1 Properties of skew symmetric matrices

1. Let \(u, v \in \mathbb{R}^3 \). The vector product \(u \times v \), in components, reads:

\[
\begin{bmatrix}
-u_3 v_2 - u_2 v_3 \\
u_3 v_1 - u_1 v_3 \\
u_1 v_2 - u_2 v_1
\end{bmatrix}
\]

From the equality above one can see that the following skew symmetric matrix

\[
[u \times] =
\begin{bmatrix}
0 & u_2 & -u_3 \\
-u_2 & 0 & u_1 \\
u_3 & -u_1 & 0
\end{bmatrix}
\]

satisfies \(u \times v = [u \times]v \). The mapping \(u \mapsto [u \times] \) is by inspection linear and invertible.

2. Given any two vectors \(v \) and \(w \), we can compute the following:

\[
v^T [Mu \times] w = v \cdot (Mu \times w) =
\begin{bmatrix}
v : Mu : w
\end{bmatrix} =
\begin{bmatrix}
|M| \left[M^{-1}v : u : M^{-1}w \right]
\end{bmatrix} =
\begin{bmatrix}
|M| (M^{-1}v) \cdot (u \times M^{-1}w) =
\begin{bmatrix}
|v^T (M^{-T}[u \times]M^{-1}) w =
\begin{bmatrix}
|v^T (|M|M^{-T}[u \times]M^{-1}) w
\end{bmatrix}
\end{bmatrix}
\end{bmatrix}
\]

As this is true for any \(v \) and \(w \), we can conclude that \([Mu \times] = |M|M^{-T}[u \times]M^{-1} \). In these computations we denoted by \([a : b : c] \) the three by three matrix whose columns are the vectors \(a, b, \) and \(c \).

When \(M \in SO(3) \), we have \([Mu \times] = M[u \times]M^T \).

3. For any \(v \in \mathbb{R}^3 \), we have

\[
[u \times]^2 v = [u \times]([u \times]v) = u \times (u \times v) = (u \cdot v)u - (u \cdot u)v = (u \otimes u - ||u||^2 I) v.
\]

Since (3) holds for all \(v \) we have that \([u \times]^2 = u \otimes u - ||u||^2 I \). Or just carry out the matrix multiplication \([u \times][u \times] \) and identify terms.

4. For a given matrix

\[
A =
\begin{bmatrix}
-\lambda & -u_3 & u_2 \\
u_3 & -\lambda & -u_1 \\
-u_2 & u_1 & -\lambda
\end{bmatrix}
\]
\[|A| = -\lambda(\lambda^2 + u_1^2) + u_3(-\lambda u_3 - u_1 u_2) + u_2(u_3 u_1 - \lambda u_2) \quad (5) \]
\[= -\lambda^3 - |u|^2 \lambda \quad (6) \]

So here

\[P(\lambda) = -\lambda^3 - |u|^2 \lambda \quad (7) \]

which has roots \(\lambda = 0, \pm i|u| \). Then verify that \([u \times]^3 + |u|^2[u \times] = 0 \in \mathbb{R}^{3 \times 3}\)

2 Rotations in three dimensions

1. From the properties of the scalar product, \(\forall \mathbf{w} \in \mathbb{R}^3 \) and any \(Q \in SO(3) \)

\[\|Q\mathbf{w}\|^2 = Q\mathbf{w} \cdot Q\mathbf{w} = \mathbf{w} \cdot Q^T Q \mathbf{w} = \|\mathbf{w}\|^2 \quad (8) \]

where we have used the fact that \(Q \) is a rotation matrix, i.e. \(Q^T Q = I \). If now \(\lambda \) is an eigenvalue for \(Q \) and \(\mathbf{w} \) the corresponding eigenvector

\[\|Q\mathbf{w}\| = \|\lambda \mathbf{w}\| = \lambda \|\mathbf{w}\| \quad (9) \]

but then from equation (8) we obtain

\[|\lambda| = 1 \quad (10) \]

and therefore \(\lambda \) lies on the unit circle in the complex plane.

2. Note that the complex conjugate \(\overline{\lambda} \) is an eigenvalue of \(Q \) (with corresponding eigenvector \(\overline{\mathbf{w}} \)) whenever \(\lambda \) is an eigenvalue of \(Q \) (with corresponding eigenvector \(\mathbf{w} \)). This follows from \(\overline{Q} = Q \). Explicitly,

\[Q\mathbf{w} = \lambda \mathbf{w} \Rightarrow \overline{Q}\overline{\mathbf{w}} = \overline{\lambda \mathbf{w}} = \overline{\lambda} \overline{\mathbf{w}}. \]

As \(Q \) has exactly 3 eigenvalues (counted according to multiplicity), we obtain from (10) that the set of eigenvalues of \(Q \) is

\[\text{eig}(Q) = \{e^{ix}, e^{-ix}, 1\} \quad \text{or} \quad \text{eig}(Q) = \{e^{ix}, e^{-ix}, -1\} \]

for some \(x \in [0, \pi] \). But for \(\text{eig}(Q) = \{e^{ix}, e^{-ix}, -1\} \) we get\(^1\) \(\det(Q) = -1 \), so that we must have

\[\text{eig}(Q) = \{e^{ix}, e^{-ix}, 1\} \quad \text{for} \quad x \in [0, \pi]. \quad (11) \]

This also shows that \(\lambda = 1 \) cannot have multiplicity 2, but only 1 or 3. If \(\lambda = 1 \) has multiplicity 3, then \(Q = \text{Id} \), which therefore is the only case where there can be a non-unique axis of rotation.

