2 The Special Cosserat Theory of Idealized Rods

2.1 Introduction

The next several weeks of class will be concerned with developing the static
continuum elastic rod model of the DNA mini-circle cyclization problem
that was outlined in the first days lectures.

The mathematics that will be introduced involves the calculus of vari-
ations, Hamiltonian formulations of the Euler-Lagrange equations, bifurca-
tion theory, numerical methods for ODE two-point boundary value problems
(including numerical symmetry breaking), and the theory of the second vari-
ation in isoperimetric calculus of variations problems.

We start with a description of the mechanics model, known as the
Cosserat theory of rods, and the quaternion parameterization of proper ro-
tation matrices. We then describe the mathematical methods, and finally
we discuss how to fit the parameters of our model to describe DNA itself,
and make some computations.

The sum total of all this material will occupy several weeks.

A configuration of a Cosserat rod is a parameterized space curve r(s)
along with a parameterized family of right handed, orthonormal triads d;(s),
i.e. three unit vectors which for each s satisfy the constraints

di~dj=5ij, ds =d; X ds

with d;; being the Kronecker delta function.

Throughout the course Roman indices will be assumed to run through
the values 1, 2 and 3 with repeated indices summed, unless the context or
text indicates otherwise.

These orthonormality relations mean exactly that the 3 X 3 cosine matrix
R of components of the three vectors d; with respect to any fixed (right
handed) system of orthonormal basis vectors, say e;, is a proper rotation
matrix (i.e. a rotation matrix with determinant 4+1) or (a representative
of) an element of the group SO(3).

Notice that the frame {d;} is defined externally to the curve 7, i.e.
the frame contains additional information to the centerline. Thus the {d;}
frame has a different status from say the Frenet-Serret frame which is made
up from the tangent, normal and binormal to the curve, and which is defined
by the curve 7(s) and its derivatives.

The curve 7 should be thought of as the centerline of the rod (say the
average of the two backbones in the case of DNA) while the frame {d;}
should be regarded as specifying the orientation of each cross-section of the
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rod (or say some smooth interpolation of the orientation of each set of base
pairs in the case of DNA).

The parameter s will be given a precise physical interpretation in a little
while, but is, roughly speaking, distance along the centerline of the rod.

2.2 Kinematics

With no loss of generality we may define the vector v(s) via v(s) = 7’(s)
where 7’ denotes the derivative of r with respect to the parameter s. And
we will denote the components v; of v with respect to the triad {d;} by
v, =v-d;

As the d; are an orthonormal basis they satisfy kinematic equations of
the form

d;:uXdi.

That is the vector u is an ‘angular velocity’ but representing ‘evolution’ with
respect to the parameter s instead of with respect to time.

It is a simple exercise (do it!) to derive the existence of the vector u,
which is sometimes called the Darboux vector.

(Hint for one way: because the triad {d;} is a basis at each s there exist
functions ¢;j(s) such that d} = >~ ¢;;jd;. Differentiating the orthonormality
conditions on the d; then give conditions on the ¢;; which imply that there
are only three independent non-zero c¢;;, and they have the property that
they are equivalent to taking a vector cross-product, i.e. the Darboux vector
exists.)

We also introduce the components of the Darboux vector u with respect
to the basis {d;} through

u; = u-d;

In fact one can see that
1 ,
Uu; = _Gijk:dj . dk

where €;x is the alternating tensor.

The components u;(s) determine the frame {d;(s)} (up to a single arbi-
trary rotation specifying initial conditions for the frame) through integration
of the (nine, scalar) differential equations

d;:UXdi:ZUj'(dedi)-
J
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or
J
di = ejikujdk

Once the frame {d;(s)} is known, the three component v;(s) determine
the centerline r(s) (up to a single arbitrary translation specifying initial
conditions on the centerline) through integration of the equations

r':v:i v;d;
i

Thus the six scalar functions u;(s) and v;(s), determine the configura-
tion of the rod up to a single arbitrary rigid body motion (i.e. a translation
plus a rotation).

For this reason the six functions u;(8) and v;(s) can, and will, be called
a set of strains for the rod.

There is certainly quite some arbitrariness in the definitions of the strains,
which arises from an arbitrariness in the relation of the frame {d;(s)}, and
the parameter s, to the material making up the rod.

2.2.1 The reference state and the adapted framing

This arbitrariness is usually removed by specifying particular reference strains
43(8) and 9;(s) describing a reference state.
We will usually assume the reference state to be a minimum energy or
unstressed configuration (the precise definitions of which will arise later).
Usually (but not necessarily) the parameter s is chosen to be arc-length
along the centerline of the reference curve 7(s), in which case the reference
strains satisfy

7 = 19(s)] = 1,

and in any other configuration |v(s)| — 1 is a measure of the local extension
(or stretch) when positive, or of the local compression when negative.

Usually (but not necessarily) the reference unit vector field dg(s) is
chosen to be parallel to the tangent vector to the reference centerline 7(s)
so that provided s has been chosen to be arc-length in the reference state,
we have for all s that

= dy
The triad {c/l;(s)} is then called an adapted framing of the curve 7(s).
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In this situation the 3-components of the strains are distinguished from
the 1 and 2 components, and it makes sense to describe v; and vo as shear
strains, and (somewhat imprecisely) vg as a stretch. Similarly uw; and ug
are described as bending strains, while ug will be described as the twist
(strain).

As a matter of physical modelling, when interpreting mathematical rod
models as an approximation of long slender deformable bodies, it is im-
plicitly assumed that the whole three-dimensional shape of the body can be
reconstructed to a good approximation from knowledge of the centerline and
the frame, using a known, locally-defined reconstruction rule at each value
of the parameter s.

For example, in the context of DNA it is implicitly assumed that the lo-
cation of each atom making up the INth base pair can be well-approximated
once the frame, and centerline at the arc-length corresponding to the Nth
base are known.

The arbitrariness in the choice of reference strains ;(s) and 9;(s) can be
regarded as an arbitrariness in the definition of the local reconstruction rule,
but once a reference configuration, or equivalently a local reconstruction rule
at each value of s, has been set, then the same local reconstruction rule is
used in any configuration of the rod.

