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1 Gaussian Integral III

Let x̂ ∈ Rn and a symmetric, positive definite matrix K = Σ−1 ∈ Rn×n be given. Show that a
conditional of a Gaussian distribution is also a Gaussian distribution: if x ∼ N(x̂,Σ),

x = [
x1

x2
] , x̂ = [

x̂1

x̂2
] , x1, x̂1 ∈ Rk, x2, x̂2 ∈ Rm,

Σ = [
Σ11 Σ12

ΣT
12 Σ22

] , Σ11 = ΣT
11 ∈ R

k×k, Σ12 ∈ Rk×m,Σ22 = ΣT
22 ∈ R

m×m,

K = [
K11 K12

KT
12 K22

] , K11 =K
T
11 ∈ R

k×k, K12 ∈ Rk×m,K22 =K
T
22 ∈ R

m×m, and k +m = n,

then (x1∣x2 = a) ∼ N(x,Σ), where

x = x̂1 +Σ12Σ
−1
22(a − x̂2), (1)

Σ
−1

= K11. (2)

Remark: For Gaussians: marginal shift is a sub-vector of original mean and stiffness is the inverse
of a sub-block of the original covariance. For conditional, stiffness is a sub-block of original stiffness
but shift requires a computation.

[Hint: Use the definition for Gaussian marginal density function and the solution of Qu 2 serie 13.]

2 On the computation of conditionals of the cgDNA+ probability
distribution

For this exercise, first download (http://lcvmwww.epfl.ch/teaching/modelling_dna/protected_
files/codes_exercises/calc_conditional_shapes.m) matlab scripts required for computing con-
ditionals of cgDNA+ probability distribution. The aim of this exercise is to explain a basic statistical
model for modelling the interaction between DNA and proteins. DNA-binding proteins are pro-
teins which have an affinity with DNA (see for more details the Wikipedia article: DNA-binding
protein), which can bind to the DNA in either the major or minor groove. In the context of the
cgDNA+ model one can model a protein that binds to a molecule of DNA as constraints on some
of the internal coordinates describing the DNA segment. Thus, from a statistical mechanics point
of view the interaction between DNA and protein can be modelled as a conditional distribution of
the density function related to the DNA fragment, which in cgDNA+ land is Gaussian. Thanks to
the previous exercise we know that a conditional distribution of a Gaussian distribution is still a
Gaussian. Let us assume that the interaction of DNA-protein is reduced to a change in only the kth

Watson phosphate coordinate, where k represent the base-pair number/index in a given sequence.
Let w = (y1, y

pC
1 , x1, y

pW
2 , y2, y

pC
2 , x2, . . . , xn−1, ypWn , yn) = (w1, y

pW
k ) ∈ R24n−18 where yi ∈ R6 are the

intras, xi ∈ R6 are the inters, and ypCi ∈ R6, ypWi ∈ R6 are Watson and Crick phosphates coordinates
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respectively and w1 ∈ R24n−24 are rest (except ypWk ) of the coordinates for a sequence having n
base-pairs and
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=
1

Z
exp{−

1

2
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, (3)

a cgDNA+ Gaussian for the sequence S and the parameter set P. Here K = Σ−1, block Σ22 is 6× 6
matrix corresponding to the ktk Watson phosphate coordinates and Σ11 is rest of the block and
Σ12 represent coupling between ktk Watson phosphates and rest of the blocks. Imagine now that a
protein is binding to the kth Watson phosphate, thus it constraints ypWk = a ∈ R6.

1. By using the Exercise 1 of this serie find the conditional mean (w1)

2. Complete the lines 52 in matlab script calc_conditional_shapes.m with your findings (w1)
and run it with the following input arguments :

• sequence (S) : ATCGCGAATGCGAGCCTGTA ;

• cond_index : 10 ;

• condition : [0.1 0.5 0.5 0.3 0.6 0] (= δa). In the following code we consider a = ŷpWk + δa.

Be aware that you have add the path of cgDNA+ folder and cgDNAp2dplot while using the
script calc_conditional_shapes.m.

