1 Gaussian integrals II (Part I in Session 1)

Let \(\beta > 0, n \geq 0 \) and a symmetric, positive-definite matrix \(K = \Sigma^{-1} \in \mathbb{R}^{n \times n} \) be given. Show that a marginal of a Gaussian distribution is also a Gaussian distribution: if \(x \sim N(\hat{x}, \Sigma) \),

\[
\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}, \quad \mathbf{\hat{x}} = \begin{bmatrix} \mathbf{\hat{x}}_1 \\ \mathbf{\hat{x}}_2 \end{bmatrix}, \quad \mathbf{x}_1, \mathbf{\hat{x}}_1 \in \mathbb{R}^k, \quad \mathbf{x}_2, \mathbf{\hat{x}}_2 \in \mathbb{R}^m,
\]

\[
\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}^T & \Sigma_{22} \end{bmatrix}, \quad \Sigma_{11} = \Sigma_{11}^T \in \mathbb{R}^{k \times k}, \quad \Sigma_{12} \in \mathbb{R}^{k \times m},
\]

\[
\Sigma_{22} = \Sigma_{22}^T \in \mathbb{R}^{m \times m}, \quad \text{and} \quad k + m = n,
\]

then \(x_1 \sim N(\mathbf{\hat{x}}_1, \Sigma_{11}) \), i.e.

\[
\frac{\sqrt{\beta}}{\pi^{k/2}} \frac{\sqrt{\beta}}{\pi^{m/2}} \frac{\beta}{\sqrt{\det(K^{-1})}} \int_{\mathbb{R}^m} e^{-\beta(x-x) \cdot K(x-x)} \, dx_2 = \frac{\sqrt{\beta}}{\pi^{(k+2)/2}} \frac{\beta}{\sqrt{\det(Sigma_{11})}} e^{-\beta(x_1-x_1) \cdot Sigma_{11}^{-1}(x_1-x_1)}.
\]

[Hint: Found explicitly the inverse of a symmetric, positive definite matrix of the following form \[
\begin{bmatrix} A & B \\ B^T & C \end{bmatrix}, \quad \text{with} \quad A = A^T \quad \text{and} \quad C = C^T \quad \text{and compute its determinant.}]

2 On the computation of marginals of the cgDNA probability distribution

Given a sequence \(S \) and a parameter set \(P \), the cgDNA model is the Gaussian distribution:

\[
\rho(x; S, P) = \frac{1}{Z} \exp \left\{ -\beta (x - \bar{x}(S, P)) \cdot K(S, P) (x - \bar{x}(S, P)) \right\}
\]

(1)

where \(\bar{x}(S, P) \) and \(K(S, P) \) are respectively the mean and the stiffness matrix. We recall that the covariance is \(\Sigma = K^{-1}(S, P) \). In this exercise we want to do two different possible marginals of a cgDNA Gaussian distribution.

2.1 Marginalise over intra-base-pair variables

In the first part of this exercise we will focus on the marginalisation of the intra variables. For the computation consider the R. E. Dickerson palindromic dodecamer \(S_D = \text{CGCGAATTCGCG} \). Write a code for the two different method explained hereafter.

1. Consider the stiffness matrix \(K_D = K(S_D, P) \).

 i) Recombine the stiffness matrix \(K(S_D, P) \) in the following form:

 \[
 \bar{K}_D = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}
 \]
where $A = A^T \in \mathbb{R}^{6(n-1) \times 6(n-1)}$, $B \in \mathbb{R}^{6n \times 6(n-1)}$ and $C = C^T \in \mathbb{R}^{6n \times 6n}$. The block A is the block associated to the inter variables, B is the block related to the coupling between inter and intra variable, while C is the block associated to the intra variable. What is the pattern of \bar{K}_D?

ii) Apply now the formula obtained in Exercise 1, to compute the marginal stiffness matrix (noted $K_1^{(u,v)}$) for the inter variables. Is the matrix dense?

2. Consider the covariance $\Sigma_D = K_D^{-1}$. We stress on the fact that the stiffness matrix K_D as a specific pattern and is sparse while Σ_D is dense.

i) Compute $\bar{\Sigma}_D$ in such a manner that it has the same block structure as \bar{K}_D. The obtained matrix has a specific pattern?

ii) Invert the block corresponding to the inter variable to obtain the marginal stiffness matrix (denoted $K_2^{(u,v)}$) of the inter. Is the matrix dense?

Compare the two obtained marginal stiffness matrices.

[Note: The above way of marginalise leads to a DNA model base only of inter coordinates. This kind of model is called a rigid-basepair model of DNA.]

2.2 A localized cgDNA model: marginalise over the configurations of the flanking sequences

The following marginalisation could be useful to study the statistical mechanics property of a small segment of a potentially very long fragment of DNA. Begin by adding randomly 100 basepairs at each end of the Dickerson dodecamer, i.e, define $\tilde{S} = S_1S_DS_2$ where S_i are randomly chosen (but then fixed) 100 basepair long sequences. Do the following steps:

i) Reconstruct the stiffness matrix and the ground-state for \tilde{S} using cgDNA.

ii) Invert the reconstructed stiffness matrix and extract the entries of the covariance that correspond to S_D. Invert them to obtain the marginalised Dickerson dodecamer.

iii) Extract the entries of the ground-state corresponding to S_D.

