4 Cosserat Rods as Calculus of Variations Prob-
lems

In this Chapter we will discuss formulations of various rod boundary value
problems as calculus of variations problems. We first in 4.1 restrict attention
to the planar case, and consider the connections between various discrete
and continuous problems. We describe both Lagrangian and Hamiltonian
forms of the equilibrium conditions. Then in 4.2 we turn to the 3D case.
After a parametrization of the group of 3 X 3 proper orthogonal matri-
ces denoted SO(3) is introduced (we shall use the description known as
quaternions or, more or less equivalently, Fuler parameters) then the cal-
culus of variations formulations for three dimensional rod deformations are
immediately analogous to the planar cases.

Previously we have seen that when regarded as a finite difference ap-
proximation, the continuous limit of the first-order stationarity conditions
for various planar, discrete, multiple-link strut problems yield the balance
laws for moment when the only unknowns are angles, or for moment plus
force when the unknowns are angles plus the cartesian coordinates of joints
between the links. We also saw how various boundary conditions required
either a global constraint (involving sums of the unknowns) or, for inex-
tensible, unshearable models, link-wise constraints leading to multipliers
associated with each link. In all cases we were able to make identifications
with the analogous continuous equilibrium conditions via identification of
the appropriate finite difference approximations.

The energies and constraints themselves also have finite difference limits,
leading to various continuous calculus of variations problems of minimizing
an appropriate energy with or without constraints of various types. With
the general theory of the calculus of variations described in the last Chapter
now in hand, we can proceed to derive the equilibrium conditions directly
as Kuler-Lagrange equations with various multiplier rules. The interesting
consequence of this is that we can then work entirely within the context of a
continuous Cosserat rod model of DNA, and still have the notion of stability,
in the sense of whether or not a critical point is a local minimum. Moreover,
although we do not examine the appropriate theory in detail, whether or
not a stationary point is a local minimum (in an appropriate sense) can
be readily computed via conjugate point tests associated with the second
variation.

Having an entirely continuous model, including a variational principle,
has various other beneficial features. First it frees us from the specific fi-
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nite difference discretization that might be associated with a base-pair level
description. This allows a separation between errors associated with nu-
merics and errors associated with modelling (for example how to extract
values for the 4; and stiffnesses from experimental data). It also allows the
use of numerical discretizations that may be more suitable or convenient for
various reasons, for example the adaptive collocation discretization used in
AUTO that you have seen within the VBM software package. The calcu-
lus of variations formulation also reveals the appropriate route to deriving
a Hamiltonian form of the equilibrium conditions, which in turn is impor-
tant in the understanding of various symmetries and integrals which have
an important impact on the physical problem.

However for our purposes in this course, the most important reason for
deriving the relation between the planar discrete, and planar continuous
variational formulations is that it makes it clear how to write down the
calculus of variations formulations of 3D rod problems, while retaining the
link with base pair level models and wedge angle data sets. In particular
the utility of introducing a parametrization of the rotation group to describe
the director frame is laid bare.

We proceed with a number of examples of various planar rod problems.
The choice of examples directly parallels those for the discrete model de-
scribed in Chapter 2, and comparison should be made to them. The exam-
ples also use and illustrate the general theory of the calculus of variations
that was sketched in the previous chapter.

4.1 2d version

Example 1 (Moment balance for the planar inextensible, unshearable strut)
The continuous planar moment balance equation

— (K2(s)(¢'(s) — @2(s))) — Asing(s) = 0

is the Euler-Lagrange equation for the functional

/1 Ko(s)(¢' — 12)%/2 + A cos ¢ ds.
0

Here we regard A as a prescribed constant. With the parameter s being
interpreted as arc-length (which is the same in both reference and deformed
configurations because of inextensibility) the quadratic term in the integral
can be recognized as the elastic strain-energy density for a planar inextensi-
ble, unshearable elastic rod with unstressed shape determined by 42, and a
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linear constitutive relation for bending with stiffness Ka(s). For the strut
boundary value problem we would have an imposed boundary condition only
at s =0, e.g.

