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Session 5 A. Patelli, R singh

1 cgDNAweb+

The cgDNAweb+ is an online interface which main purpose is the visualisation of sequence depen-
dent minimum energy coarse grain configurations of B–form DNA predicted by the cgDNA and
cgDNA+ models. The user can enter any standard DNA sequence ({A, T,G,C} alphabet), and
visualize the predicted minimum energy configuration in two different ways:

1. 3D view of the structure

2. 2D plots of the values of the helical parameters (see Figure (1) and Phosphate coordinates
(see Figure (2)).

The cgDNAweb+ is accessible via the link http://cgdnaweb.epfl.ch. Read the instructions and
reconstruct your favourite DNA sequence. Notice that you can visualize multiple sequence at a
time.

Rigid Base Configuration Coordinates II

An oligomer with n basepairs has 6n intra-basepair and 6(n � 1)
inter-basepair degrees of freedom; a total of N = 12n � 6.
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(⌘a, xa) =: ya 2 R6 intra bp (ua, va) =: za 2 R6 inter bp

The oligomer coordinate vector is w = (y1, z1, . . . , zn�1, yn) 2 RN .
Concretely, use (small modifications of) Curves+ coordinates,
Lavery et al (NAR, 2009) implementation of Tsukuba embedding
of frames in atoms of each base, rotations via Cayley vectors.

Figure 1:Standard base pair helical parameters. Intras on the left, inters on the right, translation in columns
1 and 3, rotation (i.e. Cayley vectors) in columns 2 and 4.

2 The cgDNA+ matlab package

2.1 Download and Run the package

The cgDNA+ MATLAB package can be downloaded from https://lcvmwww.epfl.ch/teaching/
modelling_dna/protected_files/codes_exercises/cgDNA+_matlab_package.zip.

1. Start by reading the README file and by testing the cgDNA+ package on your version of
MATLAB.

2. Run main.m with cgDNA+ps1.mat and be sure no error is reported.

3. Understand the inputs/outputs of the function main.m.

http://cgdnaweb.epfl.ch
https://lcvmwww.epfl.ch/teaching/modelling_dna/protected_files/codes_exercises/cgDNA+_matlab_package.zip
https://lcvmwww.epfl.ch/teaching/modelling_dna/protected_files/codes_exercises/cgDNA+_matlab_package.zip


Figure 2: Rotational (i.e. Cayley vectors) and translational coordinates of Phosphates are defined with
respect to its corresponding base, ie for nth Phosphate on Watson strand (strand with superscript + ) relative
coordinates are defined with respect to nth base on Watson strand and similarly for Phosphates on Crick
strand (strand with superscript - ). Note that Phosphate coordinates are defined before the base flipping (see
the direction of frames fitted in the bases).

3 Optimisation in SE(3)

i) The first order necessary conditions for minimizing a function I(x) : Rn → R are ∇I(x) = 0.
This can be proved by considering a curve x(ε) ∈ Rn. The Taylor expansion along this curve
is x(ε) = x(0) + εh + O(ε2) where h = x′(0) is the tangent vector which can be any vector
h ∈ Rn. Then,
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∣∣∣∣
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= 0⇔ h · ∇I(x) = 0,∀h (1)

where

∇I(x) ∈ Rn =

[
∂I

∂x1
· · · ∂I

∂xn

]T
. (2)

Then, as h is arbitrary h · ∇I(x) = 0,∀h⇔ ∇I(x) = 0 ∈ Rn

ii) Show that if I(M) : Rn×n → R, then the first order necessary conditions are H : ∇I(M) = 0

∀H ∈ Rn×n or ∇I(M) = 0 ∈ Rn×n, where {∇I}ij =
∂I

∂mij
(I(M)) and : is the Frobenius

matrix inner product A : B =
∑

i

∑
j aijbij(= Tr(ATB)).

iii) Show that if I(R) : SO(n)→ R then the first-order necessary conditions are S : RT∇I(R) = 0
∀ S = −ST ∈ Rn×n, or RT∇I(R) must be symmetric.

iv) Use parts i) & iii) to compute the optimal values of r ∈ R3 and R ∈ SO(3) where

I(r, R) :=

M∑
i=1

||r+Rαi − pi||2, (3)
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and αi ∈ R3&pi ∈ R3 are given vectors. The values of r&R are the best fit frame to a given
set of atomic coordinates of atoms pi, i = 1, . . . ,M , whose idealized coordinates in the frame
(r, R) are known to be αi, i = 1, · · · ,M . In an exercise of a later series we will apply this
result to actual MD data where the list of atom coordinates pi make up a base, or make up
a phosphate group.

