DNA Modelling Course
Exercise Session 4
Summer 2006 Part 1

SOLUTIONS

1 Equilibria of an Inextensible and Unshearable
Rod without Twist

We are considering an inextensible,unshearable rod with a straight reference
configuration {#,d;} for which

(01, 02,03) = (0,0,1), (1,02, u3) = (0,0,0).

The equilibrium and inextensibility /unshearability conditions require

n' =0
m +r'xn=0
, Vs € (0,L) (1.1)
r :d3
d;:UXdl

where
m = Kl(ul — al)dl + KQ(UQ — ’I:LQ)dQ + K3(U3 — ’l:tg)dg

and m is an unknown vector function to be determined as part of the solution
of (1.1).

We can answer parts (a)-(c) all at once by considering a general untwisted,
circular configuration {r,d;}. To begin, suppose r(s), s € [0, L], traces out
a circle. Since the rod is inextensible/unshearable, the parameter s is an
arclength parameter and the circle radius must be p = L/(27). Next, let
{T'(s), N(s), B(s)} be the Frenet frame for the circle and note that we must
have d3(s) = T'(s). Also, note that B(s) is actually a constant unit vector,
say b. A general untwisted, circular configuration may thus be defined (up to a
rigid translation and rotation) by

dy(s) = cos(¥))N(s) + sin(¢)b
da(s) = cos(1)b — sin(yp) N (s) (1.2)
ds(s) =T(s)

where 0 < 9 < 27 is a fixed angle and b is a fixed unit vector. For ¢ = 0 we
have a circle with d;(s) pointing toward the circle’s center and d2(s) = b, and
SO on.
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Using the Frenet formulas we have
T = kN and N' = —xT

where k = 1/p is the constant curvature of the circle. A straightforward com-
putation gives
(u1,ug,us) = (ksin(e), K cos(¢), 0)

and so
m(s) = kKy sin(y)dq(s) + kKg cos(v)da(s).

The equilibrium equation (1.1); requires n(s) = ¢ for some constant vector c,
and equation (1.1), then requires

m/(s) = ¢ x T(s), Vs € (0,L),

or
K% sin(vp) cos(¥)[Ka — Ki]T'(s) = ¢ x T(s), Vs € (0,L). (1.3)

Taking the dot product of the above equation with each of the basis vectors
{T'(s), N(s),b} leads to the conclusion

K2 sin() cos(t) Kz — Ki] = 0} (1.4)

The second equation implies that ¢ must be parallel to T'(s) for all s € (0, L).
Since c¢ is constant we must have ¢ = 0. The first equation is satisfied if

v=0%,m3 vV Ky, Ky >0 } (15)

Ki = K> > 0, v € [0,2n).

(a) Choosing ¢ = 0 and b = ez we have an untwisted, circular equilibrium
with d2 = €y and

n(s) =0 and m(s) = kKsb.
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The end loads g and h at s = 0, L required for this equilibrium are

g(O) =0, g(L) =0, }
h(0) = —kKob,  h(L) = kKsb.

(b) Choosing 1) = % and b = e; we have an untwisted, circular equilibrium

with di = e; and
n(s) =0 and m(s) = kK;b.
The end loads g and h at s = 0, L required for this equilibrium are

g(O) =0, g(L) =0, }
h(0) = —kKib, k(L) = kKb,

Note that this equilibrium is genuinely different from the one in part (a).
That is, these equilibria are not related by a rigid translation and rotation.
Moreover, if K; # Ka, different end moments are required to maintain
these equilibria.

(c) If Ky # Ky, there are four genuinely different equilibria, one for each of the

values ¢ = 0, 3, m and 37” If K; = Ky, there is a one-parameter family of

genuinely different equilibria, one for each ¢ € [0, 27).

2 Equilibria of an Inextensible and Unshear-
able Rod with Twist

a e are given a straight, uniformly twisted configuration {7, d;} for whic
W i igh iforml isted confi i d;} for which
(U15U27U3) = (03071)a (Ul,U,Q,U,g) = (07()’77)
where n = 222 The configuration {r,d;} is an equilibrium (with {#, d;}
serving as the reference) if the equations (1.1) are satisfied with
m(s) = nKsds(s) = nKses.
Equation (1.1)s is clearly satisfied and equation (1.1); requires n(s) = ¢
for some constant vector c¢. Equation (1.1), then requires
m/(s) = c x e3, Vs € (0,L),
or
cxe3=0. (2.6)

We see that equilibrium holds with m(s) = nKses and n(s) = ~yes for
any constant v € R. The end loads g and h at s = 0, L required for this
equilibrium are

9(0) = —ves, g(L) = ves, }
h(0) = —nKses, h(L) = nKzes.
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(b) A uniformly twisted, circular configuration can be defined using the appa-
ratus described in parts (a)-(c). In particular, we now assume ¢ = ns for
some constant twist rate n € R. A straightforward computation gives

(u1,ug,u3) = (ksin(y), k cos(v),n)

and so
m(s) = kKysin(¥)di(s) + kKz cos(y)da(s) + nKazds(s).

The equilibrium equation (1.1); requires n(s) = ¢ for some constant vector
¢, and equation (1.1)2 then requires

m/(s) =ex T(s), Vs € (0,L),
or
r?% sin(ns) cos(ns)[Ke — Ki]T'(s)
+xn1[Ks + cos(2ns) (K1 — K3)] N (s)
+2knsin(ns) cos(ns)[Ky — Ka]b = ¢ x T'(s), Vs € (0,L).

(2.7)

Taking the dot product of the above equation with each of the basis vectors

{T'(s), N(s), b} leads to the conclusion

% sin(ns) cos(ns)[Ka — Ki] = 0

kn[Ks + cos(2ns)(K1 — Kg)] =¢- b (2.8)
2knsin(ns) cos(ns)[Ky — K] = —¢ - N (s).
Because ¢ b is a constant, independent of s € (0, L), the only way (2.8)
can hold is if Ky = Ks. In this case, we obtain
c-b=rnKs
c-N(s)=0.
Since ¢ is constant and ¢ - N(s) = 0, it follows that ¢ - T'(s) is constant.
Moreover, since T'(s) spans the plane normal to b as s varies, it follows

that ¢ must be parallel to b. In particular, we must have ¢ = knKsb.
Thus, equilibrium holds only when K; = Ky, in which case we have

n(s) = knKsb
m(s) = kKy sin(ns)di (s) + kKy cos(ns)da(s) + nKsds(s).

3 Computation of Unit Quaternion

The rotation matrix @ is given by

cos(s) —sin(s) 0
Q = sin(s) cos(s) O
0 0 1
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The axis of rotation k is in the nullspace of Q@ — QT such that we obtain

k1 0
E=| ko = 0
ks 1

For the angle of rotation ¢ we have the relation
tr(Q) =1+ 2cos¢p = 1+ 2cos(s),
which immediately provides us with
¢ = *s.
The correct sign is obtained by verifying the result. Thus, we get
¢ = —s.
The unit quaternion is now obtained as
qi(s) = k;sin(¢/2), 1=1,2,3, qq = cos(¢/2),

such that

@ 0

I B 0
= ¢ | = sin(—s/2)
q4 cos(—s/2)

Note that we obtain



