
DNA Modelling Course
Exercise Session 5

Summer 2006 Part 2

SOLUTIONS

Problem 1: Fenchel transform

For simplicity we assume that ∇ψ : IRn → IRn is an invertible function. We
thus obtain the existence of a function φ : IRn → IRn such that ∇ψ(φ(x)) = x.
Then we get

ψ∗∗(y) = max
x

{y · x − ψ∗(x)}

= max
x

{y · x − (x · φ(x) − ψ(φ(x))}, (0.1)

where the second equality is obtained by using the first order necessary condi-
tion for the Fenchel transform ψ∗(x). The first order condition for the maxi-
mum (0.1) to exist is

y = D(x · φ(x) − ψ(φ(x)))

= D(∇ψ(φ(x)) · φ(x) − ψ(φ(x))),

which after a short calculation reveals

y = φ(x).

Inserting the result in (0.1) yields

ψ∗∗(y) = max
x

{y · x − (x · y − ψ(y))} = ψ(y).

Problem 2: Effective properties of rods with high

intrinsic twist

(a.) We consider the ODE

ẏε = f(yε, t, τ), τ =
t

ε
, (0.2)

where τ is assumed to be periodic with period T . The variable τ can
be seen to be a fast variable and t is the slow one. For preparation of
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the discusson we introduce the inner product 〈·, ·〉 on the vectorspace of
T -periodic integrable functions:

〈y,x〉 =
1

T

∫ T

0

y(τ)x(τ)dτ.

Next, we define the projection operator Π according to

Πy = 〈1,y〉 =
1

T

∫ T

0

y(τ)dτ.

It is obvious that Π projects a function y(t, τ) on a function that does
not depend on τ , that is ∂τΠ = 0. Using T -periodicity in τ it is likewise
obvious that

Π∂τ = 0. (0.3)

We now make the following ansatz for the solution of the equation (0.2)
where we demand that the initial state yε(t = 0, τ = 0) = y0 is indepen-
dent of ε:

yε(t, τ) = y0(t, τ) + εy1(t, τ) + ε2 y2(t, τ) + ..., τ =
t

ε
.(0.4)

We treat the two time scales as if they were independent which is consistent
with the separation of scales. Thus we set

∂

∂t
7→

∂

∂t
+

1

ε

∂

∂τ
.

The ansatz (0.4) is inserted into the ODE (0.2) and then, equating equal
powers in ε leads to the following sequence of equations (note that the
RHS of (0.2) can be written f(yε, t, τ) = f(y0, t, τ) + O(ε)):

ε−1 : ∂τy0 = 0 (0.5)

ε0 : ∂τy1 + ∂ty
0 = f(y0, t, τ). (0.6)

1.step: (0.5) immediately yields that y0 does not depend on τ , i.e.,

Πy0 = y0.

2.step: Let Π = 〈1, ·〉 act on (0.6) and use (0.3). This time

Πf(y0, t, τ) = Π∂τy1 + Π∂ty
0 = ∂ty

0.

Thus, y0 is determined by the ODE

ẏ0 = f(y0, t),

with averaged function

f(y, t) := Πf(y, t, τ),

and its solution gives us yε up to error O(ε).
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(b.) The constitutive relations in the natural frame {Di} variables become

Mi =
∂

∂Ui

ŴΩ(U, s),

and, by using the results from the last exercise session and exploiting
orthogonality of the matrix R we obtain the Legendre transform of ŴΩ

as
[ŴΩ ]∗(M, s) = W ∗(RTM, s) + Û ·M.

Again we use former results from Session 4 in order to obtain

W ∗(m, s) =
1

2
m · K−1m,

and, conclusively,

[ŴΩ ]∗(M, s) =
1

2
m · (R(Ω)K−1RT (Ω))M + Û1M1 + Û2M2.

The Hamiltonian is now given by

H(z, s, Ω) = [ŴΩ ]∗(M, s) + n · D3. (0.7)

Averaging In order to obtain a system that is suitable to applying the
averaging result from part (a.) we incorporate a high twist into the model
by setting û3(s) = − 1

ε
with ε� 1. The Hamiltonian is dependent on the

parameter ε through the identity Ω(s) = s

ε
obtained from integrating

Ω′ = −û3.

Now, the Hamiltonian system reads

żε =

(
0 Id

−Id 0

)
∇H(zε, s, Ω), Ω =

s

ε
.

Now, we observe that for any initial condition zε(0) = z0 independent of
ε the solution zε is given by z0 up to error ε where z0 is the solution of

ż0 =

(
0 Id

−Id 0

)
∇H(z0, s),

where H is given by

H(z, s) = W
∗

(M, s) + Û1M1 + Û2M2 + n · D3,

W
∗

(M, s) =
1

2π

∫
2π

0

W ∗(RT (Ω)M, s)dΩ.
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(c.)

W ∗(RTM, s) =
1

2
M · (R(Ω)K−1RT (Ω))M,

where the stiffness matrix K is given by

K =




K1 0 0
0 K2 K23

0 K23 K3


 .

The inverse K−1 is

K−1 =




1/K1 0 0
0 K3/D −K23/D
0 −K23/D K2/D


 , D = K2K3 − (K23)

2,

and a straightforward calculation reveals

K̂ := R(Ω)K−1RT (Ω) =


cos
2

Ω

K1

+ K3 sin
2

Ω

D
sinΩ cosΩ(− 1

K1

+ K3

D
) − sin ΩK23

D

sinΩ cosΩ(− 1

K1

+ K3

D
) sin

2
Ω

K1

+ cos
2

ΩK3

D
− cosΩK23

D

− sinΩK23

D
− cos ΩK23

D

K2

D


 .

Using
∫

2π

0
cos2(x)dx =

∫
2π

0
sin2(x)dx together with

∫
2π

0
cos2(x)+sin2(x)dx =

2π yields
∫ 2π

0
cos2(x)dx =

∫ 2π

0
sin2(x)dx = π and we obtain

1

2π

∫ 2π

0

K̂(Ω)dΩ = diag

{
K̄−1

δ
, K̄−1

δ
,
K2

D

}
,

K̄−1

δ
=

1

2
(K−1

1
+K−1

2
(1 − δ)), δ = (K23)

2/(K2K3).

Thus, the averaged Hamiltonian is given by

H = W
∗

(M, s) + Û1M1 + Û2M2 + n · D3,

W
∗

(M, s) =
1

2
M · diag

{
K̄−1

δ
, K̄−1

δ
,
K2

D

}
M.

Note thatW
∗

is not the Legendre transform of the average ofW (RT (Ω)U, s)
since the averaging operator and the Legendre transform do not commute.
Using Problem 1 we know that the effective strain energy function can be
computed as the Legendre transform of the averaged Legendre transform
W

∗

and thus we obtain

W (U, s) =
1

2
U ·KU, K =




K̄δ 0 0
0 K̄δ 0
0 0 D/K2


 .


