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SOLUTIONS

1 The length scales of DNA

The genome of an organism is the sequence of DNA base-pairs (A, T, C and
G) that this organism contains. The DNA in human cells is organised in
macromolecules called chromosomes. The human genome contains 22 chro-
mosomes plus 2 sexual chromosomes, called X and Y. Its length is nowdays
estimated at 3, 2 · 109 base-pairs.
You can see the genome map on the website of the Human Genome project
at http://www.ornl.gov/TechResources/Human Genome/posters/chromosome/

The large majority of human cells are diploids. It means that they
contain two copies of each non-sexual chromosome plus two sexual chromo-
somes, that is, 2 · 22 + 2 = 46 chromosomes. Thus, a diploid cell contains
two times the genome, that is, approximately 6, 4 · 109 base pairs of DNA.

(a) If T is the total number of base-pairs in DNA and h is the base-pair
length, then the total length L of DNA in a cell is given by

L = T · h

= 6 · 109 · 3, 4 · 10−10 m = 6 · 3, 4 · 10−1 m

= 2.04m (1.1)

Thus the total length of DNA in a cell is approximately 2 meters, or
·105 times the diameter of the cell. The DNA must therfore be highly
folded!

(b)

r =
(DNA diameter)

2
=

20

2
Å = 10−9m (1.2)

R =
(cell diameter)

2
=

105

2
Å = 5 · 10−6m (1.3)
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The volume of DNA is given by

v = L · π · r2

= 2, 04 · π · 10−18 m3

= 6, 41 · 10−18m3 (1.4)

The volume of the cell is given by

V =
4

3
· π · R3

=
4

3
· π · 1, 25 · 10−16 m3

= 5, 23 · 10−16 m3 (1.5)

so that
V

v
= 81, 68 (1.6)

The DNA volume is thus 81 times smaller than the cell volume! That
is it fills only about 1.22% of the available volume. (In point of fact
in eukaryotes the DNA is stored inside the nucleus of the cell so that
the available volume is substantially smaller than that of the cell itself.
But nevertheless there is plenty of volume available to store the DNA—
the problem is how to coil such a long object in an organized fashion
to be packed.)

For those who are interested in more details about the human genome:
The human genome sequence as been published in Science 1 in 2001. 2.91-
billion base pair (bp) of the euchromatic portion of the human genome
were sequenced, including the sequence of 22 chromosomes and the sexual
chromosomes X (155 millions bp) and Y (58 millions bp) 2.
A typical human cell is dioploidic which means it has two copies of each
non-sexual chromosome, so it has for a male (2.91 − x − y) · 2 + x + y =
2 · 2.91 − x − y = (2 · 2.9 billions−155 millions −58millions= 5587 millions
base pairs of DNA, and for a female (2.91−x−y)·2+2x = 2·2.91−2y = 5684
millions bp.
The cell also contains 10% of another type of DNA called heterochromatin3

1The Sequence of the Human Genome Science 16 February 2001 Vol. 291. no. 5507,
pp. 1304 - 1351

2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj&cmd=Retrieve&dopt=Overview&list uids=9558

3Alberts et al, Molecular Biology of the Cell third edition, Garland Publishing, 1994,
pp 353
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that was not sequenced in the Science publication, so the total number of
base pairs has to be increased by ten percent: 5.6 · 1.1 billions ≈ 6 billions
bp.
Before mitosis (cell division) all the DNA is replicated, which doubles the
total amount of DNA in the cell (around 12 billion bp).
A base pair junction is 3.4 Angstrom (0.34 · 10− 9m) long so the total DNA
length varies between 6 ·109 ·0.34 ·10−9 and 12 ·109 ·0.34 ·10−9 meters, that
is between 2 to 4 meters depending on the phase in the cell cycle.
The cell has also mitochondrial DNA in the cytoplasm but it is negligible
(only a few tens of thousands bp).

2 Rotations in three dimensions

(a) From the properties of the scalar product, ∀w ∈ IR3

‖Qw‖2 = Qw · Qw

= w · QT
Qw

= ‖w‖2 (2.1)

where we have used the fact that Q is a rotation matrix, i.e. QT Q =
I. If now λ is an eigenvalue for Q, by definition there must exist a
vector w, which is the corresponding eigenvector, so that the following
equivalences hold

‖Qw‖ = ‖λw‖

= |λ|‖w‖ (2.2)

but then from equation 2.1 we obtain

|λ| = 1 (2.3)

and therefore λ lies on the unit circle in the complex plane.

