
DNA Modelling Course
Exercise Session 3

Summer 2006 Part 1

SOLUTIONS

1 Configurations and Equilibria of an Extensible

Shearable Rod

Kinematics

1.(a) Either by direct calculation, or by observation from the sketch of the
configuration, one has
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where vi = v · di and ui = u · di.
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(b) In this case there are essentially two possibilities to compute the Eu-
ler parameters. For the direct computation we refer to the solution
of Exercise 2 (Helical curves)(d). We will then obtain the result in
exactly the same way as carried out there, where Q is now given by
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Q = [d1, d2, d3]: For (q1, q2, q3)
T ∈ ker(Q − QT ) = span{((cos(s) −

1)/ sin(s), 1, 1)T } we get




q1

q2

q3



 = C





cos(s) − 1
sin(s)
sin(s)



 , (1.2)

C2 =
3 + cos(s)

4(3 − 2 cos(s) − cos2(s))
,

and for q4 we have the relation

q2
4 =

1 − cos(s)

4
.

We now have determined q4 and (q1, q2, q3) up to the signs. The sign of
q4 can be chosen free but the choice will then fix the sign of (q1, q2, q3)
due to di(q) = di(−q).

We could equivalently compute a unit axis of rotation k = (k1, k2, k3)
T

and the corresponding rotation angle φ in order to express q which is
then given by

qi = ki sin(φ/2), i = 1, 2, 3, q4 = cos(φ/2).

But k is given by normalizing the vector on the RHS of (1.2). Therefore

k =
1

√

(1 − cos(s))2 + 2 sin2(s)





cos(s) − 1
sin(s)
sin(s)



 . (1.3)

The angle φ is computed by using the identity 1 + 2 cos φ = tr(Q)
which immediately provides us with

φ = ± arccos(−1/2(1 + cos(s))).

The correct sign is simply obtained by verifying the results. In so
doing, we take s = π/2 and verify the result for the third compo-
nent of d2(q(s)). We then obtain that φ must be given by φ =
− arccos(−1/2(1 + cos(s))). Note that the wrong sign will provide
us with the rotation matrix Q−1 instead of Q. We could also choose
−k for the axis of rotation where the corresponding angle then is −φ.
This is due to

qi = −ki sin(−φ/2) = ki sin(φ/2), i = 1, 2, 3,

q4 = cos(−φ/2) = cos(φ/2).
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Second possibility: Composition of Rotation Matrices We
only sketch the idea of the method which is based on the following:
Suppose that the rotation matrix Q = [d1, d2, d3] with rotation axis
k and rotation angle φ is composed by two rotation matrices Q1 and
Q2, that is,

Q(k, φ) = Q2(k2, φ2) Q1(k1, φ1), (1.4)

where the expression in the brackets denote the corresponding (unique)
rotation axis and rotation angle, i.e., Qi, i = 1, 2 represents rotation
around the axis ki with angle φi. It is shown in a paper of Dichmann

1

that a straightforward calculation then leads to expressions for k and
φ if ki, φi for i = 1, 2 are known.

We restrict to the computation of Qi and ki, φi for i = 1, 2 here.
For the computation of k and φ by means of ki, i = 1, 2 and φi, i =
1, 2 we refer to the article of Dichmann. A careful inspection of the
directors frame {di(s)} reveals that we basically have two reasonable
possibilities to define a composition of rotation matrices. The key
step is the definition of a rotation matrix P that gives a permutation
of the fixed basis {e1, e2, e3} such that e2 is mapped to e3. These
assumptions immediately lead to

P =





0 0 1
1 0 0
0 1 0



 .