4 Connection between the Cayley transform and the matrix expo-
nential

In exercise 1.2 of Serie 3 we have shown that when a matrix M ∈ Rn×n is defined by a Cayley
transform of N ∈ Rn×n such that (I −N) is invertible, via

M = CayTra(N) := (I +N)(I −N)−1, (4)

then M ∈ SO(3) if and only if N = −NT ∈ R3×3. The function CayTra : R3×3 → R3×3 restricts
to Sk → SO(3), Q = CayTra([u×]) where Sk is all 3 × 3 skew matrices [u×] and Q is a proper
rotation matrix. Moreover in Qu1.2 we showed that any rotation Q ∈ SO(3) is a Cayley transform
except for rotations through π.
Remark: Do not confuse the notations CayTra and Cay (introduced in Qu1 Serie 4). Cay is a
mapping from a rotation matrix to a vector. Basically, u = Cay(Q) gives the vector u corresponding
to the skew matrix [u×] that is the inverse Cayley transform of the rotation matrix Q. The inverse
Cayley transform of Q is defined explicitly as CayTra−1(Q) so that [u×] = CayTra−1(Q) if and
only if u = Cay(Q).

We showed in Qu 1.2 Serie 3 that, for N = [u×], we have

Q := CayTra([u×]) := I +
2

1 + ‖u‖2
(
[u×] + [u×]2

)
[ see equation 27 of Corr 3] (5)

[u×] = CayTra−1(Q) :=
1

1 + trQ
(
Q−QT

)
[ see equation 3 on Serie 3] (6)

and ‖u‖ = tan

(
φ

2

)
, (7)

where φ is the rotation angle of Q about a unit rotation axis n = u
‖u‖ (see Qu 2 in serie 2). Equa-

tion (5) above is another form of Euler-Rodrigues formula as already seen in Serie 3. Note that
equations (5) & (6) give explicit forms of the mapping and its inverse between vectors u ∈ R3 &
SO(3) rotation matrices through an angle [0, π) (for which (1 + trQ) > 0).

The matrix exponential for any matrix is defined through the Taylor series in equation (4) of
Qu3 Serie 2.

1. Show that for any matrix N ∈ Rn×n for which (I −N) is invertible

exp(N)− CayTra(1
2
N) = − 1

12
N3 +O(‖N‖4) (8)

where exp is defined in equation (4) of Serie 2, and CayTra is defined in (4). Thus we see if
the matrix N is small the Cayley transform of N/2 is very close to exp(N).

2. For any v ∈ R3 with ‖v‖ < π, prove that if Q = exp([v×]),

[v×] = θ

2 sin(θ)

(
Q−QT

)
, (9)
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where
‖v‖ = θ, (10)

so that (equation (5) of Serie 2), (9) and (10) are the analogues for exponential coordinates
(sometimes called logarithms) to equations (5), (6) and (7) for the Cayley transformation and
the Cayley vector. Note: One can prove directly that log(Q) := [v×], where log is the matrix
logarithm.

Remark: This shows that exponential logarithmic coordinates v are parallel to the unit
rotation axis n with ‖v‖ = θ and the Cayley vectors u are also parallel to the unit rotation

axis n with ‖u‖ = tan

(
φ

2

)
.

5 Completing the square in vector quadratic forms (will use result
in 6th lecture)

Suppose that ci ∈ R,µi ∈ Rn&Ki ∈ Rn×n for i = 1, 2, 3 . . . , N with Ki = KT
i but Ki not necessarily

invertible (and so not necessarily positive definite). What are the conditions such that a sum of
shifted quadratic forms can be written as a single quadratic form? That is when does there exist
c ∈ R, µ ∈ Rn&K ∈ Rn×n such that

N∑
i=1

[
1

2
(x− µi) ·Ki(x− µi) + ci

]
=

1

2
(x− µ) ·K(x− µ) + c. ∀ x ∈ Rn. (11)

Compute the expressions for c,µ&K when possible.
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