7 Hamiltonian Formulation

7.1 Kinematics of Rods

An elastic rod consists of a curve in space, denoted r(s) : [0,1] — IR3,
and an orthonormal frame of directors, denoted {d;(s)};_,. The kinematic
equations

v = v, (7.125)
d. = uxd;, 1=1,2,3, (7.126)

?

where / indicates differentiation with respect to the independent variable s,
define the vectors v and u. The components ug(s) = u(s) - di(s) are
the strains with respect to bending (k = 1,2) and twisting (k = 3). The
components vg(8) = v(s) - di(s) are the strains associated with shear and
stretching. We assume that the rod is unshearable (v; = 0 = wv2) and
inextensible (v3 = 1). Combining these assumptions with the kinematic
equation (7.125) yields the equation ' = dg, which relates the centerline 7
to the frame of directors {d;}.

7.2 Force and Moment Balance Laws

The stresses acting across each material normal cross-section are equivalent
to a force and moment applied at the centroid of the cross-section at r(s);
let n(s) and m(s) denote, respectively, this resultant force and moment (of
the material on the side sT acting on the material on the side s~). We will
here assume that the only external loads are couples and forces applied at
the ends of the rod. Then the force and moment balance laws are

n’(s) =0, (7.127)
and

m’(s) + r'(s) x n(s) = 0. (7.128)

7.3 Constitutive Relations

In order to complete the formulation of an elastic rod, constitutive relations
between the strains u; and the moments, m; = m - d;, must be presented.
In particular, we consider hyperelastic rods; we assume that there exists a
convex, strain energy density function W(w), w = (w1, wa, w3), such that
Wy (0) = 0 and

m; = Wy, (u; — 4;), for 1 =1,2,3, (7.129)
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where i(s) = (G1(8),02(s),us(s)) is the triplet of strains describing the
curvature and twist of the unstressed rod.

W is taken to be quadratic in w; — @;. The assumption of diagonal
quadratic energy, namely,

18 )
W —i) = 5 > Ki(ui — )3, (7.130)
=1

defines the linear constitutive relations,
m; = K;(u; — 4;) (7.131)

via equation (7.129). The quadratic energy assumption (7.130) is equivalent
to a linear elasticity assumption.

The positive functions K;(s) in equation (7.130) represent the bending
and twisting stiffnesses of the rod.

7.4 Representation of Directors by Euler Parameters

Thus far we have not specified any particular parameterization of the di-
rectors {d;(s)}. For three-dimensional equilibria, a parameterization of the
directors {d;(s)} is equivalent to selecting a representation for the group of
proper orthogonal transformations SO(3). In mechanics there are several
common choices for such a representation. Euler parameters can be used,
which provides a global (i.e. singularity free), four parameter, two—to—one
description of SO(3).

The components of the orthonormal triad {d;} (with respect to the fixed
space basis) in terms of a set of Euler parameters ¢ = (q1, g2, g3, qa) are
given by:

@ —-qi-a+4q 2(q192 — 9394)
di = 2(q1q2 + q3q4) , de=| —a®+d2—-a2+42 |,
2(g193 — 92q4) 2(g2q3 + g194)

(7.132)

2(q193 + g294)
d3 = 2(q2Q3 — Q1Q4) . (7133)
—¢? — g} +d3+4;
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The parametrization of the directors by quaternions involves the nor-
malization factor |g|? = 1.

The strains u; appearing in equations (7.130) are given in terms of the
Euler parameters by

u; = 2¢’ - B;q, i=1,2,3. (7.134)

Here the B; are 4 X 4 skew—symmetric matrices:

0 0 01 0 0 —-1 0
0 0 10 0 0 0 1
Bi=|9o _100]” B2=|1 0 o0 o
-1 0 00 0 -1 0 O
0 1 0 0
-1 0 0 O
Bs=19 0 0 1
0 0 -1 0

For any set of Euler parameters the vectors {B;q}, together with g, form
an orthonormal basis for R%. Geometrically, the vector B;q acts as the
infinitesimal generator of rotation about the ¢th director d;.

7.5 Variational Formulations

The energy functional of the elastic rod is
1
/ W(ul, u2, U3,ﬁ1,’&2,’ﬁ,3,8) ds, (7.135)
0

where W is chosen to be quadratic in the strains as seen in Equation (7.130).
As the strains, denoted w;, can be written as functions of the Euler parame-
ters g and their derivatives g’; thus W is a function of the Euler parameters
g and their derivative q’

Using equation (7.134) to eliminate the strains, the strain energy den-
sity function can be written in terms of the Euler parameters and their
derivatives

Wu—ia,8)=W (2q' - B;q — 14, s) . (7.136)
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The equilibrium configurations can then be characterized as constrained
critical points of the energy functional

