DNA Modelling Course Exercise Session 4 Summer 2006 Part 1

In the first two exercises we contrast an *untwisted* circular rod configuration with a uniformly *twisted* straight configuration. This should clarify the distinction between twisted and untwisted configurations.

Note: A configuration $\{r, d_i\}$ of an inextensible/unshearable rod with $r' = d_3$ is called *untwisted* if $\mathbf{u} \cdot d_3 \equiv 0$, and called *twisted* otherwise. If $\mathbf{u} \cdot d_3 \equiv c \neq 0$ the configuration is called *uniformly twisted*.

1 Equilibria of an Inextensible and Unshearable Rod without Twist

Consider an inextensible and unshearable rod modeled on the interval [0, L]with a straight reference configuration defined by

$$\hat{\boldsymbol{r}}(s) = s\boldsymbol{e}_3$$
 and $\hat{\boldsymbol{d}}_i(s) = \boldsymbol{e}_i.$

Assume the rod obeys a linear elastic material law with a constant, diagonal stiffness matrix K, and assume no external distributed loads.

- (a) Show that an untwisted, circular configuration with $d_2(s) = e_2$ is an equilibrium configuration of the rod. What end loads g and h can produce this equilibrium?
- (b) Show that an untwisted, circular configuration with $d_1(s) = e_1$ is an equilibrium configuration of the rod. What end loads g and h can produce this equilibrium? Is this case identical to the previous one?
- (c) Are there other untwisted, circular equilibrium configurations when $K_1 \neq K_2$? What about when $K_1 = K_2$?

2 Equilibria of an Inextensible and Unshearable Rod with Twist

In the same conditions described by the previous exercise,

(a) Show that a straight, uniformly twisted configuration defined by

$$\left. \begin{array}{l} \mathbf{r}(s) = s\mathbf{e}_{3} \\ \mathbf{d}_{1}(s) = \cos(2\pi\vartheta s/L)\mathbf{e}_{1} + \sin(2\pi\vartheta s/L)\mathbf{e}_{2} \\ \mathbf{d}_{2}(s) = -\sin(2\pi\vartheta s/L)\mathbf{e}_{1} + \cos(2\pi\vartheta s/L)\mathbf{e}_{2} \\ \mathbf{d}_{3}(s) = \mathbf{e}_{3}, \end{array} \right\}$$

$$(2.1)$$

where $\vartheta \in \mathbb{R}$ is a constant that specifies the twist rate, is an equilibrium configuration of the rod. What end loads g and h can produce this equilibrium?

(b) Show that a uniformly twisted circle is an equilibrium if, and only if, $K_1 = K_2$.

3 Computation of Unit Quaternion

Compute the unit quaternion describing the frame $\{d_i(s)\}_i$, where for every $s \in [0, 2\pi]$

$$\boldsymbol{d}_1(s) = \begin{pmatrix} \cos(s) \\ \sin(s) \\ 0 \end{pmatrix}, \qquad \boldsymbol{d}_2(s) = \begin{pmatrix} -\sin(s) \\ \cos(s) \\ 0 \end{pmatrix}, \qquad \boldsymbol{d}_3(s) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$