5 Bifurcation Theory

In the modeling of physical systems one often considers a general equation
of the form

F(w,\) =0 (5.83)

where A € I and w € W. Here I is an interval in IR and W is a subset of
a given vector space. For example, when W is finite-dimensional, F'(w, \)
may be a set of algebraic equations, and when W is infinite-dimensional,
F(w, ) may be a set of differential equations together with boundary con-
ditions. A basic problem is to characterize the set of w satisfying (5.83) as
the parameter X is varied.

Example 5.1 (Planar 1-DOF Strut) The equilibrium equations for a pla-
nar, one degree-of-freedom strut can be written in the form (5.83) with
W = IR, namely

F(¢,A) = ¢ — B — Asing = 0. (5.84)

Here B is a constant that defines the reference or unloaded configuration.
For B = 0 a portion of the solution set of (5.84) looks something like the
figure on the left, and for B > 0 a portion of the solution set looks something
like the figure on the right.

Remarks 5.1

1. Depending on the form of F'(w, A), the solution set of (5.83) can be
very complicated. We see that it can be connected in some cases, and
it can be disconnected in others.

2. It is very rare that one can analytically determine solutions as in the
above example. One must typically employ numerical procedures to
solve (5.83). A common numerical procedure is parameter continua-
tion.

By a (linearized) bifurcation analysis of (5.83) we mean an analysis in
which one obtains local information on the solution set in a neighborhood
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of a known solution. For example, suppose we have a family or branch of
solutions

F(wo,A\) =0, VA€I, (5.85)

for some wg € W. Then a bifurcation analysis would yield local information
on the existence of other solutions in an arbitrarily small neighborhood
of the branch (wg,A), A € I. For certain values of A there could be
no other solutions close to this branch, while for other values there could,
as illustrated in Example 5.1 for the case 8 = 0. Generally speaking, a
(linearized) bifurcation analysis is based on an appropriate Implicit Function
Theorem.

5.1 Basic Problem

Suppose we are given

1. Parameter-dependent equation. F(w,A) = 0, w € W, XA € I. Here
A is interpreted as the parameter.

2. Known solution branch. (wg, A), A € I.

To determine if there are other solutions in an arbitrarily small neighborhood
of the known branch (wg, A), A € I, we

1. Expand w in neighborhood of wq

we = wo + ewy + 2wa + -+ . (5.86)

2. Search for non-trivial solutions wy of the linearized equation

d
- F(ws, A) = A(](’wl) = 0. (587)
de le=0

3. Identify bifurcation points Ag. By a bifurcation point we mean any
Ao € I for which (5.87) possesses a non-trivial solution.

At the bifurcation points Ag we expect to find new solutions near the known
branch (wg, A), A € I.
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Remarks 5.2

1. A bifurcation point Ag is called simple if (5.87) possesses only one
independent, non-trivial solution. Otherwise, Ag is called non-simple.

2. Roughly speaking, the number of independent, non-trivial solutions of
(5.87) determines the dimension of the solution set in a neighborhood
of (wg, Ag). For simple bifurcation points, we thus expect to find a
new branch or curve of solutions.

3. In the neighborhood of a simple bifurcation pair (wg, Ag) we can de-
velop an asymptotic expansion of the new solution branch. Parameter-
izing by € € IR, we expand the new branch (we, Ac) about (wg, Ao)

as
we = wo+ ewy + 2wy + -+ - (5.88)
Ae = Xot+err+en+---. ’
If (we, Ae) is to be a solution for all |e| < 1, then
F(we, Ae) =0, Vie| € 1, (5.89)
which implies
d‘n
Tl F@er) =0 n=1,23.... (5.90)

From (5.90) we get a sequence of linear equations for the perturbation
variables wy, Ap (n =1,2,3,...).

5.2 Planar Strut
5.2.1 Bifurcation Analysis

Consider a planar, inextensible, unshearable elastic rod described by an
angle function ¢(s) € IR, s € [0,1], and subjected to a vertical force
A > 0. Assuming the rod is completely fixed at s = 0 (bottom), and that

only the orientation is fixed at s = 1 (top), the equilibrium equations can
be written as
K¢” +Asing =0, 0<s<1
¢$(0)=0 (5.91)
#(1)=0
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where K > 0 is a material constant.

Remarks 5.3

1. The equilibrium equations for the current system are just the first-
order conditions for a standard Calculus of Variations problem for the
energy functional

1 1
E(@) = [ E(s8(s),#/(s)) ds, £(0,,p) = ;Kp* + Acosaq,
(5.92)
subject to the imposed boundary conditions ¢(0) = ¢(1) = 0.

