
DNA Modelling Course
Exercise Session 6

Summer 2006 Part 1

SOLUTIONS

1 Finding shape of bifurcation branch

From Exercise 1 of last Session 5, we expect to find new, non-trivial solutions

close to the trivial one (θ0, φ0) = (0, 0) when λ = λ
(i)
0 (i = 1, 2) as shown in the

following figure. To study how these new solutions behave in a neighborhood of

λ λ

λ λ λ λ0 0 0 0

(1) (2) (2)(1)

φ θ

the trivial solution, we expand them in terms of a small parameter ε. That is,
for each bifurcation point λ

(i)
0 , we consider perturbation expansions of the form

λε = λ
(i)
0 + ελ

(i)
1 + ε2λ

(i)
2 + · · ·

θε = θ0 + εθ
(i)
1 + ε2θ

(i)
2 + ε3θ

(i)
3 + · · ·

φε = φ0 + εφ
(i)
1 + ε2φ

(i)
2 + ε3φ

(i)
3 + · · · .











(1.1)

We then substitute these expansions into the equilibrium equation

F (θ, φ, λ) = 0, (1.2)

expand in powers of ε, and demand that each coefficient vanish. For each i, this
leads to the family of equations

Ajvj+1 = bj , j = 0, 1, 2, . . . (1.3)

where vk = (θk, φk). Here An and bn may depend upon θm, φm and λm for
m ≤ n. For the current problem we have

Aj =

(

2 − λ0 −1
−1 1 − λ0

)

, j = 0, 1, 2, . . . (1.4)



Summer 2006 Part 1 DNA Modelling Course 2

and

b0 =

{

0
0

}

, b1 = λ1

{

θ1

φ1

}

, b2 = λ2

{

θ1

φ1

}

+λ1

{

θ2

φ2

}

−λ0

6

{

θ3
1

φ3
1

}

, · · ·
(1.5)

(a) For each i = 1, 2, the perturbation variables v1 = (θ1, φ1) satisfy the
equation

A0v1 = 0 (1.6)

so v1 ∈ N[A0], that is

{

θ1

φ1

}

= a

{

1
2 − λ0

}

(1.7)

for some constant a 6= 0. (Without loss of generality we may take a = 1
or a so that θ2

1 + φ2
1 = 1, that is, we may absorb the arbitrary constant

into the parameter ε.) The next equation in the family is

A1v2 = b1 where A1 = A0, b1 = λ1v1. (1.8)

This equation is solvable for v2 if and only if b1 is orthogonal to N[AT
0 ] =

N[A0]. Since
b1 = λ1v1 and N[A0] = span{v1},

we must have λ1 = 0. This implies v2 ∈ N[A0], but we do not need to
determine v2. Knowing λ1 = 0, the next equation in the family is

A2v3 = b2 where A2 = A0, b2 = λ2

{

θ1

φ1

}

− λ0

6

{

θ3
1

φ3
1

}

. (1.9)

This equation is solvable for v3 if and only if b2 is orthogonal to N[AT
0 ] =

N[A0]. Since
N[A0] = span{(1, 2− λ0)},

we must have

b2 = c

{

2 − λ0

−1

}

(1.10)

that is,

λ2

{

θ1

φ1

}

− λ0

6

{

θ3
1

φ3
1

}

= c

{

2 − λ0

−1

}

(1.11)

for some constant c. Equation (1.11) is actually a linear system in the
unknowns λ2 and c. Solving it we find λ2 = 1/(5 +

√
5) for i = 1 and

λ2 = 1/(5−
√

5) for i = 2. Thus, for the bifurcation point λ
(1)
0 = (3−

√
5)/2

we have

λε = 3−
√

5
2 + 0 + ε2

[

1
5+

√

5

]

+ · · ·
θε = 0 + ε + · · ·
φε = 0 + ε

[

2 − 3−
√

5
2

]

+ · · · ,















(1.12)
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and for the bifurcation point λ
(2)
0 = (3 +

√
5)/2 we have

λε = 3+
√

5
2 + 0 + ε2

[

1
5−

√

5

]

+ · · ·
θε = 0 + ε + · · ·
φε = 0 + ε

[

2 − 3+
√

5
2

]

+ · · · .















(1.13)

(b) Using the result from part (a) we can get a picture of how equilibria look
in the (θ, λ)-plane. By considering the perturbation expansions for small

|ε| we obtain the following figure. In particular, as λ
(i)
1 = 0, λ

(i)
2 > 0,

both branches are supercritical, i.e. branches are symmetric and lie to the
right of the bifurcation point.

λ λ

λ λ0 0

(1) (2)

θ θ

λ λ
(1) (2)

0 0

2 Stability

(a) To determine the stability of the new solutions found in the previous exer-
cise, just insert the perturbation expansions into hess[E] and proceed as in
the previous exercise. For each of the nonzero solution branches (i = 1, 2)
we have

hess[E](θε, φε, λε)

=

(

2 − (λ0 + ε2λ2)(1 − ε2/2) −1
−1 1 − (λ0 + ε2λ2)(1 − ε2(2 − λ0)

2/2)

)

+ O(ε3).

(2.1)
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where

λ
(1)
0 = (3 −

√
5)/2, λ

(1)
2 = 1/(5 +

√
5),

λ
(2)
0 = (3 +

√
5)/2, λ

(2)
2 = 1/(5−

√
5).

Note that it is the same number λ2 which implies that the branch is a)
supercritical (symmetric and lie to the right of the bifurcation point) and
b) stable.

For small ε, the number of negative eigenvalues of hess[E] is shown in the
following figure.
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