For any eigenvalue \(\lambda \) of \(Q \), the inverse \(\lambda^{-1} \) will be an eigenvalue of \(Q^{-1} = Q^T \) corresponding to the same eigenvector. Therefore, \(Q\mathbf{w} = \mathbf{w} \) immediately implies that \(\mathbf{w} \) is an element of the

\(^1\)Here, we make use of

\[\det(A) = \prod_{i=1}^{n} \lambda_i, \]

for any matrix \(A \in \mathbb{C}^{n \times n} \) with eigenvalues \(\lambda_1, \lambda_2, ..., \lambda_n \) repeated according to (algebraic) multiplicity.
nullspace of \(S = (Q - Q^T) \), i.e. \(Sw = 0 \). On the other hand if \(z \) is the unique axial vector of the skew matrix \(S \) (i.e. \(S = [z \times] \)), then

\[
0 = Sw = z \times w,
\]

so that \(z \) and \(w \) are parallel, i.e. the axial vector of the skew matrix is parallel to the axis of rotation of \(Q \).

3. If \(v \) is any vector orthogonal to the axis of rotation \(w \), then

\[
Qv \cdot w = v \cdot Q^Tw = v \cdot w = 0.
\]

Furthermore from (8) we can conclude that if \(v \) is a unit vector, then so is \(Qv \).

On the one hand, the angle \(\theta \) between \(Qv \) and \(v \) obeys

\[
Qv \cdot v = \|Qv\| \|v\| \cos \theta \overset{(8)}{=} \cos \theta.
\]

On the other hand the trace of a matrix is the sum of its eigenvalues\(^2\). Then (11) implies

\[
\text{tr}(Q) = 1 + 2 \cos x.
\]

In the special cases \(x = 0 \) and \(x = \pi \), the proof is immediate since \(\cos x = \pm 1 \) and \(v \) is itself an eigenvector and \(Qv = \pm v \) so that \(\cos \theta = \pm 1 \).

Otherwise, \(x \in (0, \pi) \) and we will show that \(\cos x = \cos \theta \) holds in general. Along the way, we will need a number of properties regarding the complex eigenvectors of \(Q \). We list them hereunder with their proof. Once and for all, \(x \in (0, \pi) \) and \(z \in \mathbb{C}^3 \) is a norm 1 eigenvector of \(Q \) corresponding to the eigenvalue \(e^{ix} \) from question 1.2. The hermitian product between complex vectors \(a, b \in \mathbb{C}^3 \) is noted \(\langle a, b \rangle \). The scalar product between real vectors \(x, y \in \mathbb{R}^3 \) is noted \(x \cdot y \).

Proposition 1. The conjugate \(\overline{z} \) of \(z \) is an eigenvector of \(Q \) with eigenvalue \(e^{-ix} \).

Proof. See exercise 2.2.

Proposition 2. If \(x \in (0, \pi) \), the eigenvector \(z \) is such that \(\langle z, \overline{z} \rangle = 0 \).

Proof. Compute

\[
e^{-ix} \langle z, \overline{z} \rangle = \langle e^{ix}z, \overline{z} \rangle = \langle Qz, \overline{z} \rangle = \langle z, Q^T \overline{z} \rangle = \langle z, e^{ix} \overline{z} \rangle = e^{ix} \langle z, \overline{z} \rangle.\]

And whenever \(x \in (0, \pi) \), Eq. (16) implies \(\langle z, \overline{z} \rangle = 0 \).

Proposition 3. Let \(x, y \in \mathbb{R}^3 \) be respectively the real and imaginary part of the unit eigenvector \(z = x + iy \). If \(x \in (0, \pi) \), then \(x \) and \(y \) are orthogonal: \(x \cdot y = 0 \). Furthermore,

\[
x \cdot x = y \cdot y = 1/2.
\]

\(^2\)This comes from the fact that if \(A \in \mathbb{R}^{n \times n} \) there exists \(P \in SU(n) \) such that \(P^{-1}AP \) is diagonal. Then \(\text{tr}(PAP^{-1}) \) is the sum of the eigenvalues of \(A \). But the trace is invariant under cyclic perturbations since \(\text{tr}(ABC) = A_{ij}B_{jk}C_{ki} = B_{jk}C_{ki}A_{ij} = \text{tr}(BCA) \). So \(\text{tr}(P^{-1}AP) = \text{tr}(APP^{-1}) = \text{tr}A \).
Proof. On the one hand, from Proposition 2 we have

\[0 = \langle z, z \rangle = \langle x + i y, x - i y \rangle = (x \cdot x - y \cdot y) - 2i(x \cdot y), \]
\[\Rightarrow x \cdot x = y \cdot y, \quad \text{and} \quad x \cdot y = 0. \tag{18} \]