Now, we can either choose P = Q1 or P = Q2 in order to obtain the
decomposition (1.4), for QP−1 as well as P−1Q are rotation matrices.
Explicitly:

Q(k, φ) =





0 0 1
1 0 0
0 1 0









− sin(s) 0 cos(s)
0 1 0

− cos(s) 0 − sin(s)



 , (1.5)

Q(k, φ) =





− sin(s) − cos(s) 0
cos(s) − sin(s) 0

0 0 1





︸ ︷︷ ︸

=QP−1=:R(k1,φ1)





0 0 1
1 0 0
0 1 0





︸ ︷︷ ︸

P (k2,φ2)

. (1.6)

1Donald J. Dichmann, Notes on the Mecjanics of Rigid Body Rotations, Quaternions
and some Associated Mathematics
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We will restrict to the second equality (1.6) and state the rotation axes
k1 and k2 as well as the rotation angles φ1 and φ2 corresponding to
R = QP−1 and P .
Rotation axis and angle of P : It is easy to see that P1 = 1 where
1 denotes the vector where every component is 1. Therefore, we have

k1 =
1√
3
1.

The angle of rotation will then be given by

tr(P ) = 1 + 2 cos φ1 = 0 ⇒ φ1 = ± arccos(−1/2).

Verifying the results we easily obtain φ1 = arccos(−1/2).
Rotation axis and angle of R: We immediately obtain R(0, 0, 1)T =
(0, 0, 1)T such that

k2 =





0
0
1



 ,

and the angle φ2 is given by

tr(R) = 1+2 cos φ2 = 1−2 sin(s) ⇒ φ2 = ± arccos(− sin(s)).

Verifying the results we easily obtain φ2 = arccos(− sin(s)).

Balance laws

2.(a) For the natural configuration {r̂, d̂i} we find
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
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 =


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0
1



 and





û1

û2

û3



 =





0
0
0



 ,

where v̂i = v̂ · d̂i and ûi = û · d̂i. Using the results from 1.(a) we then
obtain

n(s) = εG3d3(s),

m(s) = K2d2(s).

(b) Assuming τ ≡ 0, a configuration {r, di} is an equilibrium (with {r̂, d̂i}
serving as the reference) if

n′ = −f and m′ + r′ × n = 0, for all s ∈ (0, π).
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One can easily verify that the configuration is an equilibrium for the
radial force

f(s) = −εG3d1(s).

Moreover, the endforce g and the end moment h at s = 0, π required
to maintain this equilibrium are

g(0) = −n(0) = −εG3e2, g(π) = n(π) = −εG3e2

h(0) = −m(0) = −K2e3, h(π) = m(π) = −K2e3.

2 Helical curves

(a) By definition arclength s is such that
∣
∣
∣
∣

dr(s)

ds

∣
∣
∣
∣
= 1 (2.1)

so clearly the parameter t is not arc-length, as
∣
∣
∣
∣

dr(t)

dt

∣
∣
∣
∣
=

√

R2 + P 2. (2.2)

Using the chain rule
dr

dt
=

dr

ds

ds

dt
, (2.3)

and solving the resulting differential equation
∣
∣
∣
∣

ds

dt

∣
∣
∣
∣
=

√

R2 + P 2, (2.4)

we easily get that s arc-length is

s =
√

R2 + P 2 t, (2.5)

where the constant of integration is chosen such that s = 0 corresponds
to t = 0. Finally we then have the new arclength parametrization
which reads

r(s) =
(

R cos
s

α
,R sin

s

α
, P

s

α

)

(2.6)

where α =
√

R2 + P 2. Note that in general,

s(t) =

∫ t

0

dr

dt
(τ) dτ, (2.7)

but that in this example the quadrature can be carried out explicitly
to obtain (2.5) because

√
R2 + P 2 is a constant along the helix.
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(b) The Frenet-Serret frame is an intrinsic framing, given by the tangent
T (s) to the curveline r(s), the principal normal N(s) defined via T ′(s),
and the binormal B(s). The following equivalences hold

T (s) =
dr

ds
(2.8)

T ′(s) =
dT (s)

ds
= κ(s)N(s) (2.9)

where the curvature κ(s) is a non negative scalar, and N(s) is the
principal normal, which is well defined as soon as T ′(s) does not vanish
at any s. Then B(s) is found as T (s)×N(s). The (geometrical) torsion
can be extracted from the equations

[NBT ]′ = [NBT ]





0 −τ κ
τ 0 0

−κ 0 0



 (2.10)

It is then easy to check that on a helix

T (s) =

(

−R

α
sin

s

α
,
R

α
cos

s

α
,
P

α

)

