3 One Dimensional Calculus of Variations

In this section we only state results of the Calculus of Variations. For deriva-
tions, see the book by Gelfand and Fomin', for example.

The standard problem in Calculus of Variations is to find functions y(s) :
[0,1] — R™ which minimize the functional

1
I[y] = /0 F(s,9(s),9'(s)) ds, (3.1)

where F(s,y,p) : RXR™ X R™ — R is a given smooth function. Various
conditions can be imposed on y.
3.1 First and Second Variations

To find necessary conditions for y to be a minimizer, the idea is to consider
the Taylor expansion

Ily + eh] = I[y] + € 6I[y, h] + € 6*I[y, h] + O(€®), (3.2)

where € is a small parameter and the function h(s) : [0,1] — R™ is an
admissible (i. e. allowed by the imposed conditions on y) variation. The
functionals §I[y, h] and §2I[y, h] are called the first and the second varia-
tions of I. The first order necessary condition is

Iy, h] =0, Vh admissible. (3.3)
The second order necessary condition is

6%I[y, h] > 0, V h admissible. (3.4)

3.2 Euler-Lagrange Equations

In the case of imposed boundary conditions of the form

y(0) = a, y(1) =23, (3.5)
a, 8 € R™ given, the first order condition implies
d
— 25 [Fp(8:9(s), 9" ()] + By (s, 9(s),y'(s)) = 0. (3.6)

These m second-order ODEs are called the Euler-Lagrange equations.

1. M. Gelfand, S. V. Fomin, 1963, Calculus of Variations, Prentice Hall
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3.3 Natural Boundary Conditions

Suppose that there is an imposed boundary condition only at one end-point,
e g

y(0) = a. (3.7)

Then, in addition to the Euler-Lagrange equations, the the first order con-
dition implies a natural boundary condition at the other end-point:

Fp(1,y(1),'(1)) = 0. (3-8)

3.4 Corner Conditions

The Euler-Lagrange equations were derived under the assumption that y(s)
and y’(8) were continuous. Assume now that y(s) is continuous but can
have “corners”, i. e. y’(8) is only piecewise continuous. For example suppose
that y’(s) has a discontinuity at § € (0, 1), i. e. y'(37) # y'(§1), where
y'(57) [respectively y’(57)] denotes the limit of y’(s) as s tends to § from
the left [respectively right]. Then the first order condition implies the corner
condition

Fp(3,y(3),y'(57)) = Fp(3,y(3),y'(5T)). (3.9)

In the case where F(s,y,p) is a convex function of p, i. e.

Fpp(S,yaP) >0, Vs,y,p, (3'10)

the corner condition implies that y’(87) = ¥’(8%). So in this case the
minimizers cannot have corners.

3.5 Isoperimetric Constraints

Consider the problem to minimize
1
Iy = [ Fs,9(),4'(s) ds (.11)
0
subject to the isoperimetric constraints
1 .
/ G (s,y(s),y'(s))ds =0, i =1,...,k, (3.12)
0
where G (s,y,p) : R X R™ X R™ — R are given smooth functions.
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The first order necessary condition for ¥ to be solution to this problem
is that there are constants u;, ¢ = 1,... ,k, called Lagrange multipliers,
such that the functional

1 k )
Jly] = /0 (F(s,y(S),y’(S)) - ZuiG(Z)(s,y(S),y'(S))> ds (3.13)
i=1

is stationary.
The corresponding Euler-Lagrange equation is

k .
- % [Fp(s,y(S),y’(S)) = uiGS)(s,y(S),y’(S))]
=1
k .
+ Fy(s,y(s), 5/ (s)) — 3 miGy (s, y(s), 4/ (s)) = 0. (3.14)
i=1

3.6 Pointwise Constraints

Consider the problem to minimize

Il = [ F(s,u(0),9/(o)) ds, (3.15)
subject to the pointwise constraints
g9 (s,y(s),y'(s)) =0, Vs€[0,1], i =1,...,1, (3.16)
where g(9(s,y,p) : R X R™ x R™ — R are given smooth functions.

The first order necessary condition for y to be a solution to this problem
is that there are multipliers v;(s) : [0,1] = R, ¢ = 1,...,!, such that

! .
- | B0, (5) = o) o w51, v (@)
l .
+ By (5,9(), 5/ (9)) = 3 %i()gy” (5,5(5), 4/ (5)) = 0. (3.17)
3.7 Conjugate Point Theory

Suppose we have found a solution ¢ of the first order necessary conditions
(3.3). Suppose moreover that there is an imposed boundary condition at at

44



least one end-point, say §(1) = B. Then the conjugate point theory can be
used to test the second order necessary condition (3.4) for §.
Consider the Jacobi accessory equation

d . . . .