For this to be a reasonable approximation, it is implicit assumed that
the differences between the strains in any physically relevant configuration
and in the reference configuration, are quite small, and for this reason rod
theory is sometimes described as a linearized or small strain theory.

However this does not mean that the differences in configurations are
small, because small differences in strains over a relatively large distance
s can give big differences in both centerline and frame. In particular rod
theory keeps full geometrical nonlinearities.

2.2.2 The inextensible unshearable rod

Much of the classic work on rod theory, and in particular rod theories applied
to modelling DNA, assume an inextensible, unshearable rod.

In an inextensible, unshearable rod, the strains v; in any configuration
equal the strains ¥; in the reference configuration, i.e. they satisfy the
constraints

vi(8) = 9i(s)-

For an inextensible, unshearable rod it almost always makes sense to
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choose the parameter s to be arc-length in the reference configuration, be-
cause it is then also arc-length in any configuration.

Similarly it almost always makes sense to choose the reference framing
to be adapted so that #/(s) =3 (s), and

01(8) = 92(s) =0, v3(s) =1

because the framing is then adapted in any configuration i.e. 7’(s) = d3(s)
in all allowed configurations.

In fact for an inextensible, unshearable rod the configuration space can
be viewed as a centerline r(s) parametrized by arc-length s, along with a
single unit vector field, d;(8) say, which is everywhere orthogonal to the
centerline r(s).

In other words a ribbon.

An orthonormal (adapted) right handed triad can then be constructed
from any configuration of a ribbon from the definitions

ds = ’I",, ds = ds X dj,

and the u;, as defined before, now form a full set of strains for the problem.

Even for an inextensible, unshearable rod, with an adapted framing,
there remains some freedom as to which adapted frame is best chosen as the
reference configuration. This is a topic that will be of some importance in
our modelling of DNA, and we will return to it later.

2.3 Balance Laws

We now turn from the kinematics of rod models to a consideration of the
balance laws, which will allow us to determine which configurations are
possible equilibrium shapes.

The stresses exerted by the material on one side of the cross-section at s
acting on the material on the other side of the cross-section can be averaged
to yield a net force m(s) (of the material on the side s acting on the
material on the side s™).

There is an arbitrary sign convention here, and as long as it is treated
consistently it doesn’t matter which convention you take.

Similarly the first moment of the stresses acting across the cross-section
can averaged to yield a net moment m(s) (taken with the same sign con-
vention as n(s)).

As before n(s) and m(s) denote vectors, while n;(s) and m;(s) will de-
note components of these vectors with respect to the variable basis {d;(s)}-
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It will be of importance to recall the elementary fact that because the
frame {d;(s)} is not constant, the component of the derivative m’(s) is
not the derivative of the component m/(s). Rather using the kinematics of
the basis {d;(s)}, it can be seen that there is an additional cross-product
term.

Explicitly

’
m' = (Z midi> = Z (m;dz + mzd;)

1

= Z (m;dz 4+ m;(u X dz)) .
or
m' - d; :m;--l-(uXm)-dj

so that the 7th component of m’ is the derivative of the jth component plus
the jth component of the cross-product (u X m).

The coordinate free equilibrium equations are (in the absence of self-
contact or external distributed forces):

n'(s) =0,
and

m’(s) + r'(s) X n(s) = 0.

2.4 Constitutive Relations

Thus far our concept of a rod has implicitly used the assumption that the
body is long and slender, in order that the kinematics yields a sensible
description of the body. But we have not said anything about the properties
of the material. How do we tell the difference between a long, slender body
made of steel, of rubber, of chewing gum, of a viscous fluid such as treacle,
or a segment of a DNA molecule?

The differences are quantified by specifying the constitutive relations
of the rod, that is giving relations that determine the components of the
stresses m; and n; in terms of the strains u; and v; (or vice versa).

We first give some simple examples of constitutive relations, and after-
ward discuss, how general the constitutive relations might reasonably be,
and how reasonable the simple choices might be.
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The choice of appropriate constitutive relations is one of the most crucial
issues in using rod models to describe physical phenomena.

Perhaps the simplest choice of constitutive relation is a diagonal, linear
(or at least affine) one. For each ¢ = 1, 2, 3 (with no sum)

m; = K;(u; — 4;), n; = A;(v; — ;).

Here, as before, the 4;(s) and 4;(s) are prescribed functions of s determin-
ing the reference shape. And the K;(s) and A;(s) are prescribed functions,
which for reasons we shall see later, are usually assumed to be strictly pos-
itive.

Because of the form of the shift in the constitutive relations

m; = Ki(u; — 4;),  ny = Ai(vi — 9;).

we see that the stresses in the reference state vanish, i.e. the reference state
is unstressed.

More generally for positive coefficients K;(s) and A;(s) the stress-strain
law can be inverted (here trivially) to yield

u; = 4; + my/K;, v; = 9; + ni/A;.

In particular, invertibility implies (among other things) that when the ref-
erence state is stress-free it is the only unstressed state.

We will also use the fact that the constitutive laws are hyper-elastic,
which means precisely that there is a scalar-valued function W (u;,v;; s)
of the six strains with the property that the constitutive relations can be
written in the form of partial derivatives of W

m; = Wy, n; = Wy,.

The linear diagonal constitutive laws described above are hyper-elastic
with the quadratic strain-energy density function

The elastic energy of the rod with strains u;(s) and v;(s) can be defined
as

L
/ W (ui,vi; 8)ds
0
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and W is called the strain-energy density function.

In the diagonal, linearly elastic case we can see that the unstressed ref-
erence configuration is also the unique minimum energy configuration.

Much of the time we will be concerned with the case of inextensible,
unshearable elastic rods. As discussed earlier the inextensibility and un-
shearability conditions are expressed by specifying the values of the strains
v; to always be their reference values 9; (which are usually assumed to be
the triple (0,0, 1)).

For such rods the force n is a basic unknown, with no related constitutive
relation, while the bending and twist strains w; and components of the
moments m; are still related through constitutive relations, for example of
the affine form:

m; = K;(u; — 4;), 1=1,2,3,

where the K;(s) > 0 and the @; are as before.

