $Q \in SO(n)$ if and only if S is skew. Is it true that for a general matrix $R \in SO(n)$ there exists a skew matrix U such that R is the Cayley transform of U?

2.2 The case n = 3

Assume that Q is the Cayley transform of a skew-symmetric matrix $S \in \mathbb{R}^{3\times 3}$.

- 1. Show that if $S = \mathbf{u}^{\times}$ for some vector \mathbf{u} , then $Q = \frac{1 \|\mathbf{u}\|^2}{1 + \|\mathbf{u}\|^2} I + \frac{2}{1 + \|\mathbf{u}\|^2} \mathbf{u}^{\times} + \frac{2}{1 + \|\mathbf{u}\|^2} \mathbf{u} \otimes \mathbf{u}$. Interpreting Q as a rotation matrix, show that it corresponds to a right-handed rotation by an angle $2 \operatorname{Arctan}(\|\mathbf{u}\|)$ about the axis along $\mathbf{u}/\|\mathbf{u}\|$.
- **2.** Show that $S = (Q Q^T)/(1 + \operatorname{tr} Q)$.
- **3.** Show that the formula for Q in part 1 above is another variant of the Euler–Rodrigues formula as given in question 1 of sheet 8 with $\mathbf{u} = \tan \frac{\phi}{2} \mathbf{n}$.

2.3 Composition of rotations

If $Q_1, Q_2 \in SO(3)$ with Cayley vectors \mathbf{u}_1 and \mathbf{u}_2 – that is $Q_i = \text{Cay}[\mathbf{u}_i^{\times}]$. Show that the Cayley vector of $Q_1 Q_2$ is

 $\frac{\mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_1 \times \mathbf{u}_2}{1 - \mathbf{u}_1 \cdot \mathbf{u}_2}.\tag{4}$

[Hint: There is an easy proof that uses the connection between Cayley vectors and quaternions and the composition formula for quaternions. There must also exist a linear algebra proof. Let us know if you find one...]

2.4 Cayley transforms in SE(3)

Show that if Q is the Cayley transform of $S \in \mathbb{R}^{4\times 4}$, then $Q \in SE(3)$ if and only if there exists two vectors \mathbf{u} and \mathbf{v} such that

$$\mathcal{S} = \begin{pmatrix} \mathbf{u}^{\times} & \mathbf{v} \\ 0 & 0 \end{pmatrix}.$$