1
/ W (2¢' - Biq — 1, s) ds, (7.137)
0

subject to the constraints,
r'(s) =ds(q(s)) and  q(s)-4'(s) =0, (7.138)

and appropriate boundary conditions, including the requirement that the
Euler parameters have unit norm at one end point. Here dg(q(s)) denotes
the vector of quadratic functions of q;. By introducing Lagrange multi-
plier functions A(s) € R® and u(s) € R associated with the pointwise
constraints (7.138), the equilibrium configurations can be characterized as
unconstrained critical points of the Lagrangian

L(g,q' 7" A\ p,8) =W (2q' - Biq — G, s) + X - (' —ds) + pq-q'.
(7.139)

A necessary condition for the energy to have a minimum at (rg, qg) is
that minimum satisfy the Kuler-Lagrange equations.

The Euler-Lagrange derivative with respect to r yields the force balance
law A’ = 0 where X represents the force n in Equation (7.127). Since A is
constant, the term X - fg (' — d3) ds can be integrated to yield

/\-/()l(r'—dg) ds = A (r(l)—r(O)—/Ol ds ds), (7.140)
= . /0 " ds ds. (7.141)

The four Euler-Lagrange equations with respect to g are

a(ds - 21"
2m;B;q = m; [— (4Biq') — 2u; d ] — [ (ds )] — u'q. (7.142)

lql? 9q

In order to recover the moment balance laws, we project Equation (7.142)

onto Bjq. Taking the inner product of (7.142) with Bjq, yields

a(ds - \)
dq

’

T
2m; = —2miugé€ijr — [ ] - Bjq, (7.143)
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where €;1; is the standard permutation symbol. The last term can be rewrit-
ten as

a(ds - 21T ads 1T dds
[%q)] -Bjq = [_3] A-Bjq= 6—qqu ‘A
= 2€j3k:dk: A= 2€j3k:)\k:

so that the equilibrium equations become

m; = —MULEijk — €j3kAk- (7.144)

Explicitly, Equation (7.144) reduces to the moment balance laws

'm'l = —u2msg -|— usmsa -I— d2 . A, (7.145)
’I’n,2 = uimsg — ugmi — dl . A, (7.146)
mg = —uimsg + usms, (7.147)

which are equivalent to (7.128), the balance laws in the fixed frame.
The value of the derivative of the Lagrange multiplier p is determined
by taking the inner product of (7.142) with q

d(ds - A
0 = mi[—(4q-Biq’)—2ui]—%' —
q
o(ds - A
— _M.q-u’:—zAds—“,.

dq

7.6 Hamiltonian Formulations

The Hamiltonian system involves the (standard) Legendre transform W* (v, s)
of the constitutive function W (w, s). We assume that

%—v‘:(o) =0, (7.148)

and that W is a strictly convex function of w. Then the variables v conjugate
to w are defined by

ow
v=—(w). (7.149)
ow
By the strict convexity assumption we can invert to solve for w, to get

w = ¢(v). (7.150)
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The Legendre transform is then defined to be
W*(v) = v- $(v) — W(d(v)). (7.151)

In the special case of a pure quadratic W,
1
W(w) =2 > Kiw?, (7.152)
i
the conjugate variables are v; = K; w;, and the Legendre transform is
1 v?
W*(v) = - 2. 7.153
W= (7153)

We claim that the Hamiltonian leading to the equations governing the
equilibria of an elastica can now be written in the form

H(r,q,n,v,s) = W*(m,s) + m-ii(s) +n - ds. (7.154)

The phase space variables in this Hamiltonian formulation are the axis 7, the
force n which is conjugate to 7, the Euler parameters q, and their conjugate
variable, namely v. The right hand side of (7.154) can be written in terms
of the phase variables by substituting the expression (7.133) for d3(g) and
by using the relations

1
m; = 51/ -Big(=W,,(u—10)) 21=1,2,3, (7.155)

which follow from the hyper-elastic constitutive relation and the components
of the definition of v in the directions B;q. The second equation in (7.155)
can itself be further inverted using the implicitly defined inverse function ¢
introduced in equations (7.150) and (7.151), leading to the expression

v-Biq v-Bxq v-Bsq
2’ 2 2

u=10+¢ ( (7.156)

for the strains. In the particular case of linear elasticity, (7.156) simplifies
to

v - B;q
2 K;

and the Hamiltonian takes the explicit form

-~

u; = u; +

, i=1,2,3, (7.157)

3 2
H(r,q,n,v) = Z (;;;, + ﬁimi) + n-ds. (7.158)

i=1
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The Hamiltonian system of equations governing equilibria is of the form

(, 8H
i "
oH 1¢&
q = B0 = EZUiBiQa
—
\  em ; (7.159)
nn— —— =
Or ’
OH 13 ad
V’—————Zuszu 8 n,
\ 9q 2'I:=1 9q

where again dg(q) is defined by the formula (7.133), so that

qs q4 4q1 Q2
% = 2 —q4 g3 Qg2 —q1
dq

—q1 —q2 43 qa

and the u; are written in terms of the phase variables g and v using relation
(7.156), or in the case of linear elasticity the explicit form (7.157).