We will also talk about hyper-elastic, inextensible, unshearable rods. For
the affine constitutive relation on the previous page, the elastic strain energy
of the rod is

Ly
/ — Z K;(u; — ;)% ds
0o 2%

2.5 Equilibrium conditions

We can now describe the system of field equations (which for rods are ordi-
nary differential equations) that must be solved to determine the equilibria
of elastic rods. They are made up of the coupled system formed by the
balance laws taken with the kinematic equations.

n’(s) = 0,
m’(s) + r'(s) x n(s) = 0,

r =, d:=’uXdz

plus some combination of constitutive relations, or unshearability or inex-
tensibility constraints.
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In fact when the balance laws are written in terms of components wrt
the frame {d;}, they (apparently) decouple from the kinematic equations.
Balance laws become a closed system of 6 first-order ODE

! !
n; + €;pujng =0 m; + €k (ujmy + vjng) = 0,

after six of the twelve quantities m;, n;, u; and v; are eliminated using the
constitutive relations

m; = K;i(s)(u; — 4i(s)),  ni = Ai(s)(vi — i(s))-

(if the rod is inextensible and unshearable the unknowns m; must be three
of the variables retained).

Resulting equations are nonlinear with quadratic nonlinearities (because
the constitutive relations were assumed to be linear).

When the constitutive laws are homogeneous (or autonomous) i.e. have
no explicit s dependence, it is possible to find simple (and not so simple)
closed form solutions of the balance laws, and then with known strains to
integrate the kinematic equations to find explicit expressions for the associ-
ated centerline and director frame. See Exercise Session 1.

In general, both for non-homogeneous and homogeneous constitutive re-
lations, it is necessary to solve the system numerically. Particularly because
a typical rod problem involves two-point boundary conditions, i.e. some of
the variables are given specified variables at s = 0, and some at s = L say.

It should be recalled (or realized) that the numerical solution of initial
value problems, i.e. problems where all the unknowns have specified values
at one value of the independent variable s (usually s = 0), for smooth
equations such as the above, and on a bounded interval, is essentially trivial
given todays computers and knowledge of algorithms.

In contrast the numerical solution of two-point boundary value problems
is still nontrivial (although of course the appropriate numerical methods are
for the most part very well understood).

The other important observation is that even though the balance laws,
and the kinematic equations appear to naturally decouple, the boundary
conditions typically do not decouple, so that there is effectively little sim-
plification.

For example perhaps the simplest boundary value problem for an elastic
rod is the strut, where with a standard fixed basis e; of R3, the appropriate
boundary conditions are

r(0) =0 d;(0) =e€;, m(L)=0 n(L)= —Aes
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These do not reduce to an initial value problem for the stress components
m; and n; because to know the components n;(L) given the boundary
condition n(L) = —Aeg it would be necessary to know the relation between
the directors d; (L) and the basis vectors e;. Thus the problem is implicitly
coupled.

(We remark parenthetically that the boundary conditions

r(0) =0 d;(0) =e;;, m(L)=0 n(L)=—Xds

do lead to a decoupled system for the stress components. This is a physically
interesting, much studied problem with a so-called follower load. Its full
solution behaviour is actually much more complicated than the strut.)

Another physically interesting set of boundary conditions that we will
study in our preparation for modelling DNA are

r(0)=0 r(L)-eg=7r(L)-e2 =0, r(L)-e3=24

d;(0) = d;(L) = e;.

which have no boundary conditions whatsoever on the stress components.
Note that for an inextensible rod, there can be no solution for § > L

Introduction for the Planar rod

We have introduced the kinematics, balance laws, and simple linear consti-
tutive relations for a special Cosserat rod deforming in three dimensions, for
both shearable, extensible rods, and for inextensible, unshearable rods.

In the exercises, you have considered some simple equilibria when the rod
is uniform (i.e. the constitutive relations have no explicit dependence on the
parameter s ) that can be calculated analytically in closed form. However
for non-uniform rods, and for many two-point boundary value problems for
rods it is necessary to use numerics to determine the equilibria.

We now turn to start a description of the combination of analysis and
numerical methods that we will use to compute equilibria that model DNA.

For various reasons, for example handling boundary conditions efficiently,
constructing explicit variational principles, it can sometimes be convenient
to explicitly parametrize the directors {d;(s)}, which, as previously re-
marked, is equivalent to parametrizing the group of proper rotation matrices
or SO(3).
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The classic choice (as described in nauseating detail in infinitely many
mechanics texts) for such a parametrization is some set of Euler angles. We
will later describe a parametrization in terms of Euler parameters (or, more
or less equivalently, quaternions or Cayley-Klein parameters). However the
kinematics of SO(3) is unavoidably complicated in some ways.

Consequently, so as to focus first on the mathematical and computational
techniques that are pertinent to our study of rods we will start with a study
of the much simpler case involving planar (untwisted) deformations of rods.

We will seek solutions of the full three dimensional equilibrium equations,
which happen to be untwisted and to lie in a plane.

2.6 The planar rod example

That is (for example with deformations chosen to lie in the (e1, eg) plane)
' e =0 da(s) =e>
or equivalently
v2(s) =0
and the Darboux vector has the simple form
U = uz2dz = ugzes
For such directors we can parametrize with a single angle ¢(s)
dy = cosgpe; —singpeg, ds =singe; +cosgpes.

With this sign convention we find dy = e; and d3 = eg when ¢ = 0 and
moreover

ug = +¢’

(In the (e1, eg)-plane positive ¢ then corresponds to a clockwise rotation
of the d;, see figure.)
It is then easy to verify that provided

9, =0 41 =a3=0,

with the diagonal constitutive relation introduced earlier, such planar kine-
matics generates forces and moments of the special form

n-e2=0 m(s) = ma(s)e2
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That is, the out of plane component of the force n vanishes, while the two
in-plane components of the moment 7 vanish.

Notice that in general mg(s) denotes the component of m with re-
spect to the director frame, but with the special kinematics introduced here
d2(8) = ez, so that ma(s) is also the component of m with respect to the
fixed vector es.

Are there equilibria of this special form? To investigate this question we
merely substitute our ansatz into the balance laws.

We find that the 2-component of the force balance law is automatically
satisfied, while both the d; and d3 components (or equivalently here, both
of the in-plane components e; and eg) of the moment balance law are au-
tomatically satisfied.