$(0) = o

so that the direction of the tangent to the centreline (or equivalently dg(0))
is prescribed at one end-point, and, following the conventions of our re-
duction to the planar case that were described in Chpt 2, the tangent is
vertically upward when o = 0.

Because there is no imposed boundary condition at s = 1 the natural
boundary condition

K>(1)(¢'(1) —42(1)) =0

is one of the first-order necessary conditions. In this example the physical
interpretation of the natural boundary condition is that the bending moment
m2(1) vanishes, i.e. there is no moment applied to the end of the rod.

It also makes perfect sense to instead impose a boundary value for ¢(1)
say ¢(1) = B, in which case solutions to the Euler-Lagrange equation sat-
isfying this boundary condition should be sought, and no natural boundary
condition arises.

The physical interpretation of the term f(;l Acos ¢ ds is a potential
energy associated with a constant dead-loading (i.e. the load does not depend
upon changes in the point at which it is applied) applied to the end point s =
1. The term could alternatively be written as A z(1) using the kinematic
conditions

z'(8) = sin ¢(s), z'(8) = cos ¢(s)

which allow the centerline of the rod (x(s), 0, z(s)) to be reconstructed
from knowledge of the tangent angle ¢(s).

In the notational conventions introduced earlier A > 0 corresponds to a
load pushing down on the rod, i.e. to a load that is likely to produce buck-
ling when sufficently large. Force balance is not implied by this variational
principle, but rather has already been used to eliminate the variables x(s)
and z(s), to reduce the energy to being a functional of the tangent angle ¢
only.

In the above (and also below) the particular (offset) quadratic strain-
energy density function Ka(s)(¢’ — @2)2/2 could be replaced with a gen-
eral (offset) nonlinear function W (¢’ — 2, s) that is convex in its first
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argument. The linear constitutive relation for bending

ma(s) = Ka(s)(¢'(s) — d2(s))

is merely replaced with the nonlinear constitutive relation

ma(s) = W, (¢'(s) — d2(s), )

where W, denotes the partial derivative with respect to the first argument
of W, and the Euler-Lagrange equation is modified to become

- (WPI (¢'(s) — a2(s), 3)), — Asin¢(s) = 0.

Example 2 (Boundary conditions on & and z expressed as isoperimetric
constraints on ¢)

Boundary conditions such as £(0) = 0 and z(0) = 0 are innocuous in
establishing a variational principle for planar rod equilibria in terms of only
the tangent angle ¢, because they can be satisfied merely by choice of initial
conditions when solving the kinematic ODE to reconstruct the centreline
from the tangent angle. In fact there is no loss of generality in imposing
the side conditions £(0) = 0 and z(0) = 0 because they merely eliminate
the symmetry of translation in space (or equivalently prescribe an otherwise
arbitrary choice of origin). However if there are two boundary conditions
on x (or on z) a nonlinear isoperimetric constraint on ¢ is implied. For
example if we are seeking solutions satisfying (1) — x(0) = -, then we
should seek tangent angles satisfying the constraint

1
/ sin ¢pds = ~.
0

(The case v = 0 would be the most usual.)
Then the variational principle for the planar equilibria is to minimize

1
/ Ks(s)(¢' — 12)%/2 + Acos ¢ ds.
0
subject to the isoperimetric constraint
1
/ sin ¢pds = v,
0
and, say, the imposed boundary condition ¢(0) = a. We therefore mod-

ify the functional to be made stationary by the addition of a (constant)
Lagrange multiplier to obtain

1
/0 (K2(s)(¢' — @2)?/2 + Acos ¢ + vsing) ds,
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(the sign convention associated with v is arbitrary). The Euler-Lagrange
equations are then

— (K2(3)(¢'(s) — 62(s)))’ — Asing(s) + v cos ¢(s) = 0

where now the unknowns are the pair (¢(s),r) made up of the unknown
function ¢(s) and the unknown constant . The constant must be picked
so that the corresponding solution ¢(s) of the Euler-Lagrange equations
satisfies the isoperimetric constraint.