7.7 Discussion of the Hamiltonian Formulations

The equilibrium equations (7.159) are a set of fourteen ordinary differential
equations with boundary conditions. By construction, this system yields
to the balance laws and to the different constraints given respectively in
(7.127),(7.128) and (7.138).

The first equation of (7.159) is the constraint r’(s) = ds(q(s)). The
projection of the second equation onto q yields to

1 3
q(s) - q'(s) = 5 ) _uiaBiq =0,
=1

and the projection of this same equation onto Bgq yields to the kinematics
relation

ur = 2q’ - Biq.

The moment balance law is derived from the expression of ¢’ and the pro-
jection of v’ onto Bgq.
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7.8 Analysis of Integrals and Symmetries

We next detail the integrals or conserved quantities of the Hamiltonian sys-
tem (7.159), i.e., functions of the phase variables that are independent of
arc—length s.

Six integrals are obtained immediately from equations (7.127),(7.128).
The three components of force n are constant due to the translational sym-
metry of the Hamiltonian system in space. Similarly the three components
of m 4+ r X n are invariant as a consequence of rotational symmetry about
the three inertial axes. To see that these expressions provide integrals of
(7.159), we merely need to write them as functions of the phase variables.
Components of n and r with respect to the fixed basis are trivially phase
variables, and it can be verified that the components 7; of m with respect
to the fixed space basis can be written as

1

m; = EV - Fiq, 1= 1, 2,3, (7160)
where
0O 0 0 1 0 0 1 0
0 -1 0 0 01
F, = y Fa= ’
0O 1 0 0 -1 0 0 O
-1 0 0 O 0 -1 0 O
0 -1 0 O
1 O 0 O
F3 =
0 0 1
0 O -1 0

In addition to the integrals listed above which have physical interpreta-
tions, there are two integrals which arise from the representation of SO(3)
by the four Euler parameters, rather than by a three parameter description.
By construction, the second equation of (7.159) implies

3
1
a-q' =) uiqa-Big=0,

i=1

so that |q|? is a seventh integral.
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Next consider the quantity v - q + 2r - n. By virtue of (7.159), we find

d ads 13
—(v-q+2r-n) = —n-—q—l——Zuiq-BiV
ds dq 2=
5 i= (7.161)
+ ! > B;q + 2d
— uiv - B; - .
2 4 i iq 3-1n
=1
. T Ods
Euler’s Theorem for homogeneous functions implies that 2dg3 = —q.

0

q
Moreover the matrices B; are skew symmetric, so it follows that (7.161)
vanishes and

v-q+2r-n (7.162)

is an eighth integral of the system. The integral (7.162) is associated with
invariance of the Hamiltonian under the (variational) symmetry in which
q is replaced by (1 + €)q, v is replaced by (1 + €)™ v, r is replaced by
(14 €)2r and n is replaced by (1 + €)~2n. Specification of the value of the
integral (7.162) merely eliminates the gauge freedom in v.

The above integrals arise for all constitutive laws. There are two addi-
tional, constitutive dependent, integrals that arise in each of the cases of
an sotropic rod, and a uniform rod. The tangential component of bending
moment is
v - Bsq

2

A straightforward computation, using (7.157), (7.159) and properties of the
B; matrices, reveals that

mg(s) =m-dg =

L3 _ 'y _
2d8m3(3) = (v-B3q + v -B3q) = —u1v - Baq + uzv - Biq

1
= (v -B1q) (v - B2q) (— — —) — 41v - Baq + G2v - B1q.

K, K;
Accordingly, if K1(s) = K2(s) and %11 = @2 = 0, then ms(s) = v -
Bs3q/2 provides a ninth integral. This case will be described as a transversely
isotropic or just isotropic rod.

The second constitutive dependent symmetry is uniformity. If the con-
stitutive function W has no explicit s dependence, which in the linearly
elastic case means the stiffnesses K; and the unstressed strains 4; are all
constant, then the Hamiltonian H (7.154) has no explicit s dependence,
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and therefore represents a tenth integral of the system. The associated sym-
metry is translation in the arc-length s, or relabeling of the material point
corresponding to s = 0.

In summary the Hamiltonian system always has at least eight integrals,
namely n, |q|2, m+rXn, and v-q+2r-n. If the rod is isotropic ms provides
an additional integral, and if the rod is uniform then the Hamiltonian H
(7.154) provides a tenth integral.
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