
DNA Modelling Course
Exercise Session 5

Summer 2006 Part 1

SOLUTIONS

1 Equilibrium configurations for a system of two

rigid bars

(a) Equilibria for the current system are critical points of the energy function

E(θ, φ, λ) =
1

2
θ2 +

1

2
(θ − φ)2 + λ(cos θ + cosφ). (1.1)

Thus, equilibria satisfy the equations

∂E
∂θ

= 2θ − φ − λ sin θ = 0

∂E
∂φ

= −θ + φ − λ sin φ = 0







(1.2)

and clearly (θ0, φ0) = (0, 0) is an equilibrium for any λ > 0.

(b) The function we will use for the Implicit function theorem, is the function
F : IR2 × IR → IR2 defined as follows

F (θ, φ, λ) =

{

F1(θ, φ, λ) = ∂E
∂θ

,
F2(θ, φ, λ) = ∂E

∂φ
.

Having said this, as by construction F (θ0, φ0, λ0) = F (0, 0, λ0) = 0 (this
is true for each λ0, so you can fix an arbitrary λ0), the only thing to check
is weather and under which conditions the following Jacobian matrix is
singular

JF (θ0, φ0, λ0) =

(

∂F1

∂θ
∂F1

∂φ
∂F2

∂θ
∂F2

∂φ

)

(0, 0, λ0)

=

(

2 − λ0 −1
−1 1 − λ0

)

. (1.3)

This matrix is invertible (i.e. non singular) if and only if det(JF ) 6= 0,
that is for λ0 6= (3 ∓

√
5)/2. In conclusion then, the Implicit function

theorem guarantees that for each λ0 6= (3 ∓
√

5)/2 in a neighborhood
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Ũ(0, 0, λ0) = U(0, 0) × V (λ0), there exists a unique Θ(λ) = (θ(λ), φ(λ))
with

F (Θ(λ), λ) = 0

Θ(λ0) = (0, 0). (1.4)

Finally, since we already know a solution of F (θ, φ, λ) = 0, which is the
trivial solution (θ(λ), φ(λ), λ) = (0, 0, λ) (i.e. the function Θ(λ) is just
(0, 0) ∀λ), we can conclude that it is the only solution!! It is important
to note that the theorem is only a local theorem! The only definitive
statement here is that there exist two points (two values of the parameter
λ) where the Implicit function theorem cannot be applied and where we
expect to find other solutions different from the trivial one. In order to
understand in details what happens around the trivial solution and at

the parameter values λ = (3 ∓
√

5)/2 we will need to use a perturbation
expansion tecnique (see next exercise session).

(c) For each of the two values λ = λ
(i)
0 , where λ

(1)
0 = (3 −

√
5)/2 and λ

(2)
0 =

(3 +
√

5)/2, the null space of JF is one-dimensional and

N[JF ] = span{(1, 2− λ)}.

More precisely we have

N[JF (λ
(1)
0 )] = span{(1,

1 +
√

5

2
)} (1.5)

where both components are positive and

N[JF (λ
(2)
0 )] = span{(1,

1 −
√

5

2
)} (1.6)

where one component is positive, the other is negative. Usually one indi-
cates the normalized vectors spanning the null space. Here (two dimen-
sions) we take the first component to be one, then the calcuations become
a bit easier.

2 Stability

(a) By definition, the Hessian of E(θ, φ) is the symmetric matrix function

hess[E](θ, φ) =

(

∂2E
∂θ2

∂2E
∂φ∂θ

∂2E
∂θ∂φ

∂2E
∂φ2

)

=

(

2 − λ cos θ −1
−1 1 − λ cos θ

)

, (2.1)

and at the equilibria (θ0, φ0, λ0) = (0, 0, λ0) we have

hess[E](θ0, φ0) =

(

2 − λ0 −1
−1 1 − λ0

)

. (2.2)
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The signs of the eigenvalues µi (i = 1, 2) of hess[E](θ0, φ0) determine
whether the critical point (θ0, φ0) is a local minima (both positive), max-
ima (both negative), saddle (one positive, negative) or degenerate (at least
one zero). Using the facts

µ1µ2 = det[hess[E](θ0, φ0)] = λ2
0 − 3λ0 + 1

µ1 + µ2 = tr[hess[E](θ0, φ0)] = 3 − 2λ0,

}

(2.3)

we find that (θ0, φ0) is a

local minima if 0 < λ0 < 3−
√

5
2

local saddle if 3−
√

5
2 < λ0 < 3+

√

5
2

local maxima if 3+
√

5
2 < λ0 < ∞

degenerate if λ0 = 3−
√

5
2 , 3+

√

5
2 .



















(2.4)

Note that changes in stability are exactly at points where the JF (which
is by construction hess[E]!!) is degenerate (i.e. points where the Implicit
function theorem cannot be applied), i.e. at bifurcation points.