The role of imposed and natural boundary conditions on ¢(s) are ex-
actly the same in the presence or absence of an isoperimetric constraint,
because, in the above case, the isoperimetric constraint does not involve
any derivatives of ¢, so the integration by parts argument that leads to the
natural boundary conditions is unaffected.

Comparison with the appropriate planar version of the coordinate free
equilibrium equations

m 4+r’' XxXn=0, n =0
reveals that v has the physical interpretation of being the unknown horizon-
tal force of reaction of the boundary support, or horizontal end-load, that
enforces the boundary condition (1) — x(0) = ~. (The direction of the
force corresponding to v > 0 depends upon the sign convention originally
chosen.) This is in contrast to the parameter A which we have so far inter-
preted as a known parameter that is specified beforehand and which gives
the vertical component of the end load. In fact one could also consider prob-
lems where both (1) — x(0) and z(1) — 2z(0) are specified, in which case
both A and v would be undetermined Lagrange multipliers corresponding
to the components of the unknown force required to maintain the boundary
conditions. (One must be a little careful in this doubly constrained problem
in formulating a well-posed problem—for example, if the rod is assumed
inextensible of length 1, the specified distance between the two end-points
must certainly be less than 1, or there can be no solution.) On the other
hand one could specify both A and v to have given values, in which case
both (1) — #(0) and z(1) — z(0) are determined as part of the solution
procedure. In point of fact the strut of Example 1 is precisely of this form,
with = 0 prescribed. The fact is that in a well-posed problem either the
component of force or a component of displacement (or some combination of
them) should be specified. The situation is analogous to the fact that in any
calculus of variations problem for each component of an unknown function
w(s) and at each end-point, there is either an imposed boundary condition
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(which should not involve the component of the derivative w’) or a natural
boundary condition (involving the component of the derivative w’).

For inextensible unshearable rods the situation is clarified in the next
example:

Example 3 (moment and force balance for inextensible, unshearable pla-
nar deformations)

In Examples 1 and 2 there was one basic unknown function, namely the
tangent angle ¢(s) and consequently there was one scalar Euler-Lagrange
equation, which turned out to correspond to the moment balance for a planar
rod, provided that it is assumed that the force balance n’ = 0 is satisfied.
We now turn to a calculus of variations problem with three unknowns ¢(s),
x(s), z(s) whose three Euler-Lagrange equations are the single scalar mo-
ment balance, and the two components of force balance that arise for planar
deformations.

It is now just as convenient to switch to a general nonlinear, convex
strain energy density function W (¢'(s) — @2(s),s) for an inextensible,
unshearable rod. Consider the following calculus of variations problem which
involves pointwise constraints:

1
/0 W (/(s) — da(s), ) ds + Az(1)

which is regarded as a functional depending on ¢(s), x(s), and z(s), subject
to the imposed boundary conditions

#(0) =0, 2(0)=0, z(0)=0, z(1)=0

and subject to the pointwise constraints expressing inextensibility and un-
shearability

z'(s) = sin ¢(s), 2'(8) = cos ¢(s).

Here the integral term is the strain energy associated with bending, and now
the potential energy from the vertical dead loading at s = 1 is as expressed
as the pointwise term Az(1). Because the functions x(s), and z(s) are ba-
sic unknowns in this formulation there is no need to re-write the boundary
conditions on them in terms of one or more isoperimetric constraints on the
tangent angle ¢. Now however we must introduce two unknown functions
p1(8) and pg(s) as unknown multiplier functions associated with the point-
wise constraints. (The choice of numbering p1(s) and pg(s) is natural due
to our embedding the planar problem into the (x, z) plane with y = 0.)
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The modified Lagrangian so obtained is

1
/0 (W(¢'(s) — t2(s), 8) + p1(s)(a'(s) — sin ¢(s)) + p3(s)(2'(s) — cos P(s)) ) ds + Az(1)

with the three Euler-Lagrange equations (w.r.t. &, z and ¢ respectively)
being

—{pa(s)} = @41

—{us(s)} = @.42

— (Wi (¢/(8) — @2(s), 8))" — p1(s) cos ¢(s) + psa(s) sin p(s) = 04.43
(4.44

— ' '