(b) Note that the complex conjugate λ is an eigenvalue of Q (with cor-
responding eigenvector w) whenever λ is an eigenvalue of Q (with
corresponding eigenvector w). This follows from Q = Q, explicitly,

Qw = λw ⇒ Qw = Qw = λw = λw.

As Q has exactly 3 eigenvalues (counted according to multiplicity), we
obtain with (2.3) for the set eig(Q) of eigenvalues of Q:

eig(Q) = {eix, e−ix, 1} or eig(Q) = {eix, e−ix,−1}
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for some x ∈ [0, π]. But for eig(Q) = {eix, e−ix,−1} we get4 det(Q) =
−1, so that we must have

eig(Q) = {eix, e−ix, 1} for x ∈ [0, π]. (2.4)

This also shows that λ = 1 cannot have multiplicity 2, but only 1 or
3. If λ = 1 has multiplicity 3, then Q = Id, which therefore is the only
case where there can be a non-unique axis of rotation.

For any eigenvalue λ of Q, the inverse λ−1 will be an eigenvalue of
Q−1 = QT corresponding to the same eigenvector. Therefore, Qw = w

immediately implies that w is an element of the nullspace of S =
(Q − QT ), i.e. Sw = 0. On the other hand if z is the unique axial
vector of the skew matrix S, then

0 = Sw = z × w, (2.5)

so that z and w are parallel, i.e. the axial vector of the skew matrix is
parallel to the axis of rotation of Q.

(c) If v is any vector orthogonal to the axis of rotation w, then

Qv · w = v · QT w

= v · w

= 0 (2.6)

Furthermore from (2.1) we can conclude that if v is a unit vector, then
so also is Qv. Similarly if u is a second unit vector orthogonal to both
w and v, then the subspace spanned by {u, v} is invariant under the
action of Q, that is,

span{u, v} = Q(span{u, v}).

(This follows together with the above considerations from Qu · Qv =
u · v = 0.)

4Here, we make use of

det(A) =

n
Y

i=1

λi,

for any matrix A ∈ C| n×n with eigenvalues λ1, λ2, ..., λn repeated according to (algebraic)
multiplicity.
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According to (2.4), the eigenvalues of Q are of the form 1 and a complex
conjugate pair e±ix for some x ∈ [0, π]. We now show that x equals
the angle of rotation θ between v and Qv, when v is a unit vector
orthogonal to w. As is well-known, the angle θ between v and Qv

satisfies the relation:

cos θ =
Qv · v

‖Qv‖‖v‖
= Qv · v.

The same will hold for the angle θ between u and Qu for any unit
vector u being orthogonal to w and v, such that we get:

2 · cos θ = Qv · v + Qu · u.

On the other hand, it is shown at the end that we obtain by using the
spectral decomposition together with Parseval’s equation the following
relation:

Qv · v + Qu · u = eix + e−ix = 2 · cos x, (2.7)

from which we immediately arrive at x = θ.

As the trace of a matrix equals the sum of the eigenvalues (repeated
according to algebraic multiplicity), we get:

tr(Q) = 1 + eiθ + e−iθ = 1 + 2 cos θ. (2.8)

But the action of any unit complex eigenvalue in its two dimensional
eigenspace is a rotation. So

Q[w, v, u] = [w, v, u]R, (2.9)

where

R =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 . (2.10)

The identity (2.9) is seen by the following consideration: Suppose for
the moment that

w =





1
0
0



 =: e1, v =





0
1
0



 =: e2, u =





0
0
1



 =: e3.

Then it can be easily seen that Q = R. However, as we cannot as-
sume the above equalities, the matrix R will only represent the linear
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mapping Q with respect to the basis {e1, e2, e3}. Therefore, we have
to define the basis transformation S with

S[w, v, u] = Id,

such that we conclusively obtain

Q = S−1RS.

But S−1 is given by
S
−1 = [w, v, u],

which immediately provides us with (2.9).

