DNA Modelling Course
Exercise Session 5
Summer 2006 Part 2

SOLUTIONS

Problem 1: Fenchel transform

For simplicity we assume that Vi : R™ — R" is an invertible function. We
thus obtain the existence of a function ¢ : R™ — R" such that V¢ (¢(x)) = =.
Then we get

o7 (y) = max{y-z -9 (2)}
max{y - @ — (z - $(x) — d(d(x))}, (0.1)

where the second equality is obtained by using the first order necessary condi-
tion for the Fenchel transform v¢*(z). The first order condition for the maxi-
mum (0.1) to exist is

y = D(z-o(x) —P(o(x)))
= D(Vi(o()) - o(x) — P(o())),

which after a short calculation reveals

y = o).
Inserting the result in (0.1) yields

vy) = max{y-z—(z-y—9(y))} = Uy)

Problem 2: Effective properties of rods with high
intrinsic twist

(a.) We consider the ODE

t
,ye = f(yeat77)7 T= (02)

€
where 7 is assumed to be periodic with period T'. The variable 7 can

be seen to be a fast variable and ¢ is the slow one. For preparation of
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the discusson we introduce the inner product (-,-) on the vectorspace of
T-periodic integrable functions:

Y —
we) = 1 [ v
0
Next, we define the projection operator II according to

1 (T
Iy = (Ly) = f/ y(r)dr.
0
It is obvious that IT projects a function y(t,7) on a function that does
not depend on 7, that is 0,1 = 0. Using T-periodicity in 7 it is likewise
obvious that

1o, = 0. (0.3)
We now make the following ansatz for the solution of the equation (0.2)

where we demand that the initial state y¢(t = 0,7 = 0) = y¢ is indepen-
dent of e:

yeit,7) = y't,7) + eyl(t,T) + €Yt T) + ..., 7=-.(0.4)

a |k

We treat the two time scales as if they were independent which is consistent
with the separation of scales. Thus we set

0 0 10
— > = 4+ =
ot ot € 0T
The ansatz (0.4) is inserted into the ODE (0.2) and then, equating equal

powers in ¢ leads to the following sequence of equations (note that the
RHS of (0.2) can be written f(y¢,t,7) = f(y°,t,7) + O(e)):

et oy’ =0 (0.5)
& ooyt + 0’ = f(y0t, 7). (0.6)

l.step: (0.5) immediately yields that y° does not depend on 7, i.e.,
I yo =y .

2.step: Let IT = (1,-) act on (0.6) and use (0.3). This time
ofy° t,7) = Hoy' + 119,y° = dy°.
Thus, y° is determined by the ODE
y° = F°0),

with averaged function

f(y,t) = 1 f(y,t,7),

and its solution gives us y¢ up to error O(e).
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(b.) The constitutive relations in the natural frame {D;} variables become

0
oU;

M; = WU, s),

and, by using the results from the last exercise session and exploiting
orthogonality of the matrix R we obtain the Legendre transform of W
as

(W (M, s) = W*(R"M,s) + U - M.

Again we use former results from Session 4 in order to obtain
* 1 —1
W*(m,s) = §mK m,
and, conclusively,
— 1 N N
(W (M, s) = gm (R(2)K~'R"(2))M + UMy + UsMs.

The Hamiltonian is now given by

H(zs,02) = [W?*(M,s) + n- Ds. (0.7)

Averaging In order to obtain a system that is suitable to applying the

averaging result from part (a.) we incorporate a high twist into the model

by setting us(s) = —% with € < 1. The Hamiltonian is dependent on the
S

parameter e through the identity (2(s) = £ obtained from integrating

€
2 = —as.
Now, the Hamiltonian system reads

e 0 Id . s
26 = <—Id O)VH(Z,S,Q), Q:E'

Now, we observe that for any initial condition z¢(0) = z¢ independent of
e the solution z€ is given by z° up to error € where 2" is the solution of

. 0 Id —
30 = (—Id 0 >VH(z0,s),

where H is given by

W*(Ma s) + UlMl + UQMQ + n - Ds,
1 27

W (M,s) = o /. W*(RT ()M, 5)ds2.

H(z,s)
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(c.)
W*(RTM, s) = %M- (R(IQ)K'R* ()M,

where the stiffness matrix K is given by

Ky 0 0
K = 0 Ky Ko
0 Ko Ks
The inverse K ! is
1K, 0 0
K= 0 Ks/D —Ks3/D |, D = KyK3 — (Ka3)?,

0 —Ks3/D  Ky/D
and a straightforward calculation reveals

K = R()K'RT(2) =

2 ) .
cos” 2 K3 sin® 2 : 1 Ks _ sin 2Ko3
o T oD sin (20205 94 e +5) 7o)
: _ 1 Ks sin® 2 cos” K3 _ cos 2Ko3
sin {2 cos 2(— - + 7) S e CoRRa
_ sin 2Ko3 __cos 2K>3 K>
D D D

Using fOQﬂ cos?(x)dr = fozﬂ sin?(z)dz together with fozﬂ cos?(z)+sin? (z)dx =
27 yields fo% cos?(z)dx = fo% sin?(z)dz = m and we obtain
1 2m

~ . 1 =1 Ko
o ), K()dn = dlag{Kél,K5l,3},

Kt

%(Kfl + K1 (1-96)), 0 = (Ka)?/(K2K3).

Thus, the averaged Hamiltonian is given by

F = W*(M, S) + UlMl + UQMQ + ’I’L'Dg,
— 1 _ _ K
W'(M,s) = §M.diag{K51,K51,32}M.

Note that W is not the Legendre transform of the average of W (RT (2)U, s)
since the averaging operator and the Legendre transform do not commute.
Using Problem 1 we know that the effective strain energy function can be
computed as the Legendre transform of the averaged Legendre transform
W™ and thus we obtain

W(as):%ufu = 0 K&