The first two equations are particularly simple because  and z only enter
the problem linearly and only through the terms =’ and z’ appearing in the
pointwise constraints. The first two equations can be recognized as force bal-
ance n’ = 0 with n(s) = (z(s),0, 2(s)), or n constant n = (—v, 0, —A)
for some constants v and A. The undetermined constant v representing
the unknown horizontal component of the force n can be seen to be playing
exactly the same role as the undetermined constant multiplier v associated
with the isoperimetric constraint in Example 2: the only difference is that in
Example 2 the multiplier is associated with an isoperimetric constraint and
is known a priori to be constant, whereas in the formulation of Example 3
the multiplier is associated with a pointwise constraint, is a priori a func-
tion of s and is only known to be constant because of the simple form of the
associated Euler-Lagrange equations. The same structure that implies that
the Euler-Lagrange equations in the formulation of Example 3 are simple,
also implies that the problem can be formulated as in Example 2—that is
the variables & and z appear in such a way that they are ignorable, which
means that the problem can be reduced to one for the tangent angle ¢ alone,
possibly with an isoperimetric constraint (or two) to express the vestige of
boundary conditions on & and z.

From what we have seen thus far it is clear that the constants A and
A should be related to each other. How does this come about mathemati-
cally? It is through the natural boundary conditions. In this example there
are imposed boundary conditions on all three unknown functions at s = 0
so at s = 0 all boundary terms arising from the integration by parts used
in deriving the Euler-Lagrange vanish, and there are no associated natu-
ral boundary conditions. However at s = 1 there is the single imposed
boundary condition (1) = 0, so we can anticipate there being two natural
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boundary conditions. Explicitly the boundary terms that arise are

Wy, @ + p1& + paz + Az

Here all functions are to be evaluated at s = 1, ¢, Z and Z denote the vari-
ations in the functions ¢,  and z, and the term AZ arises from linearization
of the pointwise term A z(1) appearing in the functional to be minimized.
The sum of the boundary terms arising in the integration by parts of the
first variation, must vanish for all allowed variations. Because of the im-
posed boundary condition on &(1) we know &(1) = 0 and that term drops
out, but for allowed variations both ¢(1) and 2(1) can either be non-zero or
zero. Considering first ¢(1) # 0 and Z(1) = 0, we can conclude that W,
evaluated at s = 1 must vanish, i.e. there is a natural boundary condition
that the bending moment vanish. Then considering zZ(1) # 0 we conclude
that there is a second natural boundary condition namely that

ps(1)+A =0
or
A=—p3(l)=-4

where as before A is the constant appearing in our integration of the Euler-
Lagrange equations. Thus, as anticipated, the constants A and A are both
simply related to the vertical component of the boundary value of the force.
Example 4 (shearable extensible planar deformations)
For a shearable, extensible rod the problem is to minimize

1
| Wwn = 0106, va = (s, #'(5) — 2(s), 5) ds + A= (1)
0
subject to the imposed boundary conditions
¢(0) =0, z(0) =0, z(0) = 0, z(1) = 0.

The functional is regarded as depending on the unknown functions ¢(s),
x(s), and z(s), with 91(8), ¥3(s) and G2(s) being prescribed functions of
s determining the unstressed shape, and with v1 and v3 being place holders
defined through

vi =z’ cos¢p — 2'sing (4.45)
vs = ' sin ¢ + 2’ cos ¢ (4.46)
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This specific notation is consistent with the general one introduced for ex-
tensible shearable 3D Cosserat rods once it is recognized that in the specific
reduction from 3D to 2D introduced earlier

d; = (cos ¢, 0, — sin ¢) (4.47)
ds = (sin ¢, 0, cos ¢) (4.48)
r = (z', 0, 2") (4.49)
vi=r'-dy (4.50)

vg=r'-ds (4.51)

ug = ¢’ (4.52)

The variational principle involves a standard Lagrangian L(s, ¢, z, z, ¢', ', 2’)
that is explicitly defined through a composition of the given strain energy
density function W (vy — 91(8), vs — 03(s), uz — 42(s), s) with the in-
terpretations of v1 v3 and ug appropriate for planar deformations in terms
of the unknown functions (¢, x, z, ¢’, z’, 2’) that are given above.