On the other hand, \(z \) is of norm 1 so that

\[\langle z, z \rangle = x \cdot x + y \cdot y = 1 \quad (\Rightarrow x \cdot x = y \cdot y = \frac{1}{2}). \]

Now we are ready to proceed with the exercise. First we show that there exists a complex number \(a \in \mathbb{C} \) such that \(v = a z + \overline{a} \mathbf{z} \). Indeed, since \(z \) and \(\mathbf{z} \) span the space orthogonal to \(w \) in \(\mathbb{C}^3 \), there exist complex numbers \(a, b \in \mathbb{C} \) such that \(v = a z + b z \). But then with \(x \) and \(y \) defined as in Proposition 3, the fact that \(v \) is a real vector implies

\[(\text{Im}(a) + \text{Im}(b))x + (\text{Re}(a) - \text{Re}(b))y = 0 \Rightarrow b = \overline{a}, \tag{19} \]

where the implication is due to Proposition 3: \(x \) and \(y \) are orthogonal and of non zero norm so that both brackets must vanish independently.

Then the fact that \(v \) is a unit vector implies that \(|a|^2 = 1/2 \). Indeed, \(1 = \langle v, v \rangle = \langle az + \overline{a} \mathbf{z}, az + \overline{a} \mathbf{z} \rangle = |a|^2 + |\overline{a}|^2 = 2|a|^2 \), where the third equality is due to Proposition 2.

Finally, simply compute

\[\cos \theta \overset{(14)}{=} Qv \cdot v = \langle Q(a z + \overline{a} \mathbf{z}), az + \overline{a} \mathbf{z} \rangle = \langle a e^{ix} z + \overline{a} e^{-ix} \mathbf{z}, az + \overline{a} \mathbf{z} \rangle, \]
\[\overset{\text{Prop.}(3)}{=} |a|^2(e^{-ix} + e^{ix}) = \frac{e^{-ix} + e^{ix}}{2} = \cos x. \tag{20} \]

4. Eigenvectors can always be multiplied by a non zero scalar and they remain eigenvectors. In particular the scalar can be complex. In the case of \(Q \in SO(3) \), this means that any real vector perpendicular to the axial vector \(u \) can be taken as the real part \(x \) of the eigenvector with complex eigenvalue \(e^{i\theta} \). The eigenvalue relation in terms of real and imaginary parts of the eigenvector \(z = x + iy \) becomes

\[Qz = e^{i\theta}(x + iy) = (\cos(\theta)x - \sin(\theta)y) + i(\sin(\theta)x + \cos(\theta)y). \tag{21} \]

Then since \(Qz = Q(x + iy) \)

\[Qx = \cos(\theta)x - \sin(\theta)y, \]
\[Qy = \sin(\theta)x + \cos(\theta)y. \tag{22} \]

From proposition 3, we know that \(|y| = |x| \) & \(y \cdot x = 0 \). Thus, for real and imaginary parts of the eigenvectors we can take any \(x \) with \(x \cdot u = 0 \) and

\[y = \pm(u \times x). \tag{23} \]

According to the right-hand rule if \(Q \) is a counter-clockwise rotation through the angle \(\phi \) about \(u \), and \(a = u \times v \)

\[Qx = \cos(\phi)x + \sin(\phi)a, \]
\[Qa = -\sin(\phi)x + \cos(\phi)a. \tag{24} \]
By comparing (22) with the relations according to the right-hand rule (eqn. 24), we find
\(\phi = -\theta \) and \(y = + (u \times x) \) the choice of imaginary part of eigenvector for which \(\phi > 0 \) corresponds to an anti-clockwise direction about \(u \) and \(\{u, x, y\} \) is right-handed.

Now fix an axial vector \(u \) and consider an arbitrary vector \(v \in \mathbb{R}^3 \) which can be written as

\[
v = (u \cdot v)u + (I - u \otimes u)v. \tag{25}
\]

Then we can consider \(x = (I - u \otimes u)v \) as the real part of the complex eigenvector and \(y = u \times ((I - u \otimes u)v) \) as the imaginary part. Then with \(\phi \) being a counter-clockwise relation about \(u \) we find

\[
Qv = (u \cdot v)Qu + Q(I - u \otimes u)v \tag{26}
\]

\[
= (u \cdot v)u + \cos(\phi)(I - u \otimes u)v + \sin(\phi)(u \times (I - u \otimes u)v) \tag{27}
\]

\[
= (1 - \cos(\phi))(u \otimes u)v + \sin(\phi)(u \times v) + \cos(\phi)v \tag{28}
\]

which gives (3) in the announce, because \(v \) is arbitrary. Then (2) follows using 1.3.