2. In the abstract notation of the previous section the equilibrium equa-
tions can be written as

K¢"” + Asing 0
F(¢,2) = ¢(0) =40 /- (5.93)
¢(1) 0

For the current system it is easy to see that (¢g, A), A > 0, is a solution
branch of (5.93) where ¢o(s) = 0. To perform a bifurcation analysis of this
branch we linearize as in (5.87) to obtain the system

d K¢{ + Ay 0
—| _ F(¢e,A) = #1(0) =<0 ;. (5.94)
de le=0 ¢1(1) 0

We next seek bifurcation points A > 0 for which (5.94) possesses non-trivial
solutions ¢.
The most general solution of the differential equation in (5.94) is

¢1(s) = acos(ws) + bsin(ws), w = \/g > 0. (5.95)

If ¢1 is to be non-trivial and satisfy the boundary conditions, then we must
have w = nw for n = 1,2,3,.... The values of A for which (5.94) admits
non-trivial solutions are thus

A=n?r?K, n=12,3,..., (5.96)

and we note that these bifurcation points are simple. For these values of
A we expect new, non-trivial solution branches to bifurcate from the trivial
branch (¢g,A), A > 0.
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5.2.2 Stability Analysis

The current problem has an underlying variational structure. That is, the
equilibrium equations (5.91), or equivalently (5.93), can be identified as the
first-order conditions for a standard Calculus of Variations problem. We can
thus speak of the stability of an equilibrium ¢ as a function of the parameter
A>0.

Recall that an equilibrium is said to be stable if it minimizes the energy
functional E(¢) given in (5.92) over all admissible ¢. For the given class of
admissible functions, sufficient conditions for stability are

(i) the inequality Epp(s, @, ¢’) > 0 holds along the equilibrium ¢
(ii) the closed interval [0, 1] contains no conjugate points.

If (i) holds, but there are conjugate points in the open interval (0, 1), then
the equilibrium is not a minimum and hence is unstable. Recall that con-
jugate points are defined using the Jacobi accessory equation together with
boundary conditions that depend on the problem.

For the current problem, a conjugate point for an equilibrium ¢ is any
T € (0, 1] for which the Jacobi equation (after simplification)

d
Qh — —(PHK) =0, (5.97)
ds
with boundary conditions
h(0) = 0, h(t) =0 (5.98)
possesses a non-trivial solution h(s), s € [0, 7], where

1 1 d
P = ESPP(S’ ¢, ¢’)a Q= 5 8qq(’sa @, d),) - %S’qp(s’ @, ¢I) .
(5.99)

For the trivial equilibria ¢g(s) = 0 an application of the conjugate point
test leads to the conclusion that

A< K = stability, (5.100)
while

A> 72K = instability. (5.101)
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The details of these calculations are left as an exercise.

Remark 5.4 For this and other variational problems note that the lin-
earization (5.94) is connected to the second variation of the underlying
functional, and is related to the Jacobi accessory equation and conjugate
points. For example, note that a bifurcation point for the above problem
gives rise to a conjugate point at 7 = 1.

5.3 3D Strut

Consider an inextensible and unshearable rod modeled on the interval [0, 1]
with a straight reference configuration defined by #(s) = ses and d;(s) =
e;, and subjected to a downward vertical force at one end with magnitude
A>0.

Assuming the rod obeys a linear elastic material law with a constant,
diagonal stiffness matrix K = diag(Ky, K2, K3), the equilibrium equations
are

nl — 0 3\
m' +r"Xn=0
r’ = dg
,  vse(0,1), (5.102)

m = Kjju;d;
1 ’
u; = Ee’ijk[dj - di] )

and the specific boundary conditions we want to consider are

r(0) =0
d;(0) €4 (:=1,2,3)

r(l)-e, = 0 (:1=1,2) . (5.103)
d;(1) = €3 (1 =1,2,3)
n(l).-e3 = —A

For the current system it is easy to see that (rg,dy,ng,A), A > 0, is a
solution branch of (5.102), (5.103) where

7“0(8) = Seg
d)(s) = e , VA > 0. (5.104)
’I'L()(S) = —Aeg

Our goal is to perform a bifurcation analysis in the two cases K1 # Ko and
K1 = Kz.
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5.3.1 Linearization

To perform a bifurcation analysis of the trivial branch (rg, d?, no, A), A >
0, we must linearize as in (5.87). To this end, we consider expansions of the
form

re(s) = ro(s) +en(s)+---

di(s) = d(s)+eti(s)+--- ;. (5.105)

ne(s) = mo(s)+ev(s)+---

Note that since di is a frame depending on € € IR, there exists a
Darboux vector 8¢ such that
d

=0 x4 (5.106)
€
and so we have
d
gi= | _,&=0x d? (5.107)

where we use the notation @ = 6°. In what follows, we work with 6 rather
than &;.