We may therefore immediately compute the three Euler-Lagrange equa-
tions with respect to & z and ¢, using the chain rule for differentiation:

d
T ds (W, cos ¢ + Wy, sin ¢) = @.53)
_dis (—W,, sin¢ + W,,, cos ¢p) = @.54)
_di (Wus) + Wy, (—2'sin ¢ — 2’ cos ¢) + Wy, (2’ cos ¢ — 2’ sin ¢) = @.55)
s

These equations have a direct physical interpretation. Recall that for a
hyper-elastic rod the constitutive relations are given in terms of derivatives
of the strain-energy density function

m; = Wy, n; = Wy,

where it should also be recalled that the m; and n; are components with
respect to the variable director frame. For the planar deformations under
consideration here, the director frame is completely specified by the single
angle ¢, and the first two Euler-Lagrange equations can be rewritten as

d ) d
s (n1 cos ¢ + ngsin @) = e = 0 (4.56)

d d
—— (—n1sin¢p + nzgcos¢p) = ——n, =0 (4.57)
ds ds
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where n, and n, denote the & and z components with respect to the fixed
reference frame basis. Thus the first two Euler-Lagrange equations simply
express the two planar components of the force balance equation n’ = 0,
and take their simplest form when re-written with respect to the fixed frame.

Similarly the third Euler-Lagrange equation can be re-written in the
form

d
T (Way) — Wy, v3 + Wyv1 =0

which can be recognized as the y or 2 component of the moment balance
equation m’ 4+ r’ X n = 0 (with the other two components being identi-
cally satisfied for planar deformations of the form described above, and for
appropriate 3D constitutive relations, see below)

Example 1’ (Hamiltonian form of Euler-Lagrange equations in Example
1)

This is a standard application of the Legendre transform. The partial
derivative of the functional

/1 Ks(s)(¢' — i2)%/2 + Acos ¢ ds.
0

with respect to the derivative variable ¢’ reveals that the conjugate variable
is
ma = K3(s)(¢'(s) — 42(s))

which is equivalent to the constitutive relation defining the bending moment
m — 2. The constituive relation or definiton of the conjugate variable can
be inverted to give ¢’ in terms of the other variables

¢’ = ma/Kx(s) + d2(s)
and the single second order equation
— (K2(s)(¢'(s) — @2(s)))" — Asin p(s) = 0
can be re-written as the system

¢’ = ma/Ks(s) + G2(s) (4.58)
m, = —Asin¢ (4.59)

which is a one degree of freedom Hamiltonian system with Hamiltonian

m32/K2(s) + d2(s)m2 — Acos ¢
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where K2(s) > 0 and u2(s) are given functions of s, A is a given constant,
and the problem is to find solutions satisfying the two point boundary value
problem involving the imposed boundary condition ¢(0)a and the natural
boundary condition m — 2(1) = 0.

In the case where the strain energy density function W (¢’ — s, s) is
more general than quadratic, then it is usually the case that the definition

ma = Wy, (¢'(s) — di2(s), 5)

cannot be explicitly inverted for the variable ¢’, However the conjugate
variable can still be seen to be the bending moment defined by the appapriate
constitutive relation, and by the assumed convexity of W it is known that
there is some function ¥ such that

¢ = ¥(ma, s) + G2(s).
Moreover

@ (p,s) = W, (p, )

where W*(p, s) is the Fenchel transform of the strain-energy function W (g, s).
Thus if the Fenchel transform W*(p, s) of the strain-energy function W (g, s)
is regarded as known, then the Fuler-Lagrange equations can be seen to be
equivalent to the Hamiltonian system with Hamiltonian

W*(ma, s) + d2(s)ma2 — Acos ¢.

