
DNA Modelling Course
Exercise Session 2

Summer 2006 Part 2

SOLUTIONS

Problem 1: The linking number of the Whitehead link

We have given a projection of two curves. First orient the two curves. Assign
to each crossing between the two curves +1 or −1 depending on the sign of the
crossing. (For instance, move the curves such that they lie perpendicular to
each other in the crossings. Then, if you have to turn the curve above + π

2
to

line up with the correct orientation of the curve below assign +1 to the crossing.
If you have to turn the curve above −π

2
to line up with the right orientation of

the curve below assign −1 to the crossing.) Then sum over each crossing the
corresponding +1 or −1 and divide the sum by 2.
For the Whitehead link we get Lk = 1

2
(−1+1−1+1) = 0. We have seen in the

previous Problem, that a link which can be ‘physically unlinked’ has Lk = 0.
But the contrary is not true! The Whitehead link is an example of a link with
Lk = 0, where the two curves cannot be ‘physically unlinked’.

Problem 2: Properties and Computation of Writhe integral

Problem 2a.)

This follows of the fact a × b = −b × a for all a, b ∈ IR3 and the bilinearity of
the scalar product.

Problem 2b.)

Look at the chapter 9. Supercoiling on the web. Follow the proof of the lemma
on page 6-7.
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Problem 2c.)

• Translation x 7→ x + a, a ∈ IR3

(x + a)(σ) − (x + a)(s) = x(σ) − x(s),

(x + a)′(σ) × (x + a)′(s) = x′(σ) × x′(s)

• Rotation x 7→ Rx, RRt = I , |R| = 1
It holds for any rotation R

Ra · Rb = a · b
Ra × Rb = R(a × b)

In particular, every rotation is isometric and leaves volume invariant.
The derivative of the rotated curve it the rotated tangent, i.e. (Rx)′ =
Rx′. This completes the proof.

• Dilation x 7→ λx, λ > 0
Both, the scalar product and the cross product are bi-linear, therefore

(λx(σ) − λx(s)) · (λx′(σ) × λx′(s))

= (λx(σ) − λx(s)) · (λ2(x′(σ) × x′(s)))

= λ3 (x(σ) − x(s)) · (x′(σ) × x′(s))

and the Writhe integrand remains invariant.

Problem 2d.)

Using the results from Problem 3, it is sufficient to consider a reflection in the
(e1, e2)-plane. We denote by Ix the reflection of x in the (e1, e2)-plane. Then

(Ix(σ) − Ix(s)) · ((Ix)′(σ) × (Ix)′(s))

|Ix(σ) − Ix(s)|3

=





x1(σ) − x1(s)
x2(σ) − x2(s)
−x3(σ) + x3(s)



 ·





x′

1
(σ)

x′

2
(σ)

−x′

3
(σ)



 ×





x′

1
(s)

x′

2
(s)

−x′

3
(s)





∣

∣

∣

∣

∣

∣

x1(σ) − x1(s)
x2(σ) − x2(s)
−x3(σ) + x3(s)

∣

∣

∣

∣

∣

∣

3

= −





x1(σ) − x1(s)
x2(σ) − x2(s)
x3(σ) − x3(s)



 ·





x′

1
(σ)

x′

2
(σ)

x′

3
(σ)



 ×





x′

1
(s)

x′

2
(s)

x′

3
(s)





|x(σ) − x(s)|3

= − (x(σ) − x(s)) · (x′(σ) × x′(s))

|x(σ) − x(s)|3 .
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The Writhe of the reflection of the curve x in the plane is the negative of the
Writhe of the curve.

This property and the fact that Writhe of a curve is independent of the
orientation of the curve implies that the Writhe of any curve which has a plane
of symmetry (i.e. is a mirror image of itself) is zero.

Problem 2e.)

If the curve lies in a plane, then

(x(σ) − x(s)) ⊥ (x′(σ) × x′(s)) ∀σ, s.

Therefore the Writhe integrand vanishes pointwise.

Problem 2f.)

The curve x(s) is symmetric with respect to the plane X = l
2

(if the length of
the links is assumed to be l). We denote by Ix the reflection of x in this plane
and by x̃ the curve x with the opposite orientatin, i.e. x̃(s) = x(L − s) for all
s ∈ [0, L].

The symmetry implies Ix = x̃. Then by Problem 4 we get Wr(x) =
−Wr(Ix) = −Wr(x̃) = −Wr(x). The last equality is true because Writhe
is independent of the orientation of the curve. Thus Wr(x) = 0.

Problem 2g.)

First we paremeterize the curve, e.g. for s ∈ [1, 4] we define

x(s) =



















































































1 − s

s

0



 for s ∈ [0, 1)





0
1 − s

0



 for s ∈ [1, 2)





s

0
s



 for s ∈ [2, 3)





1
0

1 − s



 for s ∈ [3, 4)

(0.1)

We split the double integral into a sum of 16 double integrals, of which most
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vanish.

Wr(C) =
1

4π

∑

i,j

∫

Ii

∫

Ij

IWr(σ, s)dσ ds

=
1

2π

(∫

I1

∫

I3

+

∫

I2

∫

I4

)

IWr(σ, s)dσ ds

=
1

2π
(a + b),

where we denote

a =

∫

I1

∫

I3

IWr(σ, s)dσ ds =

∫

1

0

∫

1

0

1

(1 − s − σ)2 + σ2 + s2)
3

2

dσ ds,

and

b =

∫

I2

∫

I4

IWr(σ, s)dσ ds =

∫

1

0

∫

1

0

−1

(1 + (1 − σ)2 + (1 − s)2)
3

2

dσ ds.

We calculate the double integral a (with Maple, for instance)

a =

∫

1

0

∫

1

0

1

(1 − s − σ)2 + σ2 + s2)
3

2

dσ ds,

=

∫

1

0

∫

0

−1

1

(s + σ)2 + (σ + 1)2 + s2)
3

2

dσ ds =
2π

3
.

Then we calculate the double integral b

b =

∫

1

0

∫

1

0

−1

(1 + (1 − σ)2 + (1 − s)2)
3

2

dσ ds,

= −
∫

0

−1

∫

0

−1

1

(1 + σ2 + s2)
3

2

dσ ds,

= −
∫

1

0

∫

1

0

1

(1 + σ2 + s2)
3

2

dσ ds = −
∫

1

0

σ

(1 + s2)
√

1 + σ2 + s2

∣

∣

∣

∣

1

0

ds

= −
∫

1

0

1

(1 + s2)
√

2 + s2
ds = − arctan

(

s√
2 + s2

)∣

∣

∣

∣

1

0

= −(
π

6
− 0) = −π

6
.

Hereby we used the facts
∫

1

(σ2 + z2)
3

2

dσ =
σ

z2
√

σ2 + z2

∣

∣

∣

∣

and

arctan′(x) =
1

1 + x2
.

Now we get

Wr(C) =
1

2π
(a + b) =

1

2π
(
2π

3
− π

6
) =

1

4
.

We note, that, in general, the Writhe of a curve is not an integer.