The remaining system involves two scalar equations for the in-plane com-
ponents (n1,ng) of the force n and a third scalar equation for the out-of-
plane component mg of the moment m, Using the parametrization ¢(s) of
the directors, these equations can be written in the form

ni = —ng¢’ nj = ¢'n,,

r
my, = Ngv; — N103.

As we shall see in a moment, it can be convenient for the treatment of
boundary conditions to retain the angle ¢(s) as one of our basic unknowns.
Thus we shall eliminate mo through the constitutive relation for bending
which takes the form

ma = Ka(s)(¢' — a2(s))

where as before Ka(s) > 0 and @2(s) are given functions.

The above equations form a closed system when two of the four unknowns
11, N3, v1, and v are eliminated through the use of the shear and extension
constitutive relations (or, equivalently, the shear and extension constitutive
relations are appended as additional equations)

We shall be primarily concerned with the inextensible, unshearable case
in which the basic unknowns are ¢, n1 and ng and

v1 =01 =0, vy = 03 = 1.
and the governing equations reduce to
[— / r __ /
n; = —ng¢ ng = ¢'ny,
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[K2(s)(¢" — B2(s))]" = —n1.

r' =d3 =sin¢e; +cosgpes.

For this system it is actually more traditional to introduce the compo-
nents N7 and N3 of the force n with respect to the fixed basis vectors
e; and eg. Because the angle ¢ parametrizing the directors is one of our
basic unknowns it is easy to achieve this explicitly through the invertible
relationships (just familiar formulas from rotations in two-dimensions)

ny = N7 cos ¢ — N3 sin ¢,

ng = N7 sin ¢ + N3 cos ¢.
Then (verify this!) the governing equations reduce to

N; =0, Né:(),

[K2(s)(¢" — @2(s))]’ = N3 sing — Ny cos ¢

r’ = d3 = sin ¢ e; + cos ¢ e3.

which can be viewed as a single second-order ODE for the angle ¢, containing
two unknown constants Ny and No (but not the centerline ), along with
a quadrature to determine r once ¢ is known.

This decoupling into an equation for ¢ plus unknown constants, and a
quadrature for r can be rather convenient, and is one of the reasons that
we introduce a parametrization of the director frame {d;}. However it
turns out that the decoupling only truly works for certain sets of boundary
conditions. We will first consider a set of boundary conditions for which
there is a genuine decoupling.

The strut boundary conditions for an inextensible, unshearable rod of
arc-length 1 are

#(0) =0, m2(1) = K2(¢' — @2)|s=1 = 0,
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N3(1) ==X, Ni(1)=0

r(0) =0

Here X is a parameter (either positive or negative) which is specified. It rep-
resents the end-loading. The introduction of the minus sign is a convention
meaning that the end-load is positive if the load is down the eg axis.

More generally all the boundary conditions could have parameters on the
right hand side instead of zero, although there is no interest in introducing
additional parameters that merely generate planar rigid body motions of
other solutions (e.g. parameters in the initial values for 7(0) and ¢(0), in
addition to parameters for both N3(1) and N7(1)).

We will shortly introduce a discretization of the above two-point bound-
ary value problem, which will lead to a discrete nonlinear system to be
solved numerically. Actually we will introduce two different discretizations—
a numerically naive one (a very rudimentary finite difference scheme) which
we will use to explain the numerical solution procedures, and a numerically
robust one (collocation) which we will compute with.

The computations will be carried out with a software package called
VBM for solving the system obtained after discretization via collocation.
VBM is a nice GUI and visualization package that in turn implements a
continuation and bifurcation package called AUTO to generate numerical
approximations to the solutions of the equilibrium boundary value problem.

We will use VBM as a black box (or at least a very dark grey box) code,
first for the simple planar problem being considered now, and later for rod
models more closely related to DNA. There will be no need for previous
experience in programming (although if you have experience you will be
able to do lots of extra nice things with VBM).

The first step is to discuss what bifurcation and continuation algorithms
are, in order to have some idea about the output of the code.

We start with continuation algorithms for solving parameter dependent
problems. And the first step in any continuation algorithm, is an explicitly
known solution at some simple set of parameter values.

In what circumstances does the planar rod problem above have a simple
explicit solution?

Recall that the balance laws are

N; =0, Né:O,
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[K(s)(¢ — @2(s))]' = Ny sing — Ny cos ¢

r’ = d3 = sin ¢ e; + cos ¢ e3.
One case in which there is a simple solution is when A = 0. Then

Nl(s) = N3(8) =0,

(s) E/Os'ilz(a) do r(s)E/Oscosqb(a)do:

Recall that the strut boundary value problem had the boundary condi-
tions

¢(0) =0, r(0)=0
and

N3(1) = —A, Ni(1) =0,

ma(1) = [Ka2(¢' — 42)][s=1 = 0,

where we have re-grouped the boundary conditions firstly into kinematic
conditions, and secondly into external loading conditions.

Notice that we have used all of the boundary conditions in deriving the
explicit representation of the solution to the boundary value problem.

Such a representation is called a solution by quadrature—all the variables
are given in terms of indefinite integrals of known functions with explicit lim-
its. In some sense the solution is not truly explicit unless the function @2(s)
is simple enough that the quadratures can be carried out in closed form (e.g.
w2 a constant) but that is rarely important. For example continuation codes
could easily use such a quadrature representation to generate a discretized
solution of any required accuracy to use as a starting point.

The quadrature representation also contains interesting physical infor-
mation. When all external loading vanishes, i.e. A = 0 in the above, then
the rigid body transformation of the unstressed, minimum-energy shape that
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is uniquely defined by the kinematic boundary conditions is a solution of the
equilibrium conditions.

Less obviously the constructive nature of the quadrature solution demon-
strates that it represents the unique solution of the boundary value problem.
Whenever A is non-zero it is much harder to obtain such a uniqueness re-
sult. Indeed unless |A| is sufficiently small, the boundary value problem has
multiple solutions, and there is no uniqueness.

Exercise: What can be said about existence and uniqueness of solutions
when the external loading conditions are assumed to be of the form

N3(1) = 0, Nl(l) = 0,

ma(1) = [K2(¢' — d2)]]e=1 = 7,

i.e. no external force loading at the end, but instead an external torque
loading 7d2?

We will re-visit uniqueness (and non-uniqueness) results later after a
variational formulation of the problem has been introduced and convexity
arguments can be brought to bear.

