
DNA Modeling Course
Exercise Session 5

Summer 2006 Part 2

Introduction

This session is concerned with the effect of a high intrinsic twist rate on the
effective bending properties of an elastic rod. In Problem 1 we again consider the
Fenchel transform. Together with the results of Problem 1 of Session 4 you are
now in position to compute the Legendre transform of the strain energy functions
in Problem 2. In Problem 2 we will derive the effective strain energy function
for the averaged Hamiltonian system governing the equilibrium dynamics in
the limit as intrinsic twist tends to infinity. The analysis is used to show that
for a rod with locally anisotropic constitutive relation for bending, there is an
effective bending law in the infinite intrinsic twist limit, and that the effective
constitutive law is isotropic. In the last part of the exercise the effective strain
energy density function has to be computed explicitly for a non-diagonal stiffness
matrix which constitutes a coupling term between bending and twisting.

Problem 1: Fenchel transform

Let x,y ∈ IRn and consider a smooth function ψ(x) ∈ IR with Fenchel transform
ψ∗(y) ∈ IR defined as

ψ∗(y) = max
x∈IRn

[y · x − ψ(x)] . (2.1)

Show that the Fenchel transform ψ∗∗(y) of ψ∗(x) equals the function ψ, that
is,

ψ∗∗(y) = ψ(y) for y ∈ IRn.

Hint: Use the first order necessary condition!

Problem 2: Effective properties of rods with high

intrinsic twist

(a.) Consider the following ODE

ẏε = f(yε, t, τ), τ =
t

ε
, (3.1)

where τ is assumed to be periodic with period T . As shown in class one
can use multiscale analysis in order to show that the effective dynamics



Summer 2006 Part 2 DNA Modeling Course 2

yε(t, τ) → y0(t) in the limit ε→ 0 obeys an averaged ODE

ẏ0 = f(y0, t),

f(y, t) =
1

T

∫ T

0

f(y, t, τ) (d)τ.

Implement the formal asymptotic procedure in order to obtain the above
result. To this end, expand the solution yε wrt. the smallness parameter
ε, insert the expansion into equation (3.1) and compare the coefficients of
different powers of ε. Note that the two time scales have to be treated
as if they were independent which is consistent to the separation of scales
between t and τ .

(b.) Next, we apply the asymptotic result to the specific problem of an elastic
rod with high intrinsic twist.

As before we denote u the strain vector satisfying d′

i
= u×di, i = 1, 2, 3.

The components ui = u · di wrt. the frame {di} are gathered in a triple
u. In the same way we gather the three components mi = m · di of the
moment vector m in a triple m = (m1,m2,m3). The strain energy density
function W is assumed to be of the standard quadratic form

W (w, s) =
1

2
w · Kw, K ∈ Mat(3 × 3, IR+),

and the constitutive relations are of the form

mi =
∂

∂wi

W (u− û),

where û = (û1, û2, û3) are the components wrt. {di} in the minimum
energy unstressed configuration.

The analysis in the limit of infinite intrinsic twist requires to refer the
equilibrium equations to a director frame {Di} that is independent of the
twist Û3 in the unstressed configuration.

We rotate the frame {di} about the d3 axis through an angle Ω(s) to
obtain the new set of directors {Di} satisfying

[D1,D2,D3] = [d1,d2,d3]R
T (Ω), R(Ω) =




cosΩ sinΩ 0
− sinΩ cosΩ 0

0 0 1


 .

The {Di} frame has an associated strain vector U satisfying

D′

i = U × Di,

and the triple of components Ui = U ·Di is denoted U , respectively Û for
the triple in the unstressed configuration. We have the relations

U = R(Ω)[u+Ω′e3],

u = RT (Ω)[U −Ω′e3]
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In order to refer the equilibrium conditions to the natural frame it is
necessary to consider the components Mi = m ·Di of the moment vector
m. Then the components M in the natural frame are related to the
components m in the {di} frame via

M = R(Ω)m.

The rod equilibrium equations are now derived as a seven degree of free-
dom, canonical Hamiltonian system

z′ =

(
0 Id

−Id 0

)
∇H(z, s, Ω)

with associated Hamiltonian

H(z, s, Ω) = [ŴΩ ]∗(M, s) + n · D3,

where [ŴΩ ]∗(M, s) is the Legendre transform of the density function

ŴΩ(U, s) = W (RT (Ω)(U − Û), s).

Compute [ŴΩ ]∗(M, s) in terms of the Legendre transformW ∗ of the strain
energy function W .

For applying the averaging result in part (a.) we explicitly separate the de-
pendence of the Hamiltonian H on the independent variable s and the an-
gle function Ω and emphasize that the Hamiltonian is always 2π-periodic
in Ω and the dependence only enters through the Legendre transform W ∗.
With it, we are in position to average over Ω, which can be seen to be
a fast variable Ω = s/ε. State the averaged Hamiltonian by resorting to
part (a.).

(c.) It remains to consider the explicit form of the averaged Hamiltonian
H(z, s) which can be done whenever the strain energy function W is
quadratic. Explicitly compute the averaged Hamiltonian in the case

W (u− û, s) =
1

2
(u− û) · K(u− û), K =




K1 0 0
0 K2 K23

0 K23 K3


 .

What is the effective strain energy density function W ? (Hint: To this
end, you have to use the result of Problem 1).