(2.11)

N(s) =
(

− cos
s

α
,− sin

s

α
, 0

)

(2.12)

B(s) =

(
P

α
sin

s

α
,−P

α
cos

s

α
,
R

α

)

, (2.13)

and that

κ =
R

α2
(2.14)

τ =
P

α2
(2.15)

(c) By construction of the Frenet equations (2.10), it should be clear that
the curvature and the torsion are the only non-vanishing components
of the Darboux vector u expressed in the Frenet frame {N , B, T},
specifically u = κB + τt, which is true for any curve whatsoever. For
the helix after substitution of the previously computed specific forms
of κ, B, τ , and T we find that u = 1

α
ez, which is a very special property

of the helix resulting from symmetry of rotation about the z-axis.

(d) We first make some remarks.
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• The Darboux vector u is the axial vector of a skew matrix S,
given by

S = Q
′(s)QT (s). (2.16)

It represents the infinitesimal change, or ‘angular velocity’ of the
rotation matrix Q(s) along the one-parameter family of rotation
matrices parametrized by s. The Darboux vector u has no rela-
tion with the axial vector of the skew matrix S̃

S̃ = Q(s) − Q
T (s), (2.17)

defined at each fixed value of s. At each s, S̃(s) determines
the Euler axis of rotation of the given rotation matrix Q(s) as
described in Session 1.

• The quaternion parametrization is particular in the fact it gives
immediately the axis of rotation, as the first three components
(q1, q2, q3) define this axis up to a constant, i.e. Qk = k if
k = (q1, q2, q3)

T 2, and the angle of rotation up to a sign as
q2
4 = cos2 θ/2.

Having said this, we can proceed in finding the quaternion parametriza-
tion for t = π (note that t is not arc-length!). Bearing in mind that in
the Frenet frame Q = [NBT ], for t = π we have

Q − Q
T =





0 0 0
0 0 −2R/α
0 2R/α 0



 (2.18)

Therefore the axial vector of Q − QT is some z = (2R/α, 0, 0)T , and
since the axis of rotation is a unit vector parallel to z, we have that

axis of rotation = w = (1, 0, 0)T (2.19)

so that
k = (q1, q2, q3)

T = Cw (2.20)

where C is a constant. Moreover, still in t = π,

tr[Q] = 1 + 2 cos θ = 1 + 2
P

α
(2.21)

2The axis of rotation is a unit vector wheras k in general has the norm fixed by the
condition q · q = 1, so typically it will be k = ± sin θ/2w where w is the axis of rotation,
i.e. ||w|| = 1
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which in turn implies

q2
4 =

1 + P
α

2
. (2.22)

Finally then from the normalization condition on q, we get

C2 = 1 − q2
4 =

1 − P
α

2
. (2.23)

Now, we have determined q4 and k = (q1, q2, q3)
T up to the signs.

Recalling that q = (q1, q2, q3, q4)
T and −q define the same rotation

matrix we can choose q4 to be

q4 =

√

1 + P
α

2
or q4 = −

√

1 + P
α

2
,

but the choice of the sign of q4 will determine the sign of k. Thus, let
us choose

q4 =

√

1 + P
α

2
.

Then, we find that

C = −

√

1 − P
α

2
,

which can be verified by calculating B(s = απ) in terms of q and
comparing the result3to (2.13).

3 Transformation of Cross Products

(a) Consider a vector v ∈3. Then we have for any two vectors a, b ∈ IR3

v · (a × b) = det([v, a, b]).

3For

C =

s

1 − P

α

2

we obtain for the third component B3 of B the expression B3 = −R

α
which contra-

dicts (2.13).
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Therefore,

v · (Aa × Ab) = det([v, Aa, Ab])

= det(A[A−1
v, a, b])

= det(A) det([A−1
v, a, b])

= det(A) (A−1
v · (a × b))

= det(A)(vA−T (a × b))

= v · (det(A)A−T (a × b)).

This is true for any v ∈ IR3. Therefore,

Aa × Ab = det(A)A−T (a × b).

(b) For an orthogonal matrix Q ∈ SO(3), det(Q) = 1 and Q = Q−T .