One can go further, and write the rotation Q in terms of the unit axial
vector w using vector notation. The transformation (2.9) is equivalent to
multiplying by the matrix

Q = cos θ Id + (1 − cos θ)w ⊗ w + sin θw×, (2.11)

where w× denotes the skew matrix with w as axial vector (that is w× =
S) and w ⊗ w is the rank-one outer product matrix. This is verified by
computing the RHS of equation (2.9) and using the fact that −u = w × v,
v = w×u, w⊗w u = w⊗w v = 0, and w⊗w w = w. Then if one introduces
the Cayley vector η defined by η = |η|w with |η| defined by

2|η|

1 + |η|2
= sin θ,

1 − |η|2

1 + |η|2
= cos θ, (2.12)

one finds that
Q = (1 − α|η|2)Id + αη ⊗ η + αη×, (2.13)

where

α =
2

1 + |η|2
. (2.14)

The Cayley vector is well-defined except for rotations through θ = π. Finally
(2.13) is equivalent to

Q = (Id + η×)(Id − η×)−1, (2.15)

where one observes that the matrix (Id− η×) is always invertible because it
is the sum of a positive and a skew-symmetric matrix.
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Finally, we proof the equality (2.7). To this end, we need the spectral
decomposition

Q = P D P−1, D = (dij)i,j = diag{1, eix, e−ix},

and
P = (pij)i,j = [w, w1, w2],

where
Qw1 = eix

w1, Qw2 = e−ix
w2, ‖w1‖ = ‖w2‖ = 1.

Moreover, we will make use of Parseval’s equation:

‖z‖2 =
∑

e∈S

|z · e|2, for all z,

where S is a basis of orthonormal vectors5. Now, recall that u = (u1, u2, u3), v =
(v1, v2, v3) are chosen to be unity vectors such that S = {w, v, u} is an or-

thonormal basis of C| 3. Exploiting6 P−1 = P
T

and Pz1 · z2 = z1 · P
T
z2, we

obtain

Qv · v + Qu · u = DP
T
v · P

T
v + DP

T
u · P

T
u

=
3

∑

i=1

dii

(

P
T
v

)

i

(

P
T
v

)

i
+

3
∑

i=1

dii

(

P
T
u

)

i

(

P
T
u

)

i

=
3

∑

i=1

dii

∣

∣

∣

3
∑

j=1

pji vj

∣

∣

∣

2

+
3

∑

i=1

dii

∣

∣

∣

3
∑

j=1

pji uj

∣

∣

∣

2

= eix|w1 · v|
2 + e−ix|w2 · v|

2 + eix|w1 · u|
2 + e−ix|w2 · u|

2

= eix(|w1 · v|
2 + |w1 · u|

2) + e−ix(|w2 · v|
2 + |w2 · u|

2).

Now we make use of Parselval’s equation. To this end, we use w·v = w·u = 0
and get

Qv · v + Qu · u = eix‖w1‖
2 + e−ix‖w2‖

2

= eix + e−ix.

5This can be proven easily by using

z =
X

e∈S

(z · e)e,

‚

‚

‚

X

e∈Ŝ

e
‚

‚

‚

2

=
X

e∈Ŝ

‖e‖2
,

for any orthonormal basis S and any finite subset Ŝ ⊂ S of S. The notation is adapted in
order to include infinite-dimensional Hilbert spaces (=complete vector spaces with scalar
product).

6C = A means that C contains the complex conjugate components from A.
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Note that in general ‖z‖ = ‖z‖. In particular, we have wi = wj for i, j = 1, 2
and i 6= j.

3 Quaternion parametrization

(a) Using the expression for Q in terms of the components of the quater-
nion q and simply computing Qk, immediately shows Qk = k. If
k = 0, again using the expression of Q and the fact that q ·q = q2

4
= 1,

we can conclude that Q is the identity matrix.

(b) Using the result, valid for a general proper rotation matrix Q, that

tr(Q) = 1 + 2 cos θ, (3.1)

and also computing the Trace as the sum of the diagonal entries in the
expression for Q in the quaterion parametrization, we get

4q2

4 − 1 = 1 + 2 cos θ (3.2)

so that

4q2

4 = 2(1 + cos θ)

= 2(1 + cos2 θ/2 − sin2 θ/2)

= 4 cos2 θ/2. (3.3)

(c) Directly computing B1q, B2q, and B3q, shows that the resulting vec-
tors are of unit norm given that q has unit norm. It is also easy to check
that the vectors q, B1q, B2q, and B3q are pairwise orthogonal. This
orthogonality guarantees the fact that the four vectors are linearly in-
dependent. Therefore we conclude that the set is an orthonormal basis
for IR4.