Example 2’ (Boundary conditions on @ and z expressed as isoperimetric
constraints on ¢)

This example is essentially the same as Example 1’. One derives a Hamil-
tonian system with Hamiltonian

W*(ma, s) + Gi2(s)ma — A cos ¢ — v sin ¢.

involving the additional unknown constant v and the value of the constant
must be picked so that the solution satisfying the appropriate boundary con-
ditions also satisfies the integral side condition expressing the isoperimetric
constraint.

Example 3’ (Hamiltonian form in the presence of pointwise constraints
of inextensibility and unshearability)

This problem is somewhat non-standard from the Hamiltonian point of
view, and the necessary general theory (Dirac’s theory of constraints com-
bined with something called the impetus-striction formulation) is beyond the
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scope of the course. However the particular example can be understood in
its own right, and provided that the motivation for why the example works
the way it does, is set aside and regarded as a little black magic, things are
quite straightforward.

The difficulty is that the effective Lagrangian, i.e. the Lagrangian in-
cluding the multipliers p1(s) and ps(s) associated with the pointwise con-
straints

z'(s) =sing(s),  2'(s) = cos ¢(s),

1
/0 (W (¢'(s) — @2(s), ) + p1(s)(z'(s) — sin ¢(s)) + p3(s)(2'(s) — cos P(s))) ds + Az(1),

which is a strictly convex function of ¢’ (by assumption on the form of
W), but is not a strictly convex function of ' and 2’ (it is clearly a linear
function of &’ and z’). When the standard prescription is followed and
the conjugate variables are introduced by taking partial derivatives of the
Lagrangian w.r.t. ¢/, ©’ and 2’ respectively we find

ma = Wp, (¢'(s) — G2(s), s) (4.60)
ng = p1(s) (4.61)
ny, = ps(s) (4.62)

(where we have prejudiced notation because of our physical based knowledge
of the system). The problem comes because while we can solve the above
for the variable ¢’ (just as we did in the previous examples because the
system decouples) we cannot invert these relations to solve for ' and 2’
because they do not appear at alll The saving grace is that the constraints
already give expressions for ’ and 2’ in terms of the configuration variables
(¢, © and z). (In fact only in terms of sin ¢ and cos ¢ but that is just
an added simplification.) Therefore, if we set aside how the Hamiltonian
was constructed, we can merely verify that the three degree of freedom
Hamiltonian

W*(ma, s) + Gi2(s)ma 4+ ngsin ¢ + n, cos ¢
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has associated Hamiltonian equations

¢ = H(ma, s) + G2(s) (4.63)
x' = sin ¢ (4.64)

z' = cos¢ (4.65)

m), = —Asin¢ (4.66)

n,, =0 (4.67)

n,=0 (4.68)

which form a first-order system equivalent to the moment and force balance
laws plus the constraints.

Example 4’ (Hamiltonian form of equations for shearable extensible pla-
nar deformations)

As in Examples 1 and 1’, Example 4’ is again a straightforward appli-
cation of the Legendre transform to pass from the Lagrangian second-order
side of Example 4, to the Hamiltonian first-order side, except now there are
three unknown functions ¢(s), (s), and z(s) and we anticipate a three
degree of freedom Hamiltonian system. The only non-standard feature is
that the ‘Lagrangian’ is defined as a composition of the function W with
the functions v and vs that are place holders as introduced in Example
4. Thus because W is not explicitly known, the standard formula for pass-
ing to the Hamiltonian must be applied using a chain rule and the Fenchel
transform W* of W and its properties.

Introducing the conjugate variables in the usual way leads to the equa-
tions

ng = Wy, cos ¢ + Wy, sin ¢ (4.69)
n, = —W,, sin¢ + W, cos ¢ (4.70)
mo = Wu2 (4.71)

The first step is to invert these equations to solve for ¢’, z’, and z’. This is
actually easy once rotations and change of basis are recognized and exploited
appropriately. First the right hand side should be identified as a simple
rotation of the gradient of W through an angle ¢(s) for each s. Inverting
the rotation (i.e. multiplying by the transpose of the appropriate matrix)
leads to the identities

Wy, = ngcos¢g —nysing = ny (4.72)
Wy, = ngsing + n, cos ¢ = ng (4.73)
ma = W, (4.74)
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These equations are exactly inverted through the properties of the Fenchel
transform W* of W to obtain

V1 — 171 = W:l (4'75)
V3 — ’53 = W:a (476)
uz — ﬁz = W‘:m (477)

Here W* is regarded as a known function of the variables (nq, ng, ma, s)
and therefore also a known function of the variables (¢, ng,nz, ma, s)
through composition with a simple rotation.