We will also have need of another special case, namely when @2(s) = 0.
Then the equilibrium equations reduce to

N; =0, N; =0,

[K2(s)¢')’ = N3 sin¢ — N1 cos ¢

r’ = ds = sin ¢ e; + cos ¢ es.

and we see that there is a whole family of solutions satisfying the strut
boundary conditions, namely

(b(s) =0, N1 =0, Ng=-\

r(s) = seg
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which is a solution for all values of the parameter A.

Physically this means that when you lean straight down on a perfectly
straight, inextensible (or in this case incompressible), upright rod, then the
undeformed configuration is an equilibrium for any load.

What does your intuition tell you will happen for sufficiently large loads?
Well the strut will start bending (or in another description will buckle).
Or perhaps compression effects will become non-negligible (depending on
the material or constitutive relation). Thus we see that in a parameter
dependent problem we always have to be aware of limitations of the range
and idealizations of the model.

In point of fact the inextensible model captures the phenomenon of buck-
ling rather well through the phenomena of bifurcation and an associated loss
of stability, and also through the inclusion of imperfections (for example the
presence of a rather small @i2(s) representing a nearly straight unstressed
shape). Both buckling and imperfections will be crucial in the DNA mini-
circle example.

To understand buckling and imperfections we will retreat to an extremely
simple, finite dimensional model, which can be regarded as a finite difference
approximation to the planar rod problem.

2.7 The Discrete Strut—problem formulation

Consider the energy
n
> kiy1(piz1 — i — Biy1)?/2 + Ak cos ¢
=0

where A, h, the B;41, and the k;yq1, ¢ = 0,...,n are given, there are
n + 2 unknown variables ¢;, ¢ = 0,...,n 4+ 1, and we have the “boundary
conditions”

o = Bos knt1(Pnt1 — ¢n — Bny1) = 0.

where B¢ is an additional parameter.

The quadratic terms are a model for the energy stored in n rotational
springs, with spring constant k; at the #th joint, 2 = 1,--- , n and a mini-
mum energy at the ¢th joint when the angles satisfy

¢ = ¢i—1 + Bi

The fact that ¢pg = B is prescribed is analogous to the boundary condi-
tion ¢(0) = Bo in the continuous problem, while the “boundary condition”
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involving ¢n41 is a discretized version of the vanishing moment condition
K2(1)(¢'(1) — 42(1)) = 0, which says that there is no moment applied
at the top of the segment with nth joint.

We could equally well eliminate ¢ and ¢y, 1 using the boundary condi-
tions to leave a sum with index range ¢ = 1,...,n with n unknowns (and
redefining 81 = Bo + B1) and there would be only n quadratic terms to be
summed.

The term in the energy involving A and h models the potential energy
of a vertical load (with the convention A +ve acting downward) applied
to the (n + 1)st joint (or equivalently the end of the nth segment with
each segment being of length h). Think of a bucket of water of weight A
hung from the (n + 1)st joint, then the potential energy is just the height
> h cos ¢; times the weight .

In the formulation where ¢, 41 is kept as a variable it seems a little
strange that the load is not applied at the tip of the (n + 1)st segment,
but it is quite usual that in a finite difference approximation, it is necessary
to introduce an additional mesh point ‘beyond the boundary’ in order to
approximate derivative boundary conditions at the boundary. In any case,
in this example eliminating ¢y +41 eliminates any confusion.

The Minimum Energy State

We also see that in the case of a zero external load A = 0 the minimum
energy configuration is given by

i
$:i=> Br, Vi=0,...,n+1

where we have also included indices for the boundary variables in the sum-
mation range.

Thus we can see that the 8;/h can be identified as determining a piece-
wise constant approximation of the unstressed strain @2 (s) in the continuous
problem, or equ1valently the B; determine a piece-wise linear approximation
with corner values q’)z, of the continuous unstressed shape ¢(s) determined

by the property ¢’(s) = dia(s).

The Equilibrium conditions

Taking partial derivatives of the energy with respect to the variables ¢;,
© = 1,...,n yields the stationarity, or first-order necessary conditions
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—kit1(Pit1 — @i — Bit1) +
ki(¢p;i — i1 —Bi) — Ahsing; =0

which is a set of n nonlinear equations for the n unknowns ¢;, 2 = 1,...,n,
but the equations also contain many additional parameters, namely the sin-
gle scalars A and h and the sets of parameters k;, ¢ = 1,...,n and (;,
1 =0,...,n.

Notice that the boundary condition relating ¢y41 to ¢4, is exactly the
additional first-order condition that is obtained by taking the partial deriva-
tive with respect to the variable ¢,41. This is the finite dimensional man-
ifestation of what is called natural boundary conditions in the calculus of
variations (which we will see in a little while).

The boundary condition is actually implied by the variational principle.
In contrast it makes no sense to take a partial derivative with respect to
the variable ¢p¢g because the boundary condition gives ¢¢ a definite value in
terms of the given parameter Bg. Such boundary conditions are sometimes
called imposed, and are not implied by the variational principle.

These equations could have been derived directly as the balance (about
the 4th joint) of moments acting on the ith segment. Thus we see that there
is a wariational formulation or minimization principle giving the moment
balance equations. Notice that following common practice we talk about a
minimization principle, but the balance law comes as the first-order station-
ary condition of all partial derivatives vanishing (i.e. the potential is only
known to be flat, but it could be a local minimum, a local maximum, or
some sort of saddle point).

It is certainly of considerable interest to know which of all the equilibria
(solutions of the balance laws) are actually local minima (which we expect
to be stable equilibria). The type of the critical point can be classified by
studying the second derivative of the potential evaluated at a particular
critical point.

The Second Variation of the Strut Problem

In the case of the discrete strut potential given above, the second derivative
can be regarded as the n X n symmetric matrix whose (4, j)th entry is the
second partial derivative of the potential with respect to the variables ¢;
and ¢; (for 2,5 =1,...,n).

For the particular potential above, the matrix is tri-diagonal with a
typical (3 X 3) block centred on the (z,%) entry being
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(ki1 + k) — Ah cos J)i—l —k; ~ ~ 0
—k; (ki + kit1) — Ah cos ¢; —kit1 B
0 —kit1 (kit1 + kit2 — Ah cos diy1)

and appropriately modified first and last blocks (after ¢p9 and ¢p41 are
eliminated using the boundary conditions).

