
DNA Modelling Course
Exercise Session 4

Summer 2006 Part 1

SOLUTIONS

1 Equilibria of an Inextensible and Unshearable

Rod without Twist

We are considering an inextensible,unshearable rod with a straight reference
configuration {r̂, d̂i} for which

(v̂1, v̂2, v̂3) = (0, 0, 1), (û1, û2, û3) = (0, 0, 0).

The equilibrium and inextensibility/unshearability conditions require

n′ = 0

m′ + r′ × n = 0

r′ = d3

d′

i = u × di



















∀s ∈ (0, L) (1.1)

where
m = K1(u1 − û1)d1 + K2(u2 − û2)d2 + K3(u3 − û3)d3

and n is an unknown vector function to be determined as part of the solution
of (1.1).

We can answer parts (a)-(c) all at once by considering a general untwisted,
circular configuration {r,di}. To begin, suppose r(s), s ∈ [0, L], traces out
a circle. Since the rod is inextensible/unshearable, the parameter s is an
arclength parameter and the circle radius must be ρ = L/(2π). Next, let
{T (s),N(s),B(s)} be the Frenet frame for the circle and note that we must
have d3(s) = T (s). Also, note that B(s) is actually a constant unit vector,
say b. A general untwisted, circular configuration may thus be defined (up to a
rigid translation and rotation) by

d1(s) = cos(ψ)N(s) + sin(ψ)b

d2(s) = cos(ψ)b − sin(ψ)N(s)

d3(s) = T (s)











(1.2)

where 0 ≤ ψ < 2π is a fixed angle and b is a fixed unit vector. For ψ = 0 we
have a circle with d1(s) pointing toward the circle’s center and d2(s) = b, and
so on.
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Using the Frenet formulas we have

T ′ = κN and N ′ = −κT

where κ = 1/ρ is the constant curvature of the circle. A straightforward com-
putation gives

(u1, u2, u3) = (κ sin(ψ), κ cos(ψ), 0)

and so
m(s) = κK1 sin(ψ)d1(s) + κK2 cos(ψ)d2(s).

The equilibrium equation (1.1)1 requires n(s) ≡ c for some constant vector c,
and equation (1.1)2 then requires

m′(s) = c × T (s), ∀s ∈ (0, L),

or
κ2 sin(ψ) cos(ψ)[K2 − K1]T (s) = c × T (s), ∀s ∈ (0, L). (1.3)

Taking the dot product of the above equation with each of the basis vectors
{T (s),N(s), b} leads to the conclusion

κ2 sin(ψ) cos(ψ)[K2 − K1] = 0

c × T (s) = 0.

}

(1.4)

The second equation implies that c must be parallel to T (s) for all s ∈ (0, L).
Since c is constant we must have c = 0. The first equation is satisfied if

ψ = 0, π

2
, π, 3π

2
, ∀ K1,K2 > 0

K1 = K2 > 0, ∀ ψ ∈ [0, 2π).

}

(1.5)

(a) Choosing ψ = 0 and b = e2 we have an untwisted, circular equilibrium
with d2 = e2 and

n(s) = 0 and m(s) = κK2b.



Summer 2006 Part 1 DNA Modeling Course 3

The end loads g and h at s = 0, L required for this equilibrium are

g(0) = 0, g(L) = 0,
h(0) = −κK2b, h(L) = κK2b.

}

(b) Choosing ψ = π

2
and b = e1 we have an untwisted, circular equilibrium

with d1 = e1 and

n(s) = 0 and m(s) = κK1b.

The end loads g and h at s = 0, L required for this equilibrium are

g(0) = 0, g(L) = 0,
h(0) = −κK1b, h(L) = κK1b.

}

Note that this equilibrium is genuinely different from the one in part (a).
That is, these equilibria are not related by a rigid translation and rotation.
Moreover, if K1 6= K2, different end moments are required to maintain
these equilibria.