- [Fpp K (s) + Fyp h(s)] + Fpy h'(s) + By h(s) =0,  (3.18)
where a hat on a functional means that it is evaluated at (s, 9(s),9’(s))-
This system of m second order linear equations with known coefficients
for h(s) corresponds to the Euler-Lagrange equations for 62I(§, h). This
system must be solved as an initial value problem with the m (imposed
or natural) linearized boundary conditions at s = 0. For example, if we
have the imposed boundary condition §(0) = «, then the corresponding
linearized boundary condition is h(0) = 0. There is a m-parameter family
of solutions to this initial value problem. A conjugate point arises at s = §,
0 < § < 1, when there is a solution A Z 0 in this family satisfying
h(3) = 0. In this case 6%I(§, h) # 0 for any admissible h and § is not a
minimizer. In the case where there are no conjugate points, 62I(,h) > 0
for any admissible h and ¢ is a minimizer.

3.8 Hamiltonian Formulation

Consider the problem to find a minimizer y to the functional

1
Il = [ Flo,y(s), /() ds, (3.19)
0
where F'(s,y,p) is a convex function of p, i. e.

Fpp(s,y,p) > 0, Vs,y,p, (3.20)
The first order necessary condition is the Euler-Lagrange equation

d

ds

[Fp(s,y(s),y'(s))] + Fy(s,y(s),y'(s)) =0, (3.21)

which is is a system of m second order ODEs. A Hamiltonian system is an
equivalent system of 2m first order ODEs.

To construct the Hamiltonian system we start by defining the conjugate
variable z(s) : [0,1] — R™ as

z = Fp(s,y,y'). (3.22)
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Suppose that this equation can be inverted into the form

y, = ¢(s, Y, z), (3'23)

where ¢ : R X R™ X R™ — R Then the Euler-Lagrange equations are
equivalent to the system of 2m first order ODEs

y, = ¢(3, y,z)
{ 2 = Fy(s,y, d(s, 9, 2))- (3.24)

The Hamiltonian H(s,y,z) : R X R™ X R™ — R is defined as the
Legendre transform of the lagrangian F' :

H(s, y,z) =z- ¢(37 Y, z) - F(S, Y, ¢(3, y,z))' (3'25)
Then
Hy:Z'¢y—Fy—Fp'¢y
:z.¢y_Fy_z.¢y
and

HZ:¢+Z'¢Z_FP'¢Z
=¢+z-¢,—2-¢,
= ¢. (3.27)

Combining the equations (3.24), (3.26) and (3.27), we obtain the Hamilto-
nian equations

{ vy =H, (3.28)

!/
z ——Hy.

In fact the Legendre transform defining the Hamiltonian corresponds to
a Fenchel transform.

Definition. The Fenchel transform of the function 9(z) : R™ — R is the
function 9*(v) : R™ — R defined as

P*(v) = m)ilx(v -z — P(x)). (3.29)
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Suppose that this maximum exists. Then, at the maximum, the first order
condition is

v = Px(x). (3.30)
Suppose this equation can be inverted as
z = ¢(v). (3.31)
Then the Fenchel transform can be written as
Y (v) = v - ¢(v) — Y (o(v)). (3.32)

Comparing (3.25) to (3.32), we see that the Legendre transform of F'(s,y, y’)
is just the Fenchel transform between y’ and z, holding s and y fixed.

Lemma. The Fenchel transform of 4 (z) = 1 (x —a), where a is a constant
shift, is

P*(v) = Yp*(v) + v - a. (3.33)

Proof.
§*(v) = mx(v -z — (e — a))
— max(o - (2 + ) - $(@))
=m)_(ax('u-:_t:—1/)(:i))—|—'v-a

=¢Y*(v)+v-a. (3.34)

Lemma. The Fenchel transform of
P(x) = %:1: - Az, (3.35)

where A is a m X m symmetric, positive definite, constant matrix, is

Y*(v) = 3v- A7 . (3.36)
Proof. By definition
P*(v) = max (v-z— 3z Az). (3.37)
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The maximum occurs when v = Az, or ¢ = A~ 'v. Therefore

P*(v) =v-A7'w — 1A v AAT
=v-A" 1y — %A_l'u -v
=v-A 1y — %U Ay

_ 1. a-1
=3v-A v

The last two lemmas imply the following corollary:

Corollary. The Fenchel transform of

P(z) = 3(z —a) - Az — a)

is

Pp*(v) = %v A v 4 v-a.
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