Here ¢; is a particular solution of the equilibrium conditions with A = X
at which the second derivative (or second variation) is being computed. The
dependence of the second derivative on the the solution (@i, .., @n,A)
is particularly simple because the bending part of the energy is exactly
quadratic.

Similarly because the terms involving the 8; in an expansion of the en-
ergy are all linear in the ¢; the parameters 8; do not appear explicitly in
the second derivative (although the B; certainly appear explicitly in the
first-order conditions, and so implicitly in the second derivative through the
exact form of the equilibrium ¢;). Because the second derivative matrix
is symmetric, it has only real eigenvalues, and we will call the solution,
(@1, - - -5 PnsA) non-degenerate if its second derivative matrix is nonsingu-
lar, i.e. 0 is not an eigenvalue of the matrix.

For non-degenerate equilibria we define its indez to be the number of neg-
ative eigenvalues of its second derivative matrix. In particular a Taylor series
expansion of the (finite dimensional) potential shows that a non-degenerate
equilibrium is a local minimum of the potential (and thus presumably stable)
precisely if its index is zero.

We remark that classifying degenerate equilibria is more subtle, because
the second derivative cannot be used to bound all the higher order terms.
(Similarly in infinite dimensional problems the situation is not so straight-
forward even at non-degenerate equilibria.)

The exercise sessions will ask you to compute the second derivative at
some particular solutions in the case n = 2.

In a little while we will turn to discussing how the above discrete system,
can be interpreted as a discretization of the continuous system which will
be recovered in a limit m — oo, h — 0. But first we will discuss methods
for solving nonlinear systems of parameter-dependent algebraic equations,
and understanding typical behaviours.
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Solution of nonlinear parameter-dependent equations

We would like to understand the solution set of the discretized strut as the
parameters of the problem are varied. In particular we shall consider A as
the main parameter to be varied, with the stiffnesses k; and the discretized
unstressed shape 3; being for the most part regarded as given fixed param-
eters. In other words we want to know what are the possible equilibrium
shapes as the end load is increased say from A = 0.

Generally speaking it is hopeless to find anything other than very special
solutions of nonlinear equations analytically, and we must instead turn to
numerical methods.

Because we know that our problem has an associated variational formu-
lation, we could implement a numerical method exploiting that structure,
say steepest descent, i.e. take an iterative method that at each step marches
down the gradient of the potential. Such methods have some very desir-
able features. For example they can reasonably be expected to converge
to a local minimum of the potential from an essentially arbitrary starting
point—which is an extremely powerful statement.

On the other hand minimization by steepest descent or other methods
has its draw backs, for example often there is slow convergence in the neigh-
bourhood of a local minimum. For our purposes the bigest disadvantage of
minimization methods is that they can only be expected to find local min-
ima, and as we shall see it can be rather instructive to find other types of
(presumably unstable) equilibria.

The only practical alternative to a minimization method is a root-finding
technique applied directly to the system of equations that arises as the first-
order necessary conditions. If for the moment we freeze all parameters in
the first-order conditions, the first-order conditions assume the general form

f(z) =0

of n nonlinear equations in  unknowns z.

At this level of generality the only practical way to solve such systems
numerically is some sort of iterative method starting from a sufficiently good
guess for the solution. Amongst such iterative schemes, those that are some
variant of Newton’s method are extremely powerful.

Review of Newton’s method

Let us therefore review Newton’s method. Suppose that z¥ is some good
approximation to a root z€ of the governing equations. Then a Taylor series
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expansion gives us
F(z) = F(zF) + I*(2° — 2*) + O(|z* — =°|?)

where J¥ denotes the (n X n) Jacobian matrix with (¢, j)th entry 8f;/8z;
evaluated at z*.

Neglecting the higher order terms, and using the fact that by assumption
f(2¢) = 0, we see that the next iterate z(¥*t1) defined via

2B — Lk 4k
with w” defined to be the solution of the inhomogeneous linear system
TEw = —f(2")

should be a very good estimate for z€. In fact Newton’s method converges
quadratically once the approximation is sufficiently close (which is an ex-
tremely good feature).

Newton’s method had two major potential difficulties. First it may be
either computationally expensive or difficult to solve the linear system for
the update w* either because the matrix J¥ is very large and dense, or is
ill-conditioned or actually singular. Second, to start the iteration you need
a first guess 20, and often that guess has to be really quite good in order
that the Newton iteration will converge.

Our particular problem has special features that can help with both of
these potential difficulties. First because we have a variational principle we
know that the first order conditions are of the form f(z) = 0, but with the
vector field f equal to the gradient of the scalar potential, V' say.

Thus f;(z) = 8V/0z;. In particular the Jacobian matrix is just the
symmetric matrix of second derivatives of the potential V', which for the
planar rod problem is tri-diagonal (some such banded sparsity structure of
the Jacobian is typical of problems that arise as discretizations of systems
of ordinary differential equations). Linear systems involving banded ma-
trices can be solved extremely efficiently (for example a banded Gaussian
elimination), whenever they are not singular.

The second special feature that we shall exploit is the parameter depen-
dence of the problem with an explicitly known solution at one parameter
value (namely the unstressed shape when A = 0). We shall apply parameter
continuation methods in our numerical computations of rod equilibria.
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Parameter Continuation Method

That is to say we shall use knowledge of previously computed solutions at
nearby parameter values, to generate an accurate guess for the solution at
the current parameter values, which is then corrected via a Newton-type
iterative solve. The whole process can get started provided that a solution
(or even just a good guess for the solution) is known at some specific set of
parameter values.

Let us make this outline more concrete. Suppose therefore that we have
a system of equations of the form

f(z3A) =0

and a known solution (2%, A%). Then provided that the Jacobian J (2%, A°)
is nonsingular the implicit function theorem guarantees that there is a neigh-
bourhood |A — Ag| < €, such that there is a unique branch of solutions
passing through (2%, A?) which can be parametrized as (z(\), ).

How might we compute such a branch of solutions? If we seek solutions
for A = A% + Al with A! small, we can expand the solution as

z(A) = 2% + Atz + O(IAY?)
and expand the equation
FH+ A+ O(INP)HE{A + A1) =0
as
F(2%X0) + A1 £(2% %2 + AT £ (2% A% = O(|A1]?)