Remark 5.5 Note that an infinite number of terms are generally required
in (5.105)2 in order that the perturbed vectors df indeed be an orthonormal
frame. However, because only the first-order term enters the linearization,
it is unnecessary to consider those of higher order.

Substituting (5.105) into (5.102), (5.103) we linearize to obtain the equa-
tions

/7

v =0

(Kij05d?) +0' xno+rhf Xy =0 ¢,  Vs€ (0,1), (5.108)
n' =6 X dj

where 6; = 6 - d?, together with the boundary conditions

n(0) =0
6(0) 0
n(l)-es = 0 (z=1,2) ,. (5.109)
0(1) = 0
¥(1)-es = 0
In deriving the above equations one must use the fact that
d 0
de s:Oms = KijO;di, (5.110)

the proof of which is left as an exercise.
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5.3.2 Simplifications

We next simplify the equations in (5.108), (5.109). To begin, we note from
(5.108)1 and (5.109)5 that

’7(8) = o1e1 + ases (5111)

where a1 and as are constants. Next, we note that the variable 5 can be
eliminated. Using (5.108)3 and (5.109); we have

n(s) = /0 " 0(r) x e3 dr. (5.112)

With the above equation we can convert the boundary conditions (5.109)3
into conditions on 6. For example, (1) - e; = 0 implies

/1 02(s) ds = 0, (5.113)
0

and so on.
The linearized equations (5.108) can be reduced to the form

K10y + X601 — a2 =0
K20y + Ab2+ a1 =0 »,  Vs€(0,1), (5.114)
K30g =

with side conditions
0;(0)
0i1(1)
fol 01(s) ds
Jo 02(s) ds =

(5.115)

|
oo oo

5.3.3 Bifurcation Points

We next seek values of A > 0 for which the linearized system (5.114), (5.115)
possesses non-trivial solutions 0;(s), a1 and ag. Beginning with (5.114),
note that the most general solution of these differential equations is

61(s) = a1 cos(wis) + by sin(wis) + 52
02(s) = az cos(wzs) + by sin(wps) — &t
03(s) = azs + bs

(5.116)

where w; = \/A/K;, and a;, b; are arbitrary constants.
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The two conditions in (5.115) on @3 imply
a3 =b3 =0 = 03(s) always trivial. (5.117)

The three conditions in (5.115) on 07 lead to a homogeneous linear system
of equations for ay, by and a2, namely

1 0 1/)\ al 0
cos w1 sin wq 1/ by ;=< 0 ;. (5.118)
sinw; 1—coswi wi/A s ) 0

Let C7 be the 3 X 3 coefficient matrix in (5.118) and consider the set

o1 ={A>0]| detCy = 0}
={A>0|wisinw; =2(1 —coswy)}
={A>0|A=4n7%K;, A= A1(n), n=1,2,3,...}.
(5.119)

Then there is a non-trivial solution 67 iff A € o;.
Similarly, the three conditions in (5.115) on 62 lead to a homogeneous
linear system of equations for as, b2 and a1, namely

1 0 —1/)\ as 0
COS wa sin wo -1/ b, =< 0 ;. (5.120)
sinws 1—coswy; —wa/A o 0

Let C2 be the 3 X 3 coefficient matrix in (5.120) and consider the set

0'2:{)\>0| detC’2:0}
={A> 0| wzsinwy; = 2(1 — coswz)}
={A> 0| A =4n272%Ky, A = A2(n), n=1,2,3,...}.
(5.121)

Then there is a non-trivial solution 82 iff A € os.

The sets o7 and o2 thus characterize the bifurcation points for our
problem. Whether or not these bifurcation points are simple depends on
the values of K1 and Ks.

5.3.4 Interpretations: K; 7# Ko

In the case Ky # Kz (and assuming that K; and Kg are “non-resonant”) we
have o1 Moz = 0, and so there are two distinct classes of simple bifurcation
points. At a bifurcation point A € o1
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1.

there is only one independent, non-trivial solution of the linearized
equations, namely 01 (s) Z 0, 62(s),03(s) =0

. we expect one-dimensional branch of new solutions to bifurcate from

the trivial branch

since 01(s) #Z 0 and 02(s),03(s) = 0, the new branch of solutions
correspond to approximately planar configurations in the plane normal
to ex.