The next step is to solve for the variables (¢’, z’,2"), which is again
straightforward because ¢’ = w3 and, from the kinematics summarized in
Example 4, (z’, 2") are a rotation of (v1,v3) again through an angle ¢(s).
We thus find that the inversion is complete with

@' = (01 4+ W; ) cos ¢ + (93 + W,; ) sin ¢ (4.78)
2 = —(014+ W )sing + (93 + W;,) cos ¢ (4.79)
¢ = s + W, (4.80)

We are now in a position to explicitly carry out the Legendre transform.
The point of this example is that the rotation involved in the definition
of the energy as W of a rotated variable exactly cancels with the rotation
introduced in the inversion above, and the Hamiltonian is given by the
expression

H(¢,mz,ng,nz,8) = W*(n1,n3, ma, s) + n191 + nzds + mais

where the right hand side is a composition with W*(n1,ngs, mz, s) as-
sumed given, and (n1,n3) placeholders for functions of (ng,n., ¢) that
are defined through the rotation

N1 =nNgcos ¢ —n;sing (4.81)
ng = Ng sin ¢ + n, cos ¢ (4.82)

4.2 3d version

Here use a new Hamiltonian formulation of rod equilibrium conditions that
exploits the Euler parameter description of SO(3) to determine the directors

d;(s).
A set of Euler parameters is a quadruple of real numbers
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q = (91,92, 93,94)

that satisfies the identity
q-q=q’+q’+q’+q;=1.

In other words a set of Euler parameters, or unit quaternion, is an element
of the unit sphere S in R%.

The components of the orthonormal triad {d;} (with respect to the fixed
space basis) are quadratic functions of the Euler parameters q, e.g.

2(q193 + q2q4)
ds = 2(q293 — q194)
—q; —q3+a3+4;

Euler parameters (or quaternions) have the property that there exist
three 4 X 4 skew-symmetric matrices B; with entries 0 or &1 with the
property that for any q, {q, B;q} forms an orthonormal basis of R4.

Moreover

u; = 2q' - Biq/|q|?
Implies energy is convex but not strictly convex function of q’.

In the Hamiltonian formulation the force n is the variable conjugate to
the centerline r.

And the Euler parameters q are conjugate to (the mystery variable)
p, which is more or less equivalent to the three director components of
the moment m. In terms of z = (x,q,n, u) € R the equilibrium and
kinematic conditions reduce to a 7 degree of freedom Hamiltonian system
(i.e. 14 first order ODE)

z' = JVH(z)

where J is the canonical skew matrix

0 1
7=[ 5]
For a linear constitutive law the Hamiltonian H (z) is

n-ds+ % 3 {mi(s)?/Ki(s) + timi}
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where the 4; are the strains of the unstressed state, and the components of
bending moment are written in terms of the phase variables by:

_ k-Biq

5 i=1,2,3.

m;
Thus the Hamiltonian is a quartic polynomial of the unknowns. Note that
the Hamiltonian is a convex but not strictly convex function of u. The
Hamiltonian system always has eight integrals, five of which are in invo-
lution. Ten integrals, seven of which are in involution are obtained when
the rod is uniform and isotropic. In the linearly elastic case this means
K, = K> with both constant, and @4; = 42 = 0.

Seven integrals in involution is classic condition for complete integrability
of a Hamiltonian system. Means that in principle the initial value problem
can be solved by quadrature. For this rod model can actually solve in
closed form—goes back to Landau and Lifschitz, Illyukin, and more recently
rediscoverd by Langer and Singer and by Shi and Hearst.