But £(z% A% = 0 as (22;A%) is known to be a solution, and (as a
matter of notation) f,(2z%; A?) is just the Jacobian J (2%, A%). Thus we see
that by ignoring O(]A!|?) terms we obtain a nonhomogeneous linear system
that can be solved for a unique solution z!' provided that the Jacobian
J (2%, Q%) is nonsingular:

JO Zl — _fg
(where the superscript 0 on J and — f indicates that the functions are to
be evaluated at (2%, A?)).
Accordingly we can reasonably expect that for Al small a Newton itera-

tive solve of the equations at the parameter value A = A%+ A! will converge
if we take as initial guess

29 =20 4 A1 2!
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where 2! is determined by a linear solve of the system with coefficients deter-
mined by the Jacobian J? and the function fg evaluated at the previously
computed solution (2%, A9).

Once the Newton iterate has converged, and if the Jacobian is nonsingu-
lar at the new solution, we may repeat the process to generate a new initial
guess at another nearby value of the parameter.

Thus we can generate a number of solutions at a discrete set of values
of the parameter A that are close to each other, and which approximate the
branch of solutions (z(A), A) through the initially known solution (2%, A?).

This is an elementary (and rather naive) description of numerical con-
tinuation. As you can probably imagine there is a wealth of important detail
in getting the method to work efficiently, but the above captures at least the
flavour of the method that is implemented in the continuation code AUTO
that we will use later on (via the graphics interface VBM).

We can see that the above method is problematic whenever we hit a
solution with a singular or near singular Jacobian. The analysis of what
happens at such singular points is the domain of bifurcation theory. The
typical behaviour at simple singular points is that the branch of solutions
persists, but there may be multiple branches of solutions, or there may be
a fold point at which the parameter A has a local extreme value along the
branch of solutions.

We will illustrate these concepts by considering the case m = 1 of the
discrete strut example. The n = 1 case can be solved in an essentially
explicit fashion, but it is a little too simple to truly explain the perturbation
expansion described above. You will consider the case n = 2 in the exercise
session.

2.8 The continuous limit of the discrete strut
Introduction

Today we will briefly re-consider the n degree of freedom example, consider
the limit n — oo to recover the continuous case, do some bifurcation anal-
ysis on the continuous problem, and then describe a different discretization
of the continuous problem (using collocation) that is used by the numerical
continuation package AUTO.

Remember the expression for the discrete strut energy:

Z kit1(pit1 — ¢i — Bit1)?/2 + Ah cos ¢;

=0
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where A, h, the B;41, and the k;41, 2 = 0,...,7n are given, there are
1 + 2 unknown variables ¢;, ¢ = 0,...,n 4+ 1, and we have the “boundary
conditions”

¢0 = Bos kn+1(Pnt+1 — ¢n — Bnt1) = 0.
where B¢ is an additional parameter.

The Continuous Limit

1. Moment Balance Equation
The discrete moment balance equilibrium condition

—kit1(Pit1 — ¢i — Bit1) + ki(di — dpi—1 — B;) —Ah sing; =0

can be recognized as a simple finite difference discretization of the continuum
moment balance equation in the form

— (K2(s)(¢'(s) — @12(s)))’ — Asing(s) = 0
with discretization size h = 1/n and

ki = Ka(ih)/h, Bi=t(ih)h

For the extreme values of the index ¢ we also recover a finite difference
discretization of the boundary conditions

$(0) =0 K>(1)(¢'(1) —42(1)) =0

We can also see that the discrete energy

Z kit1(dit1 — @i — Bit1)?/2 + Ah cos ¢;

1=0
with discretization size h = 1/n and
k; = Kx(ih)/h, Bi=a2(ih)h

is a finite difference approximation to the the continuous energy
1
/ Ko(¢' — @2)?/2 4+ Acos ¢ ds
0
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(we will return to this observation in a little bit).

2. The Discrete Force Balance Equations

A question that we have so far ignored, is what happened to the force
balance laws in our discrete variational formulation? It is reasonable that
we can obtain a variational principle just in terms of the discretized angle,
because for the strut problem, in the continuous version the force balance
laws and the moment balance decouple.

Explicitly

Ni=0, N;=0
taken with the boundary conditions
Ni(1) =0, N3(1)=-A

imply N7(s) = 0 and N3(s) = —A.
And the kinematic incompressibility and unshearability constraints and
boundary conditions written in the form

' =sing, £(0) =0, 2’ =cos¢, z(0) =0

(with the notation z(s) = z(s)e1 + z(s)es) allowed us to reduce the
whole equilibrium problem to the solution for ¢ and ms of the (continuous)
moment balance equation with boundary conditions and parameter A, after
which the centreline was reconstructed.

It will be instructive to describe the analogous procedure for the dis-
cretized system. The finite difference approximation to the kinematic con-
straint equations are forz = 1,...,n

x; —xi_1 = hsing;_1, ©g =0

zi —zij—1 = h cosp;_1, 20 =0

And the appropriate discretized variational principle is to ‘minimize’ the
elastic potential energy in the form

D kiy1(dig1 — i — Biy1)?/2 + Az

=0

subject to the same boundary conditions as before

#0 = Bo, kn+1(Pnt1 — ¢n — Pnt1) = 0.
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but now also subject to the discretized kinematic constraints (and boundary
conditions).

For such a finite dimensional constrained variational principle we have
(at least formally) a Lagrange multiplier rule: to each constraint we can
associate a Lagrange multiplier say v; and i, ¢ = 1, ..., n and constrained
critical points will satisfy the first-order conditions for the function

n
> kiy1(bit1 — ¢ — Biy1)?/2 + viga1(Tiy1 — i — b sing;) + piy1(2i41 — 2i — h cos ;) +
i=0

with respect to the unknowns ¢;, ; and z; treated as independent variables
(i.e. ignoring the constraint equations) for some values of the multipliers v;
and p;. For consistency here we set v,41 = pn41 = 0 because there are
only 2n constraints, and 2n unknowns x; and z;.