Similarly, at a bifurcation point A € o2

1.

there is only one independent, non-trivial solution of the linearized
equations, namely 62(s) Z 0, 01(s),03(s) =0

we expect one-dimensional branch of new solutions to bifurcate from
the trivial branch

since 02(s) Z 0 and 64(s),03(s) = 0, the new branch of solutions
correspond to approximately planar configurations in the plane normal
to es.

A bifurcation diagram for this problem would look something like the fol-
lowing. Note that the actual ordering of the bifurcation points depends on

the values of K1 and Ks.

5.3.5 Interpretations: K; = Ko

In the case Ky = Ka there is only one class of bifurcation points characterized
by the set o0 = o1 = o2. At a bifurcation point A € o

1.

there are two independent, non-trivial solutions of the linearized equa-
tions: one with 61(s) Z 0, 02(s),03(s) = 0, and the other with
02(s) Z 0, 01(s),03(s) =0

we expect a two-dimensional “surface” of new solutions to bifurcate
from the trivial branch

each planar “slice” (identified by an angle 0 < 8 < 2r) is a branch
of equilibria.
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5.3.6 Symmetry-Breaking

The above analysis shows that bifurcation points along the trivial branch
are not simple in the symmetric case Ky = Ka. Here we show that, using
known integrals of the equations (5.102), it is possible to single out a par-
ticular “slice” from the family of bifurcating equilibria and thus effectively
reduce the problem to one with simple bifurcation points. While this can be
done by just appending extra side conditions to the basic equations (5.102),
(5.103), our interest here is to show that this can be done without chang-
ing the number of equations. The basic strategy is to modify the boundary
conditions (5.103) to “break” the symmetry.

To begin, consider (5.102), (5.103) in the symmetric case Ky = Ka. Let v
be any unit vector in the {e1, e2} plane and consider the modified boundary
conditions

r(0) =0 )
(w-en)ld2(0) 2] = (v-e2)[dr(0) ]

ds(0) - v =0

m(0) - v =0 > . (5.122)
r(1) - e; =0 (¢ =1,2)

di(1) = € (:1=1,2,3)

n(1l) - es = = J

Claim 5.2 The problem defined by (5.102), (5.122) has two classes of (iso-

lated) solutions
1. those that satisfy the original problem (5.102), (5.103)
2. those that do not.

Moreover, solutions of (5.102), (5.122) that satisfy (5.102), (5.108) and are
planar lie in the {v,es} plane (so v determines the “slice”).

Proof.  (Sketch) To begin, let {r,d;,n} be a solution of (5.102), (5.122).
Next, recall that the functions

N(r,d;,n) = n
M(r,diy,n) = m+rXn (5.123)
T(r,diyn) = m-ds
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are integrals for (5.102) in the symmetric case K1 = K2. Using these inte-
grals together with (5.122)g we conclude that

m(0) - d3(0) = m(0) - e3. (5.124)

As long as m(0) is non-zero (as it is for non-trivial solutions), the above
statements imply that d3(0) and eg lie in a cone with axis m(0).

In view of (5.122)3, (5.122)4 and the fact that e - v = 0, we also note
that d3(0), eg and m(0) all lie in the plane normal to ». This implies that
either d3(0) = eg, or d3(0) is on the opposite side of the cone from eg. If
d3(0) = es, then we deduce from (5.122)5 that there are various isolated
solutions for d;(0) (¢ = 1,2), including the case d;(0) = e; (¢ = 1,2).
Thus there are solutions {r, d;, n} of (5.102), (5.122) that satisfy the original
problem (5.102), (5.103). On the other hand, if d3(0) is on the opposite
side of the cone from eg, then clearly {r, d;, n} does not satisfy the original
problem. This is the basic idea, and the rest of the proof is left to the reader.
|

To see that the modified problem (5.102), (5.122) has simple bifurcation
points along the trivial branch, one would need to linearize this problem and
repeat the analysis as before. This is a nice exercise.

Remark 5.6 Our motivation for symmetry-breaking is a computational
one. For example, if one desires to numerically compute solutions of the
above problem using a one-dimensional parameter continuation method,
then simple bifurcation points are a must. Also, calculations are much
simpler when working with a system possessing the same number of equa-
tions as unknowns. Moreover, while the symmetric case is “non-generic,”
it is sometimes advantageous to compute solutions of a “generic” problem
beginning from the highly-connected solution set of an associated symmetric
one.
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