What is the sparsity pattern of the marginalised stiffness? Compare the marginal stiffness and marginal ground-state with the corresponding cgDNA reconstruction of S_D (for example compute the Kullback-Leibler divergence between the two distributions). What happen if you change the flanking sequences?

[Note: Based on above method one can also marginalise over flanking sequences. By considering the following ensemble $\mathcal{S}(S_D) = \{ S | S = S_1S_DS_2, \ S_1, S_2 $ flanking sequences $\}$, one can compute the marginal of S_D over flanking sequences as the ensemble average of all the localized marginals of S_D computed for all $S \in \mathcal{S}$.]
3 Gaussian Integral III

Let \(\hat{x} \in \mathbb{R}^n \) and a symmetric, positive-definite matrix \(K = \Sigma^{-1} \in \mathbb{R}^{n \times n} \) be given. Show that a conditional of a Gaussian distribution is also a Gaussian distribution: if \(x \sim N(\hat{x}, \Sigma) \),

\[
\begin{align*}
x &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \hat{x} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}, \quad x_1, \hat{x}_1 \in \mathbb{R}^k, \quad x_2, \hat{x}_2 \in \mathbb{R}^m, \\
\Sigma &= \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}^T & \Sigma_{22} \end{bmatrix}, \quad \Sigma_{11} = \Sigma_{11}^T \in \mathbb{R}^{k \times k}, \quad \Sigma_{12} \in \mathbb{R}^{k \times m}, \\
\Sigma_{22} &= \Sigma_{22}^T \in \mathbb{R}^{m \times m}, \quad k + m = n,
\end{align*}
\]

then \((x_1|x_2 = a) \sim N(\bar{x}, \bar{\Sigma}) \), where

\[
\begin{align*}
\bar{x} &= \hat{x}_1 + \Sigma_{12}\Sigma_{22}^{-1}(a - \hat{x}_2), \\
\bar{\Sigma} &= \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}.
\end{align*}
\]

[Hint: Use the definition for Gaussian marginal density function and the solution of Exercise 1.]

4 On the computation of conditionals of the cgDNA probability distribution

For this exercise you should download the following scripts: http://lcvmwww.epfl.ch/teaching/modelling_dna/public_files/Conditional_scripts.zip

The aim of this exercise is to develop a basic statistical model for modelling the interaction between DNA and proteins. DNA-binding proteins are proteins which have an affinity with DNA (see for more details the Wikipedia article: DNA-binding protein), which can bind to the DNA in either the major or minor groove. In the context of the cgDNA model one can see the protein that binds to a molecule of DNA as a constrains on some of the internal coordinates describing the DNA segment. Thus, from a statistical mechanics point of view the interaction between DNA and protein can be modelled as a conditional distribution of the density function related to the DNA fragment, which in the cgDNA land is Gaussian. Thanks to the previous exercise we know that a conditional distribution of a Gaussian distribution still be a Gaussian. Let us assume that the interaction DNA-protein is reduced to a change in only an intra coordinate. Let \(w = (y_1, x_1, y_2, \ldots, x_i, y_{i+1}, x_{i+1}, \ldots, y_n) = (w_1, y_i, w_2) \in \mathbb{R}^{12n-6} \) where \(y_j \in \mathbb{R}^6 \) are the intras and \(x_k \in \mathbb{R}^6 \) are the inters, and

\[
\rho(w; S, \mathcal{P}) = \frac{1}{Z} \exp \left\{ -\frac{1}{2} (w - \hat{w}(S, \mathcal{P})) \cdot K(S, \mathcal{P})(w - \hat{w}(S, \mathcal{P})) \right\}
\]

\[
= \frac{1}{Z} \exp \left\{ -\frac{1}{2} \begin{bmatrix} w_1 - \hat{w}_1 \\ y_i - \hat{y}_i \\ w_2 - \hat{w}_2 \end{bmatrix} \begin{bmatrix} A & B & 0 \\ B^T & C & D^T \\ 0 & D & E \end{bmatrix} \begin{bmatrix} w_1 - \hat{w}_1 \\ y_i - \hat{y}_i \\ w_2 - \hat{w}_2 \end{bmatrix} \right\},
\]

a cgDNA Gaussian for the sequence \(S \) and the parameter set \(\mathcal{P} \). Imagine now that a protein is binding to the \(i \)-th basepair, thus it constraints \(y_i = a \in \mathbb{R}^6 \).

1. By using the Exercise 2 of this sheet find the conditional mean \(\hat{w} = (\bar{w}_1, \bar{w}_2) \).

2. Complete the lines 53 and 54 in `calc_conditional_shapes.m` with your findings, and run it with the following input arguments:
- sequence : ATCGCGAATGCGAGCCTGTA ;
- cond_index : 10 ;
- cond : [0.1 0.5 0.5 0.3 0.6 0] (= \(\delta a \)). In the following code we consider \(a = \hat{y}_i + \delta a \).

Be aware that you have also to complete lines 19 and 20 by adding to the path your cgDNA folder and your cgDNAviewer.

[Hint: Conditioning one intra (example on the left) leads to a specific decomposition of the stiffness matrix that can be seen in the matrix on the left (each little block is a 6 times 6 matrix). This implies that the conditional stiffness can be seen as a block diagonal matrix.]