The first-order conditions with respect to x; and z; yield the system of
equations

—Viy1+v;i =0, ¢t=1,...,(n—1), v, =0,
and
—Mit1+pi=0, t=1,...,n—1, p,=—-A

which can be recognized as finite difference approximations to the two force
balance equations, and their associated boundary conditions.

Just as in the continuous case it is trivial to solve the force balance
conditions, and we obtain

vi=0, pu=-X, t=1,...,n

For the full variational principle, the first-order conditions for the ¢;
regarded as being completely independent of the ; and z;, are

—kiv1(Piv1 — ¢i — Bit1) + ki(di — di—1 — Bi) + pit1 h sinp; — vip1 h cos ¢p; = 0.

And when we use the closed form expression to eliminate the multipliers,
we re-obtain the first-order necessary conditions for the variational principle
involving the angles only.

It should be noted that the strut boundary value problem is very special.
Just about every piece of the problem enters in just the right way for this
decoupling to arise. For different boundary conditions, or a z dependent
potential term the problem remains coupled.
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Nevertheless in general a variational principle is possible whenever the
constitutive relations are hyper-elastic. The variational principle involves
minimizing the internal elastic energy (or the integral of the strain energy
density function) plus any additional potential terms which arise from end-
loadings say, and subject to some set of imposed boundary conditions and
constraints.

Exercise: Construct the variational principle for the strut boundary value
problem (i.e. the same boundary conditions and end-loading), but now for
a rod that has a diagonal shearable, extensible constitutive relation.

2.8.1 A Little Bifurcation Theory For The Continuous Problem

Recall that the equilibrium conditions are

N; =0, N; =0, Ni(1)=0, N3z(1)=-X

[K2(s)(¢" — @2(s))]’ = N3 sing — Ny cos ¢

$(0) =0 K3(1)(¢'(1) — 62(1)) =0

z’ =sin¢, £(0) =0, 2z’ =cos¢, z(0) =0

When does this system have a singular Jacobian? Or in other words if we
linearize about a known solution, when can the reuslting linear system have
a non-trivial solution?

In general this is a different calculation for each known solution. We
have two possibilities. First when A = 0 we have the unstressed shape.

Exercise: Verify that the linearization at the unstressed shape is always
nonsingular so that (assuming the appropriate infinite dimensional version of
the implicit function theorem), there is locally a unique branch of solutions
through the zero load configuration.

The second possibility is that when #@3(s) = 0, there is the upright
straight solution for all A, and we can linearize about each of those solu-
tions. Motivated by the discrete problem we would anticipate finding A vlues
when there are non-trivial solutions (i.e. the Jacobian is singular). This can
be shown to be true explicitly in the further special case K2(s) = 0 by
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calculating the sequence of Aj, 7 = 1, 2,..., called bifurcation points or
buckling loads, at which the Jacobian is singular.

It can be shown that a countable sequence of Aj, 7 =1, 2,... of bifur-
cation points actually exists for any K2(s8) > 0, and you can estimate their
location analytically, but you cannot (in general) find them explicitly. (This
is the theory of ODE called spectral theory for Sturm-Liouville operators.)
We will also return to this problem in a little while.

Of course we can numerically compute the bifurcation points to any
reasonable accuracy with a good code.

2.8.2 The Collocation Discretization

We will discretize using (Gaussian) collocation. Roughly speaking this
means approximating each unknown function by a continuous piece-wise
polynomial of a specified degree (say 3 or 4 or 5) on a given number of
sub-intervals (say 20 or 30).

When a function is approximated by a piece-wise polynomial, its deriva-
tive in the interior of the sub-intervals is also approximated, merely by dif-
ferentiating the piece-wise polynomial. We get a finite dimensional system
of equations to solve for the coefficients of the piece-wise polynomial merely
by enforcing the differential equation at an appropriate number of interior
points in each sub-interval.

Of course there is a big numerical analysis theory of collocation, giving
error bounds and identifying the ‘best’ points at which to collocate (the
Gaussian quadrature points of course!)

Collocation can be viewed as beoing intermediate between finite differ-
ence and finite element discretizations. For example piecewise linear col-
location is simply related to first order differencing of derivatives. While
collocation can also be viewed as a finite element method where the trial
functions are piece-wise polynomial, and the test functions are Dirac deltas
(centred on the collocation points).

For our later purposes Gaussian collocation is very nice because it can be
shown to be equivalent to a symplectic Runge-Kutta method (say marching
in from the left) for the values of the functions at the boundaries between
sub-intervals. And when the underlying equations are Hamiltonian, sym-
plectic R-K methods exactly conserve the value of any integrals of the con-
tinuous Hamiltonian system that are quadratic functions of the unknowns
(ie the phase variables).
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2.8.3 VBM and AUTO

The package AUTO implements collocation (even with an adapting mesh),
exploits special linear algebra for the sparsity structure of the Jacobian
associated with the collocation discretization, and has routines both for
continuing around fold points in a branch of solutions, and for switching
branches at bifuraction points.

As with any large code you must use AUTO with caution, until you get
to know its strengths and limitations.

For example bifurcation points arise when the Jacobian is singular, but
it is computationally expensive to monitor singularity. So AUTO tracks the
sign of the determinant. This is much faster, and most of the time catches
points where the Jacobian is singular. However in the atypical case that the
Jacobian has a double zero eigenvalue, the Jacobian can go singular without
the determinant vanishing and AUTO typically misses any such bifurcation
points.

There are several other trade-offs between speed in the typical case, and
robustness to even the most degenerate case, which can give misleading
answers when the atypical cases happen to arise.

The resolution is to go ahead and use the code, but always to be ques-
tioning and testing it to the full extent possible.

Generally our experience is that AUTO is pretty robust.

VBM is an “easy to use” interface to AUTO that has two modes. (In
fact VBM is designed to be coupled to many different continuation packages,
but we will only use AUTO.)

The post-processing mode allows one to use interactive visualization to
understand bifurcation diagrams, and particular solutions on the bifurcation
diagram that have already been computed.

The computation mode allows you to interactively extend bifurcation
diagrams through additional computations using AUTO.

In point of fact the planar strut examples you will see today are so simple
that they don’t really justify all the overhead you have to learn to use VBM.
However the objective is to learn and build confidence in VBM/AUTO before
using it in the three dimensional rod examples that we will use to model
DNA.
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