## DNA Modelling Course Exercise Session 7 Summer 2006 Part 1

## SOLUTIONS

## (a) Immediate.

|     |                    | $\kappa = -0.5$     | $\kappa = 0$        | $\kappa = 0.5$      |
|-----|--------------------|---------------------|---------------------|---------------------|
| (b) | first bifurcation  | $\lambda = 0.91729$ | $\lambda = 1.23370$ | $\lambda = 1.42530$ |
|     | second bifurcation | $\lambda = 10.1265$ | $\lambda = 11.1033$ | $\lambda = 10.6601$ |

- (c) The buckling load increases as  $\kappa$  varies from -0.5 to 0 to 0.5. This can be understood physically by the following. Suppose the  $\kappa = -0.5$  and the  $\kappa = 0$  rods are slightly buckled in such a way that they have the same small horizontal displacement at the top end, i.e.  $r_1(1) = \epsilon$ ,  $0 < \epsilon \ll 1$ , for both rods. We want to compare the vertical loads  $\lambda$  responsible for these deformations. We first note that it is the curvature in the lower portion of the rod (close to s = 0) that is mainly responsible for the vertical displacement of the top end of the rod (curvature close to s = 1does not affect  $r_1(1)$  much). Second, the amplitude of the torque  $m_2(s)$ is the product of the load  $\lambda$  by the moment arm  $|r_1(1) - r_1(s)|$  and is therefore larger in the lower portion of the rod. We conclude that the essential of the bending occurs in the lower portion of the rod. Compared to the  $\kappa = 0$  rod, the  $\kappa = -0.5$  rod has a lower bending stiffness  $K_2(s)$ in its lower portion, and therefore needs a smaller torque to satisfy the constraint  $r_1(1) = \epsilon$ . Since the torque is proportional to the load, the  $\kappa = -0.5$  rod needs a smaller load to start to buckle, i.e. it has a smaller buckling load than the  $\kappa = 0$  rod. A similar argument shows that the buckling load for the  $\kappa = 0.5$  rod is higher than the buckling load for the  $\kappa = 0$  rod.
- (d) Here are the shapes of the rod in the  $(e_1, e_3)$  plane for  $\lambda = 1.7$ ,  $\nu = 0$ ,  $\hat{u}_2 = 0$  and for different values of  $\kappa$ :



It is seen that under the same load, rods with lower values of  $\kappa$  buckle more.

(e) For  $\hat{u}_2 = 0$  and  $\nu = 0$  the boundary value problem (1)–(13) has the discrete symmetry that if  $r_1(s)$  is a solution then  $-r_1(s)$  is also a solution. The  $[\lambda, r_1(1)]$  bifurcation diagram is therefore symmetric with respect to the  $r_1(1) = 0$  axis. The portion shown below has a pitchfork bifurcation point (where the two branches intersect and one of them is vertical).



For  $\hat{u}_2 = 0$  and  $\nu \neq 0$  the symmetry is broken and the portion of the bifurcation diagram shown below has two disconnected branches. It has a fold point (where a branch is vertical).



For  $\hat{u}_2 \neq 0$  and  $\nu = 0$  the bifurcation diagram is qualitatively (but not quantitatively) the same as for  $\hat{u}_2 = 0$  and  $\nu \neq 0$ .



For fixed  $\hat{u}_2 = 0.4$  the bifurcation diagram switches from "up" to "down" when  $\nu$  goes through the value -0.31443. At the transition the bifurcation diagram is connected but not symmetric. It does not have a pitchfork bifurcation point but has a transcritical bifurcation point (where the two branches intersect) and a fold point (where one of the branches is vertical, above the transcritical bifurcation point).