3. Plot the cgDNA+ groundstate and computed conditional groundstate in one plot. What can
you say?

Note: Conditioning one Watson phosphate (example on the left) leads to a specific decomposition of
the stiffness matrix that can be seen in the matrix on the left (each little block is a 6 times 6 matrix).
This implies that the conditional stiffness (matrix in the right) can be seen as an overlapping block
diagonal matrix.
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3 On the average of rotation matrices sharing a common (deter-
ministic) axis (provides a proof of a result used in computation
of persistence length in Chapter 2)

Let Q = {Qk}
N
k=1 ⊂ SO(3) an ensemble of rotation matrices sharing a common axis of rotation

denoted by u. Show that ∣∣⟨Q⟩∣∣ = 1, where ⟨Q⟩ ∶= 1
N ∑

N
k=1Qk and ∣∣A∣∣ = sup∣∣x∣∣=1 ∣∣Ax∣∣. Moreover

show that if at least one rotation matrix in Q has a different rotation axis, then ∣∣⟨Q⟩∣∣ < 1.

4 On the parametrization of junction displacement using quater-
nions

Nowadays it is rather fast to sample from multivariate distributions particularly ones with banded
stiffness matrix because Cholesky decomposition is also banded. Thus the slowest portion in a
Monte Carlo code can be the evaluation of the chosen deterministic function. In the cgDNApmc
code we have made two different choice of functions of the cgDNA+ coordinates:

1. φ(x) = (RT1Rn)(3,3),

2. φ(x) = RT1 (rn − r1),

where (A)(3,3) means the (3,3) entry of a matrix A ∈ R3×3, (R1, r1) is a fixed base-pair frame chosen
to be the first (but not necessarily the first one of the DNA fragment), and (Rn, rn) is the nth base-
pair frame after the fixed one. For both of the above functions, in cgDNApmc we have to perform
many matrix multiplications in SO(3) in order to be able to evaluate the functions for each sampled
configuration. For efficiency, in the cgDNApmc code, these multiplications are implemented using
quaternion multiplication. We have already seen how to parametrize a rotation matrix using three
numbers or the Cayley vectors. In this exercise we will study the parametrization of a rotation
matrix by four numbers called Euler-Rodrigues parameters or quaternions.

Any vector q = (q0, q1, q2, q3) ∈ S3 = {x ∈ R4∣x ⋅ x = 1} can be interpreted as a right-handed rotation
in R3 through an angle θ and around a unit axis w ∈ R3, where θ and w solve :

cos
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⎥
⎥
⎥
⎥
⎦

= q. (4)

1. Let Q ∈ SO(3) a rotation matrix about a unit axis w through an angle 0 ≤ θ < π. Let
u = Cay(Q) ∈ R3 be the Cayley parametrisation of Q. Find the quaternion parametrisation
of Q in term of the Cayley vector u. [Hint: We recall that ∥u∥ = tan θ

2 ].

2. Using the previous part, show that the Euler-Rodrigues formula (2) of exercise 1.2 session 3
implies the following quaternion parametrisation:
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0
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⎥
⎦

(5)

3. From a computational point of view, the interest of using quaternions instead of rotation
matrices lies in the following equivalence: Let Qi = Q(qi) ∈ SO(3), for i = 1,2,3, we have

Q3 = Q1Q2 ⇐⇒ q3 = q1 ○ q2, (6)
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where the symbol ○ mean the multiplication operator for quaternions. For two quaternions
q = (q0,q) and p = (p0,p) we define

q ○ p = (q0p0 − q ⋅ p, q0p + p0q + q × p) . (7)

We could derive (7) and prove the equivalence (6) but here we will just check them numerically.
Infact, using (7) is significantly faster than multiplying the matrices. For that purpose use the
cgDNA+ package to reconstruct the groundstate of a short fragment of DNA (10-12 base-pair).
Then, check the following

R3 = R2Q2 ⇐⇒ qR3 = qR2 ○ qQ2 , (8)

where Ri is the orientation of the ith base-pair, and Q2 is the rotational part of the second
junction displacement, and qMi is the quaternion related to the rotation matrix Mi.

Remark: In the cgDNA+ model the Cayley vectors are scaled in a way that their norm equal
10 tan θ

2 , where θ is the angle of the rotation. Thus, you have to rescale the cgDNA+ Cayley
vectors such that their norm are tan θ

2 if you want to use the relation between Cayley vectors
and quaternions.
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