(c) If K1 6= K2, there are four genuinely different equilibria, one for each of the
values ψ = 0, π

2
, π and 3π

2
. If K1 = K2, there is a one-parameter family of

genuinely different equilibria, one for each ψ ∈ [0, 2π).

2 Equilibria of an Inextensible and Unshear-

able Rod with Twist

(a) We are given a straight, uniformly twisted configuration {r,di} for which

(v1, v2, v3) = (0, 0, 1), (u1, u2, u3) = (0, 0, η)

where η = 2πϑ

L
. The configuration {r,di} is an equilibrium (with {r̂, d̂i}

serving as the reference) if the equations (1.1) are satisfied with

m(s) = ηK3d3(s) = ηK3e3.

Equation (1.1)3 is clearly satisfied and equation (1.1)1 requires n(s) ≡ c

for some constant vector c. Equation (1.1)2 then requires

m′(s) = c × e3, ∀s ∈ (0, L),

or
c × e3 = 0. (2.6)

We see that equilibrium holds with m(s) = ηK3e3 and n(s) = γe3 for
any constant γ ∈ IR. The end loads g and h at s = 0, L required for this
equilibrium are

g(0) = −γe3, g(L) = γe3,
h(0) = −ηK3e3, h(L) = ηK3e3.

}
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(b) A uniformly twisted, circular configuration can be defined using the appa-
ratus described in parts (a)-(c). In particular, we now assume ψ = ηs for
some constant twist rate η ∈ IR. A straightforward computation gives

(u1, u2, u3) = (κ sin(ψ), κ cos(ψ), η)

and so

m(s) = κK1 sin(ψ)d1(s) + κK2 cos(ψ)d2(s) + ηK3d3(s).

The equilibrium equation (1.1)1 requires n(s) ≡ c for some constant vector
c, and equation (1.1)2 then requires

m′(s) = c × T (s), ∀s ∈ (0, L),

or

κ2 sin(ηs) cos(ηs)[K2 − K1]T (s)

+κη[K3 + cos(2ηs)(K1 − K2)]N(s)

+2κη sin(ηs) cos(ηs)[K1 − K2]b = c × T (s), ∀s ∈ (0, L).

(2.7)

Taking the dot product of the above equation with each of the basis vectors
{T (s),N(s), b} leads to the conclusion

κ2 sin(ηs) cos(ηs)[K2 − K1] = 0

κη[K3 + cos(2ηs)(K1 − K2)] = c · b

2κη sin(ηs) cos(ηs)[K1 − K2] = −c · N(s).











(2.8)

Because c · b is a constant, independent of s ∈ (0, L), the only way (2.8)2
can hold is if K1 = K2. In this case, we obtain

c · b = κηK3

c · N(s) = 0.

}

Since c is constant and c · N(s) = 0, it follows that c · T (s) is constant.
Moreover, since T (s) spans the plane normal to b as s varies, it follows
that c must be parallel to b. In particular, we must have c = κηK3b.
Thus, equilibrium holds only when K1 = K2, in which case we have

n(s) = κηK3b

m(s) = κK1 sin(ηs)d1(s) + κK2 cos(ηs)d2(s) + ηK3d3(s).

}

3 Computation of Unit Quaternion

The rotation matrix Q is given by

Q =





cos(s) − sin(s) 0
sin(s) cos(s) 0

0 0 1



 .
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The axis of rotation k is in the nullspace of Q − QT such that we obtain

k =





k1

k2

k3



 =





0
0
1



 .

For the angle of rotation φ we have the relation

tr(Q) = 1 + 2 cosφ = 1 + 2 cos(s),

which immediately provides us with

φ = ±s.

The correct sign is obtained by verifying the result. Thus, we get

φ = −s.

The unit quaternion is now obtained as

qi(s) = ki sin(φ/2), i = 1, 2, 3, q4 = cos(φ/2),

such that

q =









q1
q2
q3
q4









=









0
0

sin(−s/2)
cos(−s/2)









.

Note that we obtain

q(s = 0) =









0
0
0
1









, q(s = 2π)









0
0
0

−1









.