Unfortunately solution by quadrature has unknown constants that must
be picked to yield correct solution to a two-point boundary value prob-
lem. Very intractable and numerically ill-conditioned problem. Much more
efficient numerically to compute from scratch. Particularly because in non-
integrable cases there is no other choice.

As a consequence of the exploitation of Kuler parameters, all but one
of the integrals are quadratic functions of the phase variables. Combines
very well with numerics based on Gaussian collocation which is equivalent
to a symplectic Runge-Kutta method that exactly conserves quadratic in-
variants.

In two point boundary value problems integrals ‘convect’ information
from one end point to the other.

This is the key point in our techniques for the elimination of continuous
symmetries that then allows numerically efficient parameter continuation.

We consider the boundary value problem corresponding to a closed twisted
ring, with configurations of ‘DNA’ loops with different links arising when
the angle parameter increases through multiples of 2.

Numerical continuation requires a known solution as a starting point.
For this rod BVP, explicit solutions only arise in the case of uniform isotropy.

We shall use the solution set for the uniformly isotropic loop as an or-
ganizing center for computation in the general case.

The associated ‘perfect’ bifurcation diagram has one intricately con-
nected component — highly desirable for the continuation methods we em-

ploy.
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Connectivity is forced by the (continuous) symmetries that are present.
Same symmetries imply that each equilibrium is non-isolated (for fixed load-
ing parameter)—very bad for standard continuation methods. Have to be
careful to get round this, and solve a modified BVP that selects isolated
representatives of symmetry generated families of equilibria.

Use Hamiltonian form of the equations and the integrals associated with
the symmetries to modify the boundary conditions in such a way that effi-
cient numerical continuation can be employed.

Add boundary conditions to factor out symmetries. An overdetermined
system arises with more boundary conditions than equations. Standard
numerical continuation packages (in our case AUTO) cannot handle this.

General idea for systems of Euler-Lagrange Equations with symmetry:

Symmetries generate non-isolation, that necessitate the addition of bound-
ary conditions. With Hamiltonian structure, the same symmetries also gen-
erate integrals (Noether’s Theorem). Use the integrals to show that some
of the original boundary conditions are actually implied and need not be
enforced.

Approach works beautifully in the rod problem. Analytically reduce to a
formally well-posed system with equal numbers of boundary conditions and
equations. AUTO is then very happy.

Breaking symmetries becomes delicate, for boundary conditions must
be changed. Numerics are rather robust, and perform very well. Perhaps
(probably?) associated with exact invariance of quadratic integrals provided
by collocation techniques.

For the closed, twisted loop, an appropriate set of fourteen boundary
conditions is

r(0) =r(1) = (0, 0, 0)
(41(0), g2(0), q3(0)) = (0, 0, 0)
(q1(1), q2(1), q3(1),q4(1))
= (0, 0, —sin(0/2), — cos(8/2))

pa(0) =0

But these boundary conditions have nonisolated equilibria for a uniformly
isotropic rod.
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14 boundary conditions leading to isolated equilibria for the integrable
rod:

r(0) =r(1) = (0, 0, 0)

(a1(0), a2(0), g5(0)) = (0, 0, 0)

gs(1) = —sin(6/2), aa(1) = —cos(8/2),
pa(0) =0, ny(0) =0, ny(0)=0

The direction of the force n is fixed, but the values of g1 (1) and g2(1) are
not prescribed, which is equivalent to not requiring dg(0) = ds(1). Using
integrals of the system it can be shown that these boundary conditions are
actually implied by the others. (At least locally.)

The boundary value problem for uniformly isotropic rods has closed form
solutions comprising IN-covered circles with uniform twist. Actually two sets
of families, one with positive twist, and one with negative twist.

Each family of IN-covered circles has a countable sequence of bifurcation
points indexed by M say.

Numerics indicate that the branch emanating from the Mth bifurcation
on the N-covered ring with positive twist links to the Nth bifurcation point
on the M-covered ring with negative twist. Symbolically

(M,N,+) A (N,M7_)
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