8 Adapted Framing of a Curve

Given a curve r(s) and a local frame, (d1(s),d2(s),ds(s)) , an adapted
frame is a right handed frame (D1(s),D2(s),D3s(s)), determined by a 3-
dimensional rotation of the local frame about the vector dg by an angle ¢(s).

D = dQ where

D:[Dl D2 D3:|,d:|:d1 dz d3]

and
cosyp —sing 0
Q= | sinyp cosep O
0 0 1

We want to determine how the strains transform with the new frame.
We have a strain vector u which is defined by

d:: =u X d;,
and we want to relate it to U which is defined by
D;, = U x D;.

A straightfoward computation yields

D] = cospd] +sing d, + (—sing di + cos ¢ da)¢’
D, = —singpd] + cose d) + (—cosp di — sinp d2){8.163)
DI — dl

3 = 43

which yields

D} = (uxDi+ ¢'Ds)=(u+ ¢'D3) X Dy
D, = (uxD;—¢'D;)=(u+¢'D3g)x Dy  (8.164)
Dy = (uxDs3)=(u+¢'Ds) xDs

Hence, we deduce that

U= (u+ ¢'D3) = (u+ ¢'ds). (8.165)
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The relations between the components of U and those of u are

Ui = cosepuy + sinpus
U, = —sinpu; + cos pus (8.166)
Us = uz+ ¢

Note that U; = U - D; and u; = u - d;.

Remarks

e ¢’ does not enter in the expression for Uy and U,
o u1? + ux? = Ui? 4+ Up?

e uz = Us — ¢’ wich implies that

p(s) — p(s0) = /S(Us — ug)ds (8.167)

The freedom in changing from one adapted framing to another is one
scalar function ¢(s)

Next, we want to know how the Hamiltonian transforms when a different
adapted framing is chosen as the reference state. Recall that the expression
for the Hamiltonian:

3 2
m; .
H(r,q,n,v) = ;1 <2 Iéz + uzmz) + n - ds. (8.168)
The 1 transform to U and
my cos pm1 + sin pmo
mga | is transformed to the vector | cos pmo — sin pm
ms3 ms3

The first term in the Hamiltonian, i.e.,

transforms to

1 COIS{:P2 + sir;{:o2 sin<,ocosch(KL1 — ZK%) 0
2 [ My My M | sin ¢ cos <,0(KL1 - ,:—2) COIS{;P + Sir;{ip 0
0 0 =

(8.169)

Note that for the isotropic case, i.e., when K7 = Ko, the transformed

matrix remains diagonal.
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8.1 Frenet-Serret Frame

The Frenet-Serret frame is a particular adapted frame where (D1, D2, Dg3)
is usually denoted (n,b,t), and

t(s) = r'(s),

t’'(s) = k(s)n(s).

The vector n(s) is the principal normal and k(s) is the curvature. Note
that this frame is well defined provided that t’(s) does not vanish at any s.
The binormal vector b = t X n satisfies b’ = —7(s)n, where the function
7(8) is the geometrical torsion of the axial curve.

Therefore, for the Frenet-Serret frame we get

n’(s) = —k(s)t(s)+ 7(s)b
b’(s) = —7(s)n(s) (8.170)
t'(s) = &(s)n(s)

or
!

n 0 7 —k n

b =] -7 0 O b

t k 0 O t

The Frenet-Serret frame is an adaptive frame with U; = 0, Uz = & and

U3 =T.
Remark

A rotation by 5 of the Frenet-Serret frame is another adapted frame with
Uy=0,U; =kand Ug = 1.

8.2 Natural Frame

An important case for the adapted framing is the parallel or natural trans-
port frame. This frame is defined by imposing Ug to be zero so that

’

D, 0 0 -U, D,
D3 U, -U; 0 D3
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This frame is well defined on all curves, including straight segments, and it is
uniquely defined up to an arbitrary choice of D4 (0) with D1(0)-r’(0) = 0.
Remark

If we consider a closed loop with no inflection point, then the ribbon formed
by the normal vector is always closed in the Frenet-Serret frame, because
the principal normal has a local definition. For the natual frame, the ribbon
is closed only if the angle ¢(s) between the natural and Frenet-Serret frame
satisfies (L) = ¢(0) modulo 2knw. We can see from (8.167) with Us = 0,
for the natural frame, that ¢(L) = ¢(0) modulo 27 if and only if [ 7 =
2km for some integer k.

8.3 Why work with adapted frames?

The crucial difficulty when working with the local frame in the DNA appli-
cation is that the normal vector rotates rapidly about the centerline, making
a full revolution approximately every 10.5 base-pairs. Furthermore, when
the centerline is curved with a slowly varying curvature and torsion and
with the normal vector d; spins rapidly, there will be rapid oscillations
in w3 and ug because of the high twist. Consider, for example, a center-
line r(s) = (Rcos(s/R), Rsin(s/R),0) with the corresponding tangent
vectors dg(s) = (—sin(s/R),cos(s/R),0), and choose normal vector
d1(s) = (cos(s/R) cos(vs/R),sin(s/R) cos(ys/R), — sin(ys/R)). We
can then compute uz(s) = dj(s) - di(s) = — cos(vs/R)/R, which oscil-
lates rapidly for «y large. In the DNA context, we have exactly this problem,
a slowly varying reference centerline with a rapidly varying material ref-
erence frame {d;(s)}. Because u1(s) and uz(s) vary rapidly in s, it is
desirable to avoid computing with the local DNA frames. Fortunately, we
can compute on a different set of frames which are not rapidly rotating, and
then recover the true DNA results analytically from the transformed results.
It is possible to transform the natural frame for the reference state, and to
compute how this frame deforms when the rod is bent and twisted. At any
stage it is possible to recover the material frame because the angle ¢(s)
between it and the deformed image of the natural frame in the reference
state is constant, independant of